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Abstract: Recognizing texts in real-world scenes is an important research topic in computer vision. Many deep learn-
ing based techniques have been proposed. Such techniques typically follow an encoder-decoder architecture,
and use a sequence of feature vectors as the intermediate representation. In this approach, useful 2D spa-
tial information in the input image may be lost due to vector-based encoding. In this paper, we formulate
scene text recognition as a spatiotemporal sequence translation problem, and introduce a novel attention based
spatiotemporal decoding framework. We first encode an image as a spatiotemporal sequence, which is then
translated into a sequence of output characters using the aforementioned decoder. Our encoding and decoding
stages are integrated to form an end-to-end trainable deep network. Experimental results on multiple bench-
marks, including IIIT5k, SVT, ICDAR and RCTW-17, indicate that our method can significantly outperform
conventional attention frameworks.

1 INTRODUCTION

Scene text recognition remains a hot research topic in
computer vision (Neumann and Matas, 2012; Jader-
berg et al., 2014; Shi et al., 2016a) due to impor-
tant applications including handwriting recognition
and navigation reading.

With the advance of deep learning, many solu-
tions (Lee and Osindero, 2016; Shi et al., 2016b;
Yang et al., 2017; Cheng et al., 2017; Wang and
Hu, 2017) have been proposed for scene text recog-
nition and promising results have been achieved. In
general, such solutions exploit the encoder-decoder
network architecture. Specifically, in the encod-
ing stage, a sequence of feature vectors are ex-
tracted from an input image using convolutional neu-
ral networks (CNNs) (Sainath et al., 2013) and re-
current neural networks with long-short-term mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997). In
the decoding stage, the feature vectors are decoded
into a character sequence with connectionist tempo-
ral classification (CTC) (Graves et al., 2006) or an
attention-based temporal decoder (Lee and Osindero,
2016; Shi et al., 2016a; Yang et al., 2017; Cheng et al.,
2017). In fact, any character appearing in a natural
image contains specific spatial information, such as
the stroke layout of the character. However, previous
methods, as shown in Figure 1, encode a spatial image
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Figure 1: Overview of the proposed model. The brown
dashed box refers to the traditional framework for scene text
reading: first encoding an image as a sequence of feature
vectors (denoted temporal encoding), and then performing
classification; the green dashed box represents our proposed
framework: first encoding an image as a sequence of feature
maps (denoted spatiotemporal encoding), and then generat-
ing a sequence of characters.

using feature vectors and generate an output charac-
ter sequence by performing classification on the fea-
ture vectors, whose one-dimensional layout may miss
part of the spatial and structural information in the
original two-dimensional image. An ideal network
architecture we seek should retain the original spatial
structures and thus make the best of spatiotemporal
information. Prior to building such a spatiotemporal
model, several issues need to be taken into considera-
tion:
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• Spatiotemporal Encoding: Unlike the previous
methods, our method should have a scheme that
efficiently constructs a spatiotemporal sequence
from a spatial image. Inspired by (Li et al., 2017),
we use a sliding window to build the spatiotempo-
ral sequence.

• Spatiotemporal Decoding: Given a constructed
spatiotemporal sequence, a spatiotemporal de-
coder should be used to generate a corresponding
character sequence. Unfortunately, no techniques
are available for this purpose. In the existing liter-
ature, there are two temporal decoders: CTC and
attention. CTC was designed for calculating the
conditional probability between a predicted char-
acter sequence and its corresponding target char-
acter sequence, but cannot map a spatiotemporal
sequence of feature vectors to the target sequence
while a fully connected attention (FC-Attention)
decoder can only map a sequence of feature vec-
tors (instead of 2D feature maps) to a target se-
quence. Inspired by convolutional LSTM (Con-
vLSTM) (Xingjian et al., 2015), we attempt to de-
sign a convolutional attention mechanism that can
build the mapping from an encoded spatiotempo-
ral sequence to the corresponding target sequence.

• Model Training: We integrate the encoding and
decoding modules to form an end-to-end net-
work, which can be trained with the cross-entropy
loss between predicted sequences generated by
ConvAttention and their corresponding target se-
quences, as shown in Figure 1.

As we know that the FC-Attention layer adopted by
previous models does not take spatial correlation into
consideration, we extend the idea of FC-Attention to
ConvAttention, which has convolutional structures in
both input-to-state and state-to-state transitions. With
ConvAttention, we can build an end-to-end trainable
network for describing scene text using character-
level labels.

In summary, this paper has the following contri-
butions.

• We propose a novel spatiotemporal deep learning
framework with a convolutional attention mecha-
nism, which retains more information about spa-
tial structures. This framework can be trained
from end to end.

• Our proposed framework can be configured as
an end-to-end spatiotemporal model for robustly
reading scene text. Our convolutional attention
can effectively transform each scene text image
into a sequence of characters or target images, as
shown in Figure 1.

• Extensive experiments on public text bench-
marks demonstrate that our convolutional atten-
tion mechanism significantly outperforms con-
ventional attention frameworks.

2 RELATED WORK

Reading text from natural image is still one of the
most important challenges in computer vision and
many methods have been proposed. A complete text
reading system contains a text detection module and
a text recognition module. Our work in this paper fo-
cuses on the text recognition task.

Conventional methods typically first locate char-
acters one by one with a sliding window, then recog-
nize characters using a classifier with handcrafted fea-
tures such as HOG descriptors (Yao et al., 2014), and
finally integrate recognized characters into the out-
put text (Neumann and Matas, 2012; Wang and Be-
longie, 2010; Wang et al., 2011). However, two prob-
lems limit the performance of such methods: the low
representation capability of handcrafted features and
missing contextual information in the pipeline. With
the advance in deep learning and convolutional neural
networks, researchers use CNNs for extracting high-
level feature representations. Jaderberg et al. (Jader-
berg et al., 2016) carried out a 90k-class classification
task with high-level features. In this task, each class
represents a character string, therefore, their method
cannot recognize out-of-vocabulary words. Wang et
al. (Wang et al., 2012) developed a CNN-based fea-
ture extraction framework for character recognition,
and then performed non-maximum suppression for fi-
nal word prediction. The above models are trained
with the segmentation annotation of each character,
and do not exploit contextual information in the orig-
inal text. In addition, annotating segmentations is
very labor-intensive especially when the background
is cluttered.

Recently, some works regard this problem as
a temporal sequence recognition problem, and re-
current neural networks (RNNs) are integrated with
CNNs to read character sequences. The CTC (Graves
et al., 2006) loss is combined with RNNs in (He
et al., 2016; Shi et al., 2016a; Wang and Hu, 2017)
to calculate the conditional probability between the
predicted and target sequences. Attention-based de-
coders are used for generating output sequences in
(Lee and Osindero, 2016; Shi et al., 2016b; Cheng
et al., 2017; Yang et al., 2017). The above meth-
ods have achieved promising results on text recogni-
tion, but all of them encode a spatial text image into
a sequence of feature vectors, which may lose part of
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the spatial information. We believe that information
about spatial structures is helpful in describing text
images.

Different from previous approaches for scene text
reading, in this paper we describe scene text from
a spatiotemporal perspective, and propose an end-
to-end trainable network to build spatiotemporal se-
quence models for scene text. To the best of our
knowledge, this is the first piece of work that applies
a spatiotemporal framework to scene text reading.

3 PRELIMINARIES: FC-Attention

An attention-based decoder is a recurrent neural
network that directly generates a target sequence
(y1, ...,yM) from input feature vectors (h1, ...,hT ),
where the lengths of the input and output sequences
may be different Bahdanau et al. (Bahdanau et al.,
2015) proposed the architecture of FC-Attention, as
shown in Figure 2. At the t-th step, the attention mod-
ule generates an output yt as follows:

yt ∼ so f tmax(Ust),

st = LST M(yt−1,gt ,st−1),

gt = ∑
T
k′=1 αt,k′hk′ ,

αt,k =
exp(et,k)

∑
T
k′=1 exp(et,k′)

,

et,k = w tanh(Wst−1 +V hk +b)

(1)

where st , gt , αt and et represent the hidden state of the
LSTM, the weighted sum of h, the attention weights
and the energy value at the t-th step, respectively. In
the above equation, w, W , V , U and b are all trainable
parameters.

...

... ...

Figure 2: Illustration of FC-Attention. Green dotted and
dashed lines correspond to the calculation of attention
weights α.

FC-Attention is capable of generating sequences
of variable lengths. Following (Sutskever et al.,
2014), a special end-of-sequence (EOS) token is
added to the target set so that the decoder completes
the generation of characters when EOS is emitted.

4 PROPOSED METHOD

In this section, we present our proposed ConvAt-
tention network. Although the FC-Attention layer
has proven powerful for handling temporal sequence
generation, full connections contain too much redun-
dancy for spatial data. To address this problem, we
propose to extend FC-Attention to ConvAttention,
which has convolutional structures in both input-to-
state and state-to-state transitions. By integrating
ConvAttention with a spatiotemporal encoder shown
in Figure 3, we are able to build an end-to-end spa-
tiotemporal sequence model.

4.1 Convolutional Attention

Inspired by the processes within FC-Attention and
ConvLSTM, we design our convolutional attention
mechanism as follows. ConvAttention generates a
target sequence (Y1, ...,YM) from a sequence of input
feature maps H : (H1, ...,HT ), where T and M may
not be equal. At the t-th step, the convolutional atten-
tion module generates an output Yt as follows, where
∗ denotes the convolution operator:

Yt ∼ Generate(U ∗St), (2)

where U is a trainable weight template, and St is the
hidden state of ConvLSTM (Xingjian et al., 2015) at
time t, computed by:

St = ConvLST M(Yt−1,Gt ,St−1), (3)

where Gt is a weighted sum of spatiotemporal feature
maps H . That is,

Gt = ∑
T
k′=1 αt,k′Hk′ , (4)

where αt represents the set of spatiotemporal atten-
tion weights for the t-th step. During the computation
of attention weights, αt is often evaluated by scor-
ing each element in H separately and normalizing the
scores as follows:

αt = Attend(St−1,H ), (5)

where Attend denotes the attending process to be
elaborated later.

Generate process: The generation function in
Equation (2) emphasizes the mapping from ConvL-
STM hidden state St to Yt . For example, the map-
ping function can be a spatially fully connected layer
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Figure 3: Our spatiotemporal text recognition network. The
network consists of an encoder and a decoder. For each
image, the encoder uses convolution layers (ConvNet) to
extract a high-level feature representation, then generates
a spatiotemporal sequence with a sliding window. After-
wards, the decoder with a convolutional attention mecha-
nism generates a predicted image sequence or character se-
quence conditioned on the output of the encoder.

with the softmax operator for sequentially generating
scalar labels y (e.g. ‘A’, ‘B’, ...) or a spatially invari-
ant convolution kernel for generating 2D spatial label
maps yI , as shown in Figure 3.

Attend process: The attending process pre-
scribes the weight of each input feature map Hk ∈
R f ilters×width×height , where f ilters, width and height
refers to the number of channels, width and height of
the feature map, respectively. This process can be de-
fined as follows:

Et,k = w∗ tanh(W ∗St−1 +V ∗Hk +b), (6)

where w, W , and V are trainable 4D weight templates,
b is a trainable 3D offset map, and ∗ denotes the con-
volution operator. Here, there are two modalities for
Et,k:

• If Et,k ∈ R1, a scalar weight αt,k is applied to a
given feature map, and it is computed by

αt,k =
exp(Et,k)

∑
T
k′=1 exp(Et,k′)

, (7)

which is called temporal weight, abbreviated as
tw.
• If Et,k ∈ RW×H , a pixel-wise weight mask is ap-

plied to a given feature map. For each pixel (i, j)
in Hk, the weight α

(i, j)
t,k is computed by

α
(i, j)
t,k =

exp(E (i, j)
t,k )

∑
T
k′=1 exp(E (i, j)

t,k′ )
, (8)

which is called spatiotemporal weight, abbrevi-
ated as stw.
The attending process of FC-Attention in Equa-

tion (1) can be seen as a special case of ConvAttention
with the last two dimensions of Hk being 1. In addi-
tion, the padding strategy used by ConvAttention for
the convolution operator is the same as ConvLSTM
(Xingjian et al., 2015).

4.2 Network Training

We first encode a spatial image into a spatiotempo-
ral sequence using a spatiotemporal feature extractor
consisting of convolutional layers (ConvNet) and a
sliding window, as shown in Figure 3, and then in-
tegrate this spatiotemporal feature extractor with our
convolutional attention module.

We can train the entire network with either spatial
label maps or scalar labels. In the case of training
with spatial label maps, the following cross-entropy
loss is used.

Lc =−∑
t,i, j

ŷt,i, j
I logyt,i, j

I +(1− ŷt,i, j
I )log(1− yt,i, j

I ),

(9)
where yt

I and ŷt
I are the t-th predicted image and the

t-th target image, respectively.
In the case of training with scalar labels, the loss

function of the network is defined as follows.

Ls =−∑
t

lnP(ŷt |θ), (10)

where ŷt is the ground truth of the t-th character and
θ includes all the network parameters.

4.3 Evaluation Metrics

If we train our end-to-end network with the cross-
entropy loss Lc, we use the cross-entropy value be-
tween the predicted images and the target images
to evaluate the performance of our framework. The
smallest cross-entropy value with respect to the target
images indicates the most probable predictions.

On the other hand, if we train our network with
the loss Ls, we follow existing works (Lee and Osin-
dero, 2016; Shi et al., 2016b; Yang et al., 2017; Cheng
et al., 2017) and compute the accuracy of the gen-
erated character sequences with respect to the target
character sequences.

5 EXPERIMENTS

We first compare our ConvAttention network with the
FC-Attention network on a synthetic dataset released
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by Jaderberg et al. (Jaderberg et al., 2014) to gain
basic understanding of the behavior of our network.
We train our network with different numbers of con-
volution kernels and different kernel sizes. To verify
the effectiveness of our network on more challenging
scene text reading tasks, we further test our trained
model on several benchmarks and compare it with the
state of the art.

5.1 Explorative Study

Experimental setting: We randomly choose 200k
training images, 10k validation images and 10k test-
ing images from the synthetic dataset released by
Jaderberg et al. (Jaderberg et al., 2014). All images
are resized to 32× 256. We have implemented our
network in the Caffe framework (Jia et al., 2014).
We train all the Attention models by minimizing
the cross-entropy loss Lc or loss Ls using back-
propagation through time (BPTT) (Rumelhart et al.,
1988) and stochastic gradient descent with momen-
tum set to 0.95, weight-decay set to 0.0005, and
batch-size set to 64. For Lc and Ls, the base learn-
ing rate is set to 0.0001 and 0.01, respectively. Also,
we perform the stopping operation on the validation
set until 120k iterations. We run all the experiments
on a computer with eight NVIDIA Tesla P40 GPUs.

Network details: For the ConvNet in Figure 3,
we use 7 convolutional layers. This is similar to the
encoder architecture proposed in (Shi et al., 2016b).
The {filter size, number of filters, stride, padding
size} in these 7 layers are respectively {3,64,1,1},
{3,128,1,1}, {3,256,1,1}, {3,256,1,1}, {3,512,1,1},
{3,512,1,1} and {3,512,1,1}. The 1st and 2nd con-
volution layers are each followed by a 2× 2 max-
pooling layer. We adopt batch normalization (BN)
and ReLU activation right after the 5th and 6th con-
volution layers. On top of the convolution layers is
a bidirectional ConvLSTM, which forms the basis of
our ConvAttention module. In addition, in order to
construct the spatiotemporal sequence, a sliding win-
dow with a step size set to 2 is used over the output of
the 7-th convolutional layer. Note that FC-LSTM/FC-
Attention can be seen as a special case of ConvL-
STM/ConvAttention with the last two dimensions of
Hk being set to 1.

Performance analysis: The results of 40 experi-
ments are shown in Table 1, where text reading perfor-
mance with different settings is compared. We eval-
uate the performance of ConvAttention in capturing
spatiotemporal correlations as follows: 1) 20 experi-
ments comparing the cross-entropy values which in-
dicate the quality of generated spatial images, 2) 20
experiments comparing the accuracy of the generated

character sequences. We set the number of filters to
512 in FC-Attention, and trained FC-Attention mod-
els respectively for generating spatial label maps and
scalar character sequences are used as our baseline.
We conduct three groups of experiments related to
ConvAttention to explore its performance by varying
the resolution of feature maps, the kernel size and the
number of kernels. The kernel size and the resolu-
tion of feature maps in ConvLSTM are the same as
their counterparts in ConvAttention, and the number
of kernels in ConvLSTM is always set to 64. Given
extensive comparative experiments shown in Table 1,
we can conclude that

• ConvAttention significantly outperforms FC-
Attention in handling spatiotemporal correlations
which help boost the recognition performance.

• Making the kernel size bigger than 1 is useful for
improving the recognition results.

• By varying the number of kernels from 128 to 8,
ConvAttention still maintains a high performance,
which demonstrates that ConvAttention is robust
and stable.

• The performance of ConvAttention is reasonably
affected by the resolution of feature maps because
a larger feature map contains more spatial infor-
mation. This indirectly indicates the importance
of spatial information.

• Spatiotemporally weighted ConvAttention is bet-
ter than temporally weighted ConvAttention.

5.2 Comparison with the State of the
Art

Network details and Environments: For further
demonstration of the performance of our method, we
directly choose a few state-of-the-art networks, such
as FC-Att, ConvAtt1 3, and ConvAtt3 2, listed in Ta-
ble 1 for comparison. In this comparison, we termi-
nate training after 850k iterations.

Training dataset: According to previous
work (Cheng et al., 2017), our training set con-
sists of the 8 million synthetic data released by
Jaderberg et al. (Jaderberg et al., 2014) and 4 million
synthetic instances (excluding the images that contain
non-alphanumeric characters) cropped from the 80
thousand images released by (Gupta et al., 2016).

Testing dataset: We have collected three bench-
marks as our testing datasets. IIIT5K-Words
(IIIT5K in short) (Mishra et al., 2012) wass col-
lected from the Internet, containing 3000 cropped
word images in its test set. Street View Text (SVT
in short) (Wang et al., 2011) was collected from
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Table 1: Comparison of ConvAttention (ConvAtt) with FC-Attention (FC-Att) on selected datasets. ‘#MS’ and ‘#Mul-Add’
respectively mean the number of parameters in ConvAttention and the number of multiply-add operations in ConvAttention for
predicting a character in Equations (3) and (6). ‘FS’, ‘KS’ and ‘ACC’ represent the resolution of feature maps, the kernel size,
and the accuracy of a model trained with Lc or Ls. tw and stw respectively refer to the results generated with the temporally
weighted attending operation and the spatiotemporally weighted attending operation, which have been separately described
in Equations (7) and (8). ‘M’ means million. Specifically, for FS equal to 1 and 4, the (4th, 6th) and (4th) convolution layers
are each followed by a 2×1 max-pooling layer, respectively; for FC-Att, the {kernel size, number of kernels, stride, padding
size} of the 7-th convolutional layer is set to {2,512,1,0}.

Model #MS #Mul-Add FS KS Filters ACC by Lc(tw/stw) ACC by Ls(tw/stw)
FC-Att 1.0496 M 5.01 M 1 1×1 512 75.76±0.09/ - 82.29±0.12/ -
ConvAtt1 1 0.1486 M 0.71 M 1 3×3 64 75.32±0.05/ - 82.23±0.10/ -
ConvAtt1 2 0.1486 M 11.35 M 4 3×3 64 78.28±0.02/78.02±0.04 83.02±0.20/83.24±0.04
ConvAtt1 3 0.1486 M 45.40 M 8 3×3 64 78.60±0.03/79.93±0.07 83.50±0.26/83.64±0.08
ConvAtt2 1 0.0024 M 0.75 M 8 3×3 8 77.94±0.03/78.08±0.05 83.23±0.07/83.43±0.03
ConvAtt2 2 0.0095 M 2.91 M 8 3×3 16 78.55±0.01/79.30±0.05 83.55±0.10/83.74±0.02
ConvAtt2 3 0.0374 M 11.45 M 8 3×3 32 79.38±0.05/80.03±0.06 83.64±0.13/83.64±0.05
ConvAtt2 4 0.5921 M 180.81 M 8 3×3 128 80.09±0.07/79.68±0.12 83.68±0.23/83.69±0.09
ConvAtt3 1 0.0165 M 5.09 M 8 1×1 64 79.90±0.11/80.13±0.06 82.97±0.11/84.27±0.03
ConvAtt3 2 0.4128 M 126.03 M 8 5×5 64 79.53±0.05/80.33±0.05 83.61±0.02/84.20±0.17

Google Street View, consists of 647 word images in
its test set. Many images in this dataset either are
severely corrupted with noise and blur or have a very
low resolution. ICDAR 2003 (IC03 in short) (Lucas
et al., 2003) contains 251 scene images, labeled with
text bounding boxes. For fair comparison, we dis-
carded images that contain non-alphanumeric char-
acters or have less than three characters, following
(Wang et al., 2011). The resulting dataset contains
867 cropped images.

Experiments: We test our method on all three
benchmarks (IIIT5k, SVT and IC03), as shown in Ta-
ble 2.

We first compare the performance of our network
against the state of the art. With an encoder that has
7 convolutional layers, ConvAttention (ConvAtt3 2)
achieves better performance than existing methods

Table 2: Comparison of accuracy among state-of-the-art
methods on the IIIT5k, SVT and IC03 datasets.

Method IIIT5k SVT IC03
Bissacco (Bissacco et al., 2013) − 78.0 −
Jaderberg (Jaderberg et al., 2016) − 80.7 93.1
Jaderberg (Jaderberg et al., 2015) − 71.7 89.6
Shi (Shi et al., 2016a) 78.2 80.8 89.4
Shi (Shi et al., 2016b) 81.9 81.9 90.1
Lee (Lee and Osindero, 2016) 78.4 80.7 88.7
Cheng (Cheng et al., 2017) 87.4 85.9 94.2
Wang (Wang and Hu, 2017) 79.2 81.5 91.2
FC-Att 82.9 77.7 89.9
ConvAtt1 3 83.7 80.1 90.4
ConvAtt3 2 84.2 81.5 91.7
FC-Att-ResNet (Cheng et al., 2017) 83.7 82.2 91.5
ConvAtt3 1-ResNet 87.6 86.2 94.3

except for Cheng et al.’s work (Cheng et al., 2017)
on all benchmarks. Two critical factors make it possi-
ble for our network to achieve good performance: a)
using extra geometric annotations (location of each
character) to help train the attention decoder, and
b) exploiting a ResNet-based encoder for obtaining
robust feature representations. However, annotating
the location of each character is extremely expen-
sive, therefore, it is not a practical solution for real
applications. In the ResNet-based encoder (feature
extractor), we discard the 3-rd and 4-th pooling lay-
ers used in (Cheng et al., 2017), and then integrate it
with ConvAtt3 1 to form a deeper network denoted as
ConvAtt3 1-ResNet. We find that ConvAtt3 1-ResNet
achieves a better performance than all existing meth-
ods.

5.3 Challenge on Chinese Character
Recognition

Chinese characters contain strokes often in a sophis-
ticated spatial layout. Such a nature indicates com-
plex spatial information. We challenge our method
with Chinese character recognition, and believe that
our proposed convolutional attention mechanism can
help in this task. According to the character gener-
ation method proposed in (Gupta et al., 2016), we
generate 4 million Chinese text images for training
and another 20k Chinese text images as the validation
set (valid-set). Each image has 1-10 Chinese charac-
ters chosen from the set of 3755 most commonly used
ones. We also use RCTW-17 (Shi et al., 2017), which
has a training set containing 8034 Chinese scene im-
ages labeled with text bounding boxes. We discard
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Figure 4: Performance comparison between FC-Attention
and ConvAttention. (a) error rates on valid-set (dashed) and
test set (solid); (b) loss curves for the training (solid) and
validation (dashed) sets.

words that contain non-Chinese characters, have more
than 10 characters or have a vertical style, and finally
obtain 21781 cropped images as our test set.

Figure 4 gives a performance comparison between
FC-Attention and ConvAttention. In subfigure (a),
both ConvAtt1 3 and ConvAtt3 2 achieve lower error
rates than FC-Attention on valid-set and test set. For
further exploring the effectiveness of ConvAttention,
we depict the training process in subfigure (b), and
find that ConvAttention has a stronger fitting capacity
than FC-Attention. We also note that the error rate of
FC-Attention on valid-set is lower than that on the test
set because the synthetic dataset has higher complex-
ity than RCTW-17. The results here demonstrate that
ConvAttention can take on more challenging charac-
ter recognition tasks than FC-Attention.

5.4 Discussion: Influence of Sliding
Window

In most existing literature (Shi et al., 2016a; Shi et al.,
2016b; Cheng et al., 2017), 1

4 down-sampling is used
while we perform 1

8 down-sampling with respect to
the width of the input image in both ConvAttention
and FC-Attention to lower computational cost, which
may have resulted in suboptimal accuracy in Table 2.
Therefore, we change the step size of the sliding win-
dow from 2 to 1, which increases the length of the
resulting spatiotemporal sequence from 29 to 57; we
find that the accuracy of ConvAtt1 3 on average can
be further improved by 0.97%. For fair comparison,
we also change the stride of the 4-th pooling layer in
FC-Attention from 2 to 1, which changes the length
of the temporal sequence from 33 to 65; we find that
the accuracy of FC-Att on average can be further im-
proved by 0.65%. Therefore, ConvAttention outper-
forms FC-Attention regardless of the down-sampling

strategy used.

6 CONCLUSIONS

In this paper, we have presented a novel spatiotem-
poral deep learning framework with a convolutional
attention mechanism (ConvAttention) for retaining
more information about spatial structures. ConvA-
ttention not only preserves the advantages of FC-
Attention but is also suitable for spatiotemporal data
due to its inherent convolutional structure. We have
successfully applied ConvAttention to the challeng-
ing problem of scene text recognition. By incorporat-
ing ConvAttention into text reading, we build an end-
to-end trainable deep network for character recogni-
tion. Extensive experiments on public benchmarks
demonstrate that our method achieves state-of-the-art
results. As future work, we will investigate how to
apply ConvAttention to image/video captioning.
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