
Exploiting Hot Spots in Heuristic Safety Analysis of
Dynamic Access Control Models

Marius Schlegel a and Winfried E. Kühnhauser
Technische Universität Ilmenau, Germany

Keywords: Security Engineering, Security Policies, Access Control, Dynamic Access Control Models, Heuristic Safety
Analysis, Security Model Checking, Formal Methods.

Abstract: Model-based security engineering approaches frequently suffer from computational complexity of model
analysis. As a consequence, a considerable amount of human expertise is involved in the analysis process,
rendering model analysis an expensive approach applied mostly to sophisticated systems with challenging
security requirements. This paper discusses algorithmic foundations for an automated safety analysis of dynamic
access control models. The computational complexity is tackled by a heuristic-based approach, rendering the
analysis algorithm scalable to large real-world access control systems.

1 INTRODUCTION

Security engineering approaches for IT systems with
sophisticated security requirements increasingly apply
security policies for defining and implementing secu-
rity properties. A security policy precisely describes
strategies that implement these requirements. The crit-
ical importance of policy correctness calls for a careful
policy engineering process.

In order to achieve correctness guarantees, model-
based security policy engineering (MSPE) approaches
take advantage of formal models, allowing for rigorous
analysis and proof of a policy’s formalized security
properties (Vimercati et al., 2005, Li and Tripunitara,
2006, Tripunitara and Li, 2007, Jha et al., 2008, Barker,
2009, Basin et al., 2011), some of which are tractable
by static methods, while others require to reason about
the dynamic evolution of a system. Beyond that, secu-
rity models serve as formal specifications from which
policy implementations are engineered.

In this paper, we focus on dynamic security proper-
ties of dynamic access control (AC) models. They al-
low to reason about authorizations to execute security-
critical operations. Analyzing these properties has
been termed security analysis (Tripunitara and Li,
2007), which can be subdivided in two classes of ques-
tions: Given some dynamic AC model at a model
protection state, is it possible (1.) that some (desired)
property will ever become false; or (2.) that some

a https://orcid.org/0000-0001-6596-2823

(undesired) property will ever become true? While
the first question mainly deals with availability, the
intention of the second question is to validate restric-
tions on authorized operations which are, for example,
demanded by confidentiality or integrity goals of a
policy. For historical reasons, this second family of
questions is called safety properties.

MSPE is not an easy approach. Especially the anal-
ysis of dynamic models suffers from its computational
complexity and the tractability of large model state
spaces, and in many cases essential model properties
are intractable or even undecidable. As a consequence,
MSPE involves challenging human expertise and thus
is primarily applied in scenarios with quite critical
security requirements.

This paper aims at paving the road to MSPE by
developing foundations for automated model analysis
tools. Focusing on model safety analysis of dynamic
AC models, the paper tackles time and space complex-
ity of heuristic safety analysis algorithms by shifting
the effects of exponential time and space complexity to
model state sizes significantly larger than those found
in current real-world policies.

Specifically, we make the following contributions.
(1.) We argue that the handling of large parameter
spaces offers a great potential for optimizing heuristic
safety analysis algorithms (Sec. 2). (2.) We introduce
a novel approach for restricting large parameter spaces
based on hot spots, enabling more effective and ef-
ficient state transitions, and we demonstrate our ap-
proach for dynamic HRU-type AC models (Sec. 3).

522
Schlegel, M. and Kühnhauser, W.
Exploiting Hot Spots in Heuristic Safety Analysis of Dynamic Access Control Models.
DOI: 10.5220/0009907705220532
In Proceedings of the 17th International Joint Conference on e-Business and Telecommunications (ICETE 2020) - SECRYPT, pages 522-532
ISBN: 978-989-758-446-6
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

(3.) We show that the implementation of our algorithm
offers a significant runtime improvement over prior
algorithms (Sec. 4).

2 MODEL SAFETY ANALYSIS

In dynamic AC models, model safety deals with the
fundamental question whether permissions granted
in a given model state may leak to different subjects
in future model states. Safety analyses thus expose
model properties that allow for the prediction of an AC
system’s dynamic behavior. Model safety in general
is a non-decidable problem (Harrison et al., 1976).
While safety-decidable AC models have been proposed
(Harrison and Ruzzo, 1978, Sandhu, 1992, Lipton and
Snyder, 1977) these models generally are targeted to
particular application scenarios and have limitations
in their ability to model complex real-world policies.

For more general models without such limitations
safety analyses fall back to heuristic approaches that
trade accuracy for tractability. Heuristic-based analy-
sis algorithms exploit the fact that the safety problem
is semi-decidable and try to prove that some given
model state is not safe with respect to some right by
finding a state sequence that leaks this right in some
follow-up state. While they cannot always deliver anal-
ysis results, heuristic analysis algorithms often provide
valuable insights in the reasons for right leakages. Nev-
ertheless, while in general being capable of handling
large and complex models heuristic-based approaches
still severely suffer from computational complexity
and the tractability of large model state spaces.

2.1 Dynamic Access Control Models

One of the earliest AC models for analyzing model
safety is the HRU model (Harrison et al., 1975). While
from today’s perspective the HRU model uses quite
low-level abstractions the model is still among the
most powerful and general AC models. It provides a
calculus for the rigorous specification of dynamic AC
policies as well as a foundation for statements about
the complexity of model safety analyses.

HRU models combine AC matrices (ACMs) with
deterministic automatons. Models in the HRU fam-
ily share the idea of modeling the dynamic behavior
of an AC system by state transitions schemes (STSs)
specifying the state transition function of their automa-
tons. Each state of an HRU model reflects a single
protection state of an AC system; state transitions –
triggered by inputs to the automaton – are effected by
policy-specific operations in the STS that modify the
state. Model safety properties now can be analyzed by

observing state transitions effected by input sequences;
in particular, the boundaries of right proliferation can
be explored by state reachability analyses.

State reachability is known to be a non-decidable
problem. As a consequence, the HRU model has
inspired numerous and more restricted offsprings
(Goguen and Meseguer, 1982,Zhang et al., 2005,Mon-
dal et al., 2009, Stoller et al., 2011, Sandhu et al.,
1999, Sharifi and Tripunitara, 2013) that render model
safety tractable by tailoring a model calculus to ded-
icated application scenarios, allowing for statements
about worst-case execution times of safety analyses
(Harrison and Ruzzo, 1978, Sandhu, 1992, Lipton and
Snyder, 1977). As a consequence, the resulting safety
analysis algorithms strongly depend on the restrictions
of the respective model calculus and lack the gener-
ality needed for more universal model analysis tools
aiming at a broad scope of HRU model variants.

While in practice HRU models have long
since been supplanted by models supporting more
application-friendly abstractions such as roles (RBAC
models) or attributes (ABAC models), their fundamen-
tal idea of modeling dynamic behavior of AC sys-
tems by deterministic automatons has been adopted
in many HRU offsprings (Sandhu et al., 1999, Kühn-
hauser and Pölck, 2011, Ranise et al., 2014, Amthor,
2015, Schlegel and Amthor, 2020). In order to be ap-
plicable to all these offsprings our approach aims at
a general foundation for safety analyses of general,
non-restricted HRU models, following the idea that in-
sights in the most general forefather in a model family
are also applicable to his descendants.

2.2 Heuristic Safety Analysis

Because the safety problem for general HRU models is
not decidable, safety analysis algorithms use heuristics
that exploit the semi-decidability of the problem: given
any two states of an AC system with one state being a
follow-up state of the other it is efficiently decidable
whether in the follow-up state a right leakage can be
observed. Thus, starting with some initial state, heuris-
tic search algorithms guide a model through its state
space by generating input sequences, feeding them
into the automaton and checking for each reached state
whether it renders the initial state unsafe.

The problem here is the large number of eligible
inputs for each state transition. In any HRU model,
an AC system’s dynamic behavior is modeled by its
STS, consisting of a set of commands where each
command triggers a state transition of the model’s
automaton. As an example, an application system’s
function to delegate a read right to a subject’s deputy
can be modeled by an HRU command consisting of a

Exploiting Hot Spots in Heuristic Safety Analysis of Dynamic Access Control Models

523

command delegateReadRight(
subjectfrom,subjectto,object) =
if read right ∈ m(subjectfrom,object) then

enter read right into m(subjectto,object)
fi,

(set of) condition(s) and a (set of) primitive(s) with the
semantics that if the conditions are met by the current
model state, the primitives define the corresponding
state transition. An eligible input for triggering a state
transition in an HRU model thus consists of a com-
mand name (in the above example delegateReadRight)
and its parameters (values for subjectfrom, subjectto,
object).

A simple sample calculation shows that if input
sequences to explore the automaton’s state space are
chosen randomly then the probability of detecting a
state exposing a leakage is extremely small. On a
medium-sized file server with 100 users, 106 files, and
an STS with just 10 commands, each having 3 param-
eters, we encounter 10 · (106)3 = 1019 different input
combinations, leading to as many possible follow-up
states. Thus, the probability of randomly hitting param-
eter values that result in a state transition ultimately
leading to a leakage is extremely small. Moreover,
for the second generation of follow-up states we al-
ready encounter 1038 possibilities. With respect to
memory complexity, assuming just 1 byte of memory
required for each cell of the ACM (of size 100 users
·106 objects), the second generation would require
1046 bytes of memory for storing the corresponding
state spaces. It is easy to see that a random search
of the complete state space for states exposing right
leakages is like searching for a needle in a hay stack.

2.3 The DEPSEARCH Heuristics

Other than randomized approaches, successful heuris-
tics generally are well-tailored to the specific problem
to be solved. The challenge for safety analysis heuris-
tics thus is to exploit model properties that have an
impact on the probability of an input to contribute to a
state sequence that leads from an initial state to some
follow-up state that actually exposes a right leakage.

The DEPSEARCH heuristics (Amthor et al., 2013,
Amthor et al., 2014, Amthor, 2017) exploits the (obvi-
ous) fact that for a right to be leaked into some ACM
cell it is a necessary condition that a command is exe-
cuted that includes a primitive to write this right into an
ACM cell. This command, again, has conditions that
have to be met for its execution, so it, again, depends
on other commands that establish these conditions,
leading to a chain of commands that successively es-
tablish necessary conditions for a right leakage. A
static analysis of a model’s STS discloses such com-

mand dependencies, resulting in a command depen-
dency graph (CDG) 〈V,E〉 where vertices ci,cj ∈ V
represent commands and edges

〈
ci,cj

〉
signify that ci

has primitives that enter rights into the ACM that are
required by cj (see Fig. 1a and Fig. 1b for examples).

DEPSEARCH now chooses paths from the CDG as
command sequences that are fed into the automaton,
each command having a certain probability to estab-
lish necessary conditions for the next command and
thus moving the automation’s state “nearer” to a state
exposing a right leakage.

Model analysis thus consists of simulating a
model’s automaton by choosing command paths from
the CDG, selecting for each command a parameter
value set (see Sec. 3) and feeding them into a model
simulation engine. Starting with the model’s initial
state, the first path component creates a follow-up state,
and the simulation of a complete command sequence
successively adds further states to a simulation’s state
transition tree. Once a path has been completely pro-
cessed, the simulation continues by choosing new com-
mand sequences from the CDG until a state is reached
leaking the target right (Amthor et al., 2013).

As discussed in (Amthor et al., 2013), safety anal-
ysis based on the DEPSEARCH heuristic becomes
tractable for scenarios with model state sizes of up
to 104 ACM cells.

3 HEURISTIC COMMAND
PARAMETER SELECTION

For real-world scenarios with states typically com-
prising over 104 ACM cells, heuristic safety analysis
algorithms still face effects of an exponential runtime
complexity. At this point, the idea is to shift the bound-
ary where model states become untractable to ACM
sizes significantly larger than 106 ACM cells.

During model simulation, for any state transition of
the model’s automaton an input is needed, consisting
of a command to be executed as well as its parameter
values. In the DEPSEARCH heuristic (Amthor et al.,
2013), only commands are selected effectively and
efficiently, using the CDG-based command sequence
generation approach. As discussed in Sec. 2.2, in very
large AC model instances there is a huge number of
possible value assignments for command parameters
prohibiting an exhaustive testing of all possible param-
eter values. To tackle the problem of finding “good”
parameter values (parameter selection problem, PSP),
heuristics become here necessary as well.

SECRYPT 2020 - 17th International Conference on Security and Cryptography

524

3.1 The Role of Working Sets

Our approach to dealing with the PSP lies in the obser-
vation that there is a strong affinity to a fundamental
problem in the virtual memory management (VMM)
of operating systems. Typically, virtual memory is
much larger than physical memory, so that not every
virtual memory page can always be resident in phys-
ical memory. If a page required by a process is not
present in physical memory, a page fault occurs and
a present page frame is cleared to accommodate the
actual page needed. Optimally, the page whose next
use is furthest in future should always be selected for
removal; page replacement algorithms try to achieve
an approximation to this optimum.

Contemporary page replacement algorithms, e. g.
WSClock (Carr and Hennessy, 1981), initially assume
that, due to the locality of page references, memory
access patterns of processes have hot spots in which
almost all accesses take place. Pages belonging to
hot spots are called its working set (i. e. the set of
pages a process is currently using) (Denning, 1968).
Consequently, accesses from a process to pages that
belong to its working set are much more likely than
accesses to pages that do not belong to it. The working
set of a process is determined by the pages last used in
a fixed time interval; pages that do not belong to any
process’ current working set are therefore candidates
for removal from physical memory.

In a nutshell, working sets heuristically limit a
large number of elements to a small number of the
most interesting elements. This offers an interesting
perspective on the PSP: If we can find a subset of
ACM cells that are more likely to be required for a
sequence of commands leading to a right leakage, then
the heuristic search algorithm can ignore a large part
of the ACM. In order to make the parameter selection
both efficient and effective, the large number of ACM
cells can be restricted to only those cells which offer
the greatest potential for generating a right leakage.

However, the PSP and the page replacement prob-
lem have also a fundamental difference. Page replace-
ment algorithms can observe and exploit a process’ ref-
erence behavior to form a working set. In contrast, the
situation in heuristic safety analysis is totally different:
The dynamic model behavior is completely simulated
under heuristic control, so that hot spot patterns can
and have to be generated strategically. Therefore, the
heuristic for the PSP lies in how the parameter search
space is strategically constrained to enable both an
effective and efficient parameter selection.

3.2 Parameter Working Sets

Generally, our approach for restricting the command
parameter value space adopts the idea of VMM work-
ing sets by limiting the large number of ACM cells to
only those that have the greatest potential for gener-
ating a right leakage. Here, a working set is a subset
of ACM cells, where each cell is defined by its sub-
ject and object identifiers used as command parameter
values. We refer to it as parameter working set (PWS).

In VMM, working sets depend on the execution be-
havior of individual processes rendering them process-
individual. In the context of heuristic safety analyses,
command sequences (paths generated from the CDG)
are executed. And in the same way, PWSs depend on
the execution of individual paths rendering them path-
individual. Analogous to VMM working sets, a PWS
limits the value space for parameter selection and thus
restricts the ACM to the most filled cells that contain
as many rights as possible to satisfy the conditions of
the current path’s commands.

In order that the execution of a command also leads
to the entering of rights into ACM cells and even ad-
ditionally satisfiable conditions, these rights must not
yet be present in the cells addressed in the enter right
primitives of that command. In general, this may ap-
ply to many cells. Therefore, to increase the potential
that entered rights lead to additionally satisfiable con-
ditions of subsequently executed commands (and not
just fill any ACM cells randomly), cells are selected as
parameter values for command bodies (and enter right
primitives) that are already included in the PWS.

When creating a PWS for a specific path, all rights
occurring in the conditions of that path’s commands
have to be considered. The generation of a subsequent
path then most likely requires to consider different or
additional rights and regenerating the PWS for that
new path. Since we strive to fill already well-filled
cells even more to potentially unlock commands which
were not executable before, it would not be sensible to
regenerate the PWS completely from scratch. There-
fore, we add new cells required by a path to the PWS
without removing the previously added cells (knowl-
edge of the past, cf. WSClock (Carr and Hennessy,
1981)). Then, newly added cells can be used to satisfy
command conditions, but contained, well-filled cells
can still be filled with rights by command primitives.

However, it is often observable, especially as an
analysis progresses, that an existing PWS is com-
pletely valid for a subsequent path and already meets
the criterion of path specificity, i. e. conditions of that
path’s commands are satisfiable by the cells present in
the PWS. Thus, reusing an existing PWS and gentle
fostering is to be preferred over a regeneration. Conse-

Exploiting Hot Spots in Heuristic Safety Analysis of Dynamic Access Control Models

525

quently, in case that not yet all cells belonging to the
PWS are already saturated and commands can still be
executed effectively resulting in new states, a PWS can
be left the same even across the execution of different
paths. In case that neither a right leakage was evoked,
nor new rights were entered, the PWS seemingly is
inadequate and must be fostered. Therefore, a PWS is
used for subsequent paths only until the execution of
such a command sequence was completely ineffective
and did not result in a single new state.

3.3 The WSDEPSEARCH Algorithm

In this section, the described parameter space approach
based on working sets is specified as the working-
set-based dependency search (WSDEPSEARCH) al-
gorithm building upon previous works (Amthor et al.,
2013, Amthor et al., 2014, Amthor, 2017).

In the first phase, a static analysis of the HRU
STS is performed to construct the CDG (see (Amthor,
2017, p. 5, Alg. 2)). It yields a graph-based descrip-
tion of inter-command dependencies, constituted by
entering (as part of primitives) and requiring (as part
of conditions) the same right in two different com-
mands. The CDG is recursively assembled in a way
that all paths from vertices without incoming edges
to vertices without outgoing edges indicate input se-
quences for reaching qtarget from q. To achieve this,
two virtual commands cq and ctarget are generated
(by createCDGSource and createCDGSink): cq is the
source of all paths in the CDG, since it mimics the
state q to be analyzed, represented by a virtual com-
mand specification added to the set C of all com-
mands. It is generated by encoding the ACM mq in
the body of cq. In a similar manner, ctarget is the sink
of all paths in the CDG, which represents all possible
states qtarget by checking the presence of the target
right ctarget in some cell of mq. In order to determine
predecessor-edges between a command c and other
commands that establish necessary conditions for it to
be executed (predecessors), buildPredSet returns a set
P= {c∈C|c.Prim.Enter.Rights∩v.Cond.Rights 6= /0}
where c.Prim.Enter.Rights denotes the set of rights en-
tered by primitives of c and v.Cond.Rights denotes the
rights required to satisfy conditions of command v.

In the second phase, the dynamic analysis, the
CDG is used to guide state transitions by generating
input sequences to the automaton. The commands in
each sequence are chosen according to different paths
from cq to ctarget (see (Amthor, 2017, p. 5, Alg. 1)).
Paths are generated based on a modified ant algorithm:
with each edge traversed to generate an input sequence,
the algorithm increases an edge weight (“scent” d in-
creased by d̂) which has a repellent effect for the next

In: – W ⊆ S×O: current PWS
– Rpath: set of rights required in the conditions of the

path’s commands
– q = 〈S,O,m〉: current model state

Out: – W : PWS for path

procedure addParameters()
〈sc,oc〉 ← CW.someMember;
maxr← |m(sc,oc)∩Rpath|;
for 〈s,o〉 ∈ CW do

if |m(s,o)∩Rpath|> maxr then
sc← s; oc← o;
maxr← |m(sc,oc)∩Rpath|;

if maxr > 0 then
W ←W ∪{〈sc,oc〉};
CW← CW ∩{〈sc,oc〉};
Rpath← Rpath∩m(sc,oc);
if Rpath 6= /0 and CW 6= /0 then

addParameters();

CW← /0;
for 〈s,o〉 ∈ m do

if 〈s,o〉 /∈W and m(s,o)∩Rpath 6= /0 then
CW← CW ∪{〈s,o〉};

if CW 6= /0 and W 6= /0 then
addParameters();

else
s← S.someMember; o← O.someMember;
W←W ∪{〈s,o〉};

return W;

Algorithm 1: PWSGeneration.

iteration of the CDG traversal. Since the path gener-
ation always selects edges with lower scents before
such with higher scents (lowestScent), a uniform cov-
erage of the CDG is achieved and, thus, the threat of
running and staying in blind alleys is countered. As a
prerequisite for the PWS generation, with each edge
added to a path, the set Rpath of all rights required in
the conditions of that path’s commands is filled.

Based on the PWS approach, Alg. 1 outlines their
generation and fostering. First, ACM cells are col-
lected in the set of cells CW that qualify as PWS mem-
ber candidates. For this, cells have to satisfy at least
one condition of a current path’s command, i. e. hold at
least one right of Rpath, and may not yet be element of
the PWS. Subsequently, the actual PWS members are
determined (addParameters). In each recursive step, a
new member cell is added to the PWS. For reasons of
efficiency, the algorithm always selects as few cells as
possible, but adds those with the greatest potential for
contributing to a right leakage. Therefore, a member
candidate to be added to the PWS is required to con-
tain most of the rights not yet considered compared
to all other candidates (such that |m(s,o)∩Rpath| =
max〈s′,o′〉∈CW |m(s′,o′) ∩ Rpath|), where at least one

SECRYPT 2020 - 17th International Conference on Security and Cryptography

526

In: – C: the model’s STS
– q0: state the safety of which is to be analyzed
– rtarget: target right

Out: – stateSeq: state sequence leaking rtarget

function isLeaked(in q = 〈S,O,m〉 ∈Q, in q′ = 〈S′,O′,m′〉
∈ Q)

for s ∈ S∩S′ do
for o ∈ O∩O′ do

if rtarget /∈ m(s,o) ∧ rtarget ∈ m′(s,o) then
return true;

return false;

q← q0; stateSeq← q;
〈V,E〉 ,d, d̂,cq← CDGAssembly(C,q,rtarget);
W ← /0; effCount← 0;
repeat

path,d,Rpath← CDGPathGeneration(〈V,E〉 ,d, d̂,cq);
if effCount = 0 then

W ← PWSGeneration(W,Rpath,q);

effCount← 0;
while c← path.nextCommand do

q′← δ(q,c,selectParameters(W,c));
if q′ /∈ stateSeq then

effCount← effCount+1;

stateSeq← stateSeq◦q′;
q← q′;

until isLeaked(q0,q′,rtarget);
return stateSeq;

Algorithm 2: WSDEPSEARCH.

new right must be present in that cell (i. e. m(s,o)∩
Rpath 6= /0). If one of the candidate cells meets those
requirements, it is added to the PWS W , removed from
CW, and the cell’s rights are removed from Rpath. This
procedure is called recursively until Rpath is empty (i. e.
all required rights have been considered) or none of
the remaining candidates meets the requirements.

Finally, we have specified the WSDEPSEARCH
algorithm in Alg. 2 using (Amthor, 2017, Alg. 2),
(Amthor, 2017, Alg. 1) and Alg. 1. WSDEPSEARCH
successively generates input sequences by traversing
the CDG on every possible path and, depending on the
success of the previous path in terms of resulting effec-
tive steps, modifies the PWS. With parameter values
selected from the PWS (selectParameters), the execu-
tion of each command is simulated by the algorithm,
and once a CDG path is completed, the violation of
the HRU safety criteria is checked (isLeaked).

Runtime and Space Complexity. The CDG assem-
bly runs in O(n2), where n is the number of commands
in the model’s STS. The CDG requires a space com-
plexity of O(|V |+ |E|) using an adjacency list repre-
sentation, where a quadratic worst case complexity
occurs only in the untypical case of a complete CDG.

The CDG path generation runs in O(n), because due
to the minimum scent of each path, eventual cycles
occur at most once in a path (Amthor et al., 2013).
The PWS generation (Alg. 1) has a computational run-
time complexity of O((|Sq×Oq|)|Rpath|), where Sq and
Oq are the subject and object sets in model state q.
In worst case, each ACM cell is added to the PWS
candidate set and checked for the presence of a par-
ticular right of Rpath (each call of addParameters). A
PWS can require a worst case space complexity of
O(|Sq×Oq|) (ACM dimensions), although the PWS
size in the evaluation was never larger than 1 % of the
ACM’s size. The actual parameter selection (selectPa-
rameters in Alg. 2) using a brute force scheme runs in
O(max(|Sq|, |Oq|)p), where Sq and Oq as above, and
p denotes the maximum number of command parame-
ters. Finally, due to the semi-decidable nature of the
safety problem, we can tell nothing about the total
number of steps taken by the heuristic (Alg. 2).

4 EVALUATION

This section presents the evaluation of the WSDEP-
SEARCH heuristic. Two major goals are addressed:
(1.) the practical feasibility regarding runtime perfor-
mance of analyses of real-world sized AC model in-
stances, and (2.) the relative heuristic quality. Evalua-
tion subject is the WSDEPSEARCH algorithm (Alg. 2).

4.1 Evaluation Method

The evaluation goals are examined by measuring analy-
sis runtimes. To obtain meaningful results, the models
used must cover two key performance indicators of
analyses in practice: (1.) STS scheme complexity in
terms of command dependencies and (2.) model state
size in terms of ACM size.

For the practical feasibility evaluation, we consider
two different types of models: hybrid RBAC/HRU
(role-based AC) models of a health care information
system (HIS) security policy serve as realistic scenar-
ios, and synthetic high-dependency HRU models with
STSs designed to contain well-hidden right leaks serve
as stress-tests (with a big calculation effort). By using
randomly initialized ACMs with up to 2 ·107 cells, we
cover model state sizes of practical AC systems.

The relative quality is evaluated by comparing WS-
DEPSEARCH with the classical DEPSEARCH using a
brute-force parameter search in the whole ACM. The
same realistic and synthetic models are used as test
cases, but due to longer simulation times lower limits
on the number of ACM cells are used.

Exploiting Hot Spots in Heuristic Safety Analysis of Dynamic Access Control Models

527

Basically, the test procedure is as follows: When-
ever the heuristic is executed, it selects a particular
model state from the state transition tree (STT), a com-
mand from the STS, and a parameter vector. These
inputs are passed to a simulation engine implement-
ing the deterministic state machine of an HRU model,
which eventually triggers a state transition. A possible
reason for a failing transition may be that conditions
of a command cannot be satisfied, or that primitives
do not modify the given state at all. If a transition was
successful and led to a new follow-up state, this state
is inserted into the STT. The result of a transition is
passed to the heuristic which then selects a new input.
Each of these iterations is called a step. Since a heuris-
tic does not necessarily trigger a transition to a new
state, we call those steps that actually do effective.

To judge the results, three different measures are
used: effective step count (ESC), effective step time
(EST), and total runtime of a heuristic. The ESC is
the total count of effective steps required to leak a tar-
get right, while the EST is the average time required
to make an effective step (including any ineffective
steps within that time). For the feasibility evaluation,
we performed a runtime comparison of the WSDEP-
SEARCH algorithm for all test models, that allows for
performance estimations regarding both average and
worst-case runtime. The qualitative comparison with
DEPSEARCH is done based on the total runtime and
the measures of ESC and EST.

The remainder of this section addresses the evalua-
tion method in detail: it describes the used models, the
selection of parameter values, the test input configura-
tions and the execution environment.

4.1.1 Test Cases

HIS Models. The realistic models are based on
a security policy of a real-world HIS for an aged-
care facility introduced by (Evered and Bögeholz,
2004) and rendered more precisely by (Gofman et al.,
2009, Stoller et al., 2011) to develop a formal static
RBAC model (Sandhu et al., 1996) with 20 roles, a
role hierarchy, and separation-of-duty focusing on role
exclusion. To describe dynamic behavior, (Amthor
et al., 2013) enhanced the model by a state automaton
along with a STS with 16 commands. The result are
two hybrid RBAC3/HRU models, HIS I and HIS II,
each focusing on certain parts of the original RBAC
model1 to allow for analyses of relevant aspects.

Regarding the dynamic behavior of RBAC/HRU
models, two analysis questions are practically relevant.
(1.) Given some state, is it possible that a user u is ever

1Note that due to simplicity, sessions and object attributes
were omitted.

assigned a role r? In terms of model abstractions, the
dynamics of the user-to-role assignment UA are exam-
ined: Given an STS, if a tuple 〈u,r〉 can ever become
an element of UA, the corresponding state is consid-
ered not safe with respect to that role (cf. user-role
reachability in (Sasturkar et al., 2011)). Analogously,
the second question deals with the permission-to-role
assignment PA: (2.) Given some state, is it possible
that a role r is assigned a permission 〈o,op〉, i. e. an op-
eration on an object? In this case, we call such a state
not safe with respect to that operation (cf. permission-
role reachability in (Sasturkar et al., 2011)).

The HIS I model focuses on user-to-role assign-
ment and separation-of-duty based on role exclusion.
Its state q =

〈
Sq,Oq,mq

〉
is described by the user set

of the original RBAC model as the subject set Sq, the
RBAC object set as Oq, and an ACM mq : Sq×Oq→
2roles which maps a user-object-pair to a set of roles.
Any STS command is guarded by at least one condi-
tion of the type “a user has to own a specific role for
a specific object”. The HIS I model implements role
exclusion by negative roles: Since conditions in HRU-
like models cannot test the absence of rights in the
ACM, a negative role is added for each role simulating
its absence. The STS contains 7 commands that mod-
ify the RBAC user-to-role assignment considering role
exclusions. Analyzing the HIS I model with respect to
HRU safety is then equivalent to analyzing the original
RBAC model regarding RBAC safety flavor (1).

The HIS II model implements the permission-to-
role assignment and the role hierarchy of the original
RBAC model. As in HIS I, its state q =

〈
Sq,Oq,mq

〉
includes the RBAC object set Oq. Sq is now defined as
the RBAC role set and the ACM mq : Sq×Oq→ 2ops

maps a role-object-pair to a set of operations. The
ACM hence exactly represents the RBAC PA relation,
omitting the indirection level of permissions. The STS
incorporates the role hierarchy relation by solving the
level of indirections of PA, resulting in a HRU-like
RBAC model with 6 commands. Analyzing the HRU

cq c1 c2 c3 c4 ctarget
r1 r2 r3 r4 r5

(a) High-Dep I

cq c1 c2

c3 c4

c5

c6 c7

c8

c9 c10 ctarget

r1 r2

r3 r5
r10

r11

r12 r13

r4

r6

r9

r7 r8

(b) High-Dep II
Figure 1: CDGs of High-Dependency Models.

SECRYPT 2020 - 17th International Conference on Security and Cryptography

528

safety of the HIS II model then equals analyzing the
original RBAC model regarding safety flavor (2).

High-dependency Models. The DEPSEARCH ap-
proach originally was developed because earlier heuris-
tics failed in analyzing atypical models where right
leakages are well hidden and appeared only after long
command sequences where each command depends
exactly on the execution of its predecessor – a type of
complexity which is part of many real-world security
policies. For this reason, two artificially tailored stress-
test models from (Amthor et al., 2013) will serve as a
kind of benchmark for this type of STS complexity.

The high-dependency models, High-Dep I and
High-Dep II, are traditional HRU models where the
STS and initial state reflect the dependencies shown in
the corresponding CDGs (see Fig. 1): In High-Dep I,
the target right r5 is entered by command c4. Each
label of an edge

〈
ci,cj

〉
denotes a right that is entered

by ci and required by cj; the initial state q0 is chosen
such that ∀〈s,o〉 ∈ Sq0 ×Oq0 : {r2, . . . ,r5} /∈ mq0(s,o)
(apart from this, all ACM cells are initialized randomly
based on a generic right set R = {r1, . . . ,r20}). No
command requires or enters more than one right out of
{r2, . . . ,r5}. High-Dep II is analogously constructed
(target right r13, leaked by c10), comprising more com-
plex dependencies. In case of both models, each node
of the CDG has to be visited at least once because none
of the rights that impose the dependencies are present
in the initial ACM. Therefore, a minimum number of
state transitions is required to discover a right leakage.

Brute-force Parameter Selection. For the sake of
efficiency regarding ESTs, we use a brute-force pa-
rameter selection approach running in O(|W |p/2) for
WSDEPSEARCH and in O(max(|Sq|, |Oq|)p) for DEP-
SEARCH, where W is the current PWS, Sq and Oq are
state q’s subject and object sets, and p denotes the max-
imum number of parameters in any STS commands.

4.1.2 Test Input Configurations

The following input configurations were used for the
test runs: initial subject and object count (|Sq0 | and
|Oq0 |), ACM initialization (mq0), and target right. For
each model, the initial state’s object count and ACM
contents are varied, whereas the subject count is kept
constant (since only the number of ACM cells impacts
the heuristic behavior, not their layout).

For the feasibility evaluation, we cover ACM di-
mensions starting from 20× (5 · 10x) and 20× (10 ·
10x), increasing x from 0 stepwise by 1 up to 5 (i. e.
20,000,000 cells). For comparing WSDEPSEARCH
and DEPSEARCH, we used dimensions starting from

20× 20 and ending with 20× 500, increasing in steps
of 20 objects (i. e. 400 cells). The initial ACM con-
tents are randomized using a fixed, model-individual
right set R, such that the resulting model is not safe
by construction. Moreover, the target right (that safety
is analyzed for) is also fixed and model-specific. For
each configuration, 10 runs have been performed.

4.1.3 Execution Environment

The evaluation is performed in our security policy engi-
neering framework WorSE (Amthor et al., 2014). We
have integrated WSDEPSEARCH into a reimplemen-
tation of the model safety analysis tool for dynamic
AC models. Each model simulation engine is based on
a generic deterministic state machine implementation.
Similarly, the implementation of WSDEPSEARCH is
derived from a heuristic base class. The model itself is
a data structure shared by the simulation engine and
heuristics, and includes implementations of the STT
and the STS. All measurements were performed on
contemporary desktop hardware with an Intel Core
i7-7700K CPU at 4.2 GHz and 32 GiB DDR4 RAM
at 2,400 MHz under Ubuntu Linux 18.04 LTS.

4.2 Evaluation Results

We will now discuss the results of the experimental
evaluation. In all figures the error bars show the 95 %
confidence intervals (CIs).

4.2.1 Feasible Runtime Performance

We measured the total runtime of WSDEPSEARCH for
each of the 4 models covering ACM sizes from 102

to 2 ·107 cells. The results shown in Fig. 2 suggest a
quadratic growth of the runtime. For model state sizes
of up to 20,000,000 ACM cells, the absolute analysis
runtime for both HIS models is at most just over 10 sec-
onds and for the High-Dep stress models with a highly
complex STS at most just over 100 seconds. Hence, it
can be argued that the absolute runtime does not nearly
exceed the scale of real-world analysis sessions.

However, Fig. 2 also reveals a peculiarity: In order
to generate a right leakage when performing the safety
analysis of HIS I model, a minimal ESC of 2 steps
would have been necessary at least. Nevertheless, in
the first 4 configurations 4 steps were actually needed
resulting in a total runtime higher than needed for the
analysis of High-Dep I model. The reason for this
is the randomized initialization of ACM cells and the
PWS initialization: Since after the first path generation
a cell was added to the PWS, where only one of the
two rights necessary for the execution of a command
(assignReferredDoctorRole) was present. Then, the

Exploiting Hot Spots in Heuristic Safety Analysis of Dynamic Access Control Models

529

102 103 104 105 106 107

ACM size [number of cells]

0.0001

0.001

0.01

0.1

1

10

100

1,000

R
un

tim
e

[s
]

HIS I
HIS II
High-Dep I
High-Dep II

Figure 2: WSDEPSEARCH runtimes.

right leakage occurred only after the second path gen-
eration, the enlargement of the PWS by an additional
cell and the execution of that path.

4.2.2 Heuristic Quality

For evaluating the relative quality, we compared the
performance of WSDEPSEARCH with the classical
DEPSEARCH using a randomized brute-force parame-
ter selection algorithm for both heuristics.

Effective Step Quality. For all models and runs, Ta-
ble 1 shows the mean ESCs of both heuristic algo-
rithms along with the corresponding 95 % CIs. Addi-
tionally to judge the heuristic quality based on ESC,
the ratio of minimal ESC to mean ESC is given, called
effective step quality (QESC).

Considering the ESC and QESC values, both algo-
rithms are nearly equally effective due to their com-
mon foundation. However, there are two recognizable
differences: For HIS I model, the WSDEPSEARCH’s
mean ESC is slightly worse than that of DEPSEARCH.
We explain this, as in Sec. 4.2.1, with the initializa-
tion of the ACM cells in small model states and the
PWS initialization. For High-Dep II model, WSDEP-
SEARCH achieves a noticeable improvement due to the

Table 1: Mean ESC and QESC.

HIS I HIS II H.-Dep I H.-Dep II

Min. ESC 2 2 4 10

DEPSEARCH heuristic

Mean ESC 2.0 2.0 4.0 15.0
95 % CI 0.0 0.0 0.0 0.0
QESC 1.0 1.0 1.0 0.667

WSDEPSEARCH heuristic

Mean ESC 2.08 2.0 4.0 10.0
95 % CI 3.196 0.0 0.0 0.0
QESC 0.961 1.0 1.0 1.0

0 2,000 4,000 6,000 8,000 10,000
ACM size [number of cells]

0.0001

0.001

0.01

0.1

1

10

100

E
ff

ec
tiv

e
St

ep
Ti

m
e

(E
ST

)[
s]

DEPSEARCH:
WSDEPSEARCH:

HIS I
HIS I

HIS II
HIS II

High-Dep I
High-Dep I

High-Dep II
High-Dep II

Figure 3: EST comparison.

0 2,000 4,000 6,000 8,000 10,000
ACM size [number of cells]

0.0001

0.001

0.01

0.1

1

10

100

1,000

R
un

tim
e

[s
]

DEPSEARCH:
WSDEPSEARCH:

HIS I
HIS I

HIS II
HIS II

High-Dep I
High-Dep I

High-Dep II
High-Dep II

Figure 4: Runtime comparison.

strategically restricted parameter space. In result, aver-
aging over all ESC and QESC values, WSDEPSEARCH
beats DEPSEARCH.

Runtime Quality. In order to evaluate the heuristic
quality based on runtime performance, both ESTs and
total runtimes of WSDEPSEARCH and DEPSEARCH
were compared for each model.

Fig. 3 depicts a comparison regarding average
ESTs. Overall, it can be clearly seen that, for all
models, the WSDEPSEARCH heuristic made effective
steps in a much shorter time compared to the DEP-
SEARCH heuristic. Even though both heuristics have
a comparable QESC values for models HIS I, HIS II
and High-Dep I, the restriction of the parameter search
space by means of PWSs in WSDEPSEARCH shows a
clear EST improvement of nearly 4 orders of magni-
tude over DEPSEARCH for all models.

The average total runtime of both algorithms is
compared in Fig. 4. Here again, WSDEPSEARCH
clearly outperforms DEPSEARCH. A final compari-
son of both Figs. 3 and 4 concludes that even under
the usage of a simple brute-force parameter selection

SECRYPT 2020 - 17th International Conference on Security and Cryptography

530

algorithm the working-set-based approach of WSDEP-
SEARCH leads to significantly better EST values and
thus, under consideration of the ESC values, to a simi-
lar significant improvement of the overall runtime.

5 CONCLUSIONS

This paper addresses the exponential time complexity
problem of heuristic algorithms for the safety analysis
of dynamic AC models with large parameter spaces.
While former heuristics identify well-hidden command
sequences in which each command establishes the pre-
conditions of its subsequent command until a target
right is leaked, the selection of corresponding com-
mand parameter values is neither effective nor efficient
resulting in over 90 % of the total analysis runtime.

To drastically reduce this weakness, we present
WSDEPSEARCH which adapts the idea of working
sets known from page replacement algorithms by
strictly limiting the the parameter value space to only
those cells of the ACM that offer a high potential for
a command sequence to contribute to a right leakage.
The implementation of the heuristic analysis algorithm
was integrated into our security policy engineering
framework WorSE. The evaluation shows a runtime
improvement up to 4 orders of magnitude which makes
analyses of automaton-based AC models with realistic
state transition schemes and model state sizes encom-
passing more than 107 ACM cells tractable.

REFERENCES

Amthor, P. (2015). A Uniform Modeling Pattern for Operat-
ing Systems Access Control Policies with an Applica-
tion to SELinux. In Proc. 12th Int. Conf. on Secur. and
Crypt., pages 88–99.

Amthor, P. (2017). Efficient Heuristic Safety Analysis of
Core-based Security Policies. In Proc. 14th Int. Conf.
on Secur. and Crypt., pages 384–392.

Amthor, P., Kühnhauser, W. E., and Pölck, A. (2013). Heuris-
tic Safety Analysis of Access Control Models. In Proc.
18th ACM Symp. on Access Control Models and Tech-
nol., pages 137–148.

Amthor, P., Kühnhauser, W. E., and Pölck, A. (2014).
WorSE: A Workbench for Model-based Security Engi-
neering. Comp. & Secur., 42:40–55.

Barker, S. (2009). The Next 700 Access Control Models or
a Unifying Meta-Model? In Proc. 14th ACM Symp. on
Access Control Models and Technol., pages 187–196.

Basin, D., Clavel, M., and Egea, M. (2011). A Decade of
Model-Driven Security. In Proc. 16th ACM Symp. on
Access Control Models and Technol., pages 1–10.

Carr, R. W. and Hennessy, J. L. (1981). WSClock – A
Simple and Effective Algorithm for Virtual Memory

Management. In Proc. 8th Symp. on Operating Syst.
Principles, pages 87–95.

Denning, P. J. (1968). The Working Set Model for Program
Behaviour. Comm. of the ACM, 11(5):323–333.

Evered, M. and Bögeholz, S. (2004). A Case Study in Access
Control Requirements for a Health Information System.
In Proc. Austral. Inf. Secur. Workshop, pages 53–61.

Gofman, M. I., Ramakrishnan, C. R., Stoller, S. D., et al.
(2009). Parameterized PRBAC and ARBAC Policies
for a Small Health Care Facility.

Goguen, J. A. and Meseguer, J. (1982). Security Policies
and Security Models. In Proc. IEEE Symp. on Secur.
and Priv., pages 11–20.

Harrison, M. A. and Ruzzo, W. L. (1978). Monotonic Protec-
tion Systems. In Found. of Sec. Comp., pages 337–365.

Harrison, M. A., Ruzzo, W. L., and Ullman, J. D. (1975).
On Protection in Operating Systems. Oper. Syst. Rev.,
9(5):14–24.

Harrison, M. A., Ruzzo, W. L., and Ullman, J. D. (1976).
Protection in Operating Systems. Comm. of the ACM,
19(8):461–471.

Jha, S., Li, N., Tripunitara, M. V., Wang, Q., et al. (2008).
Towards Formal Verification of Role-Based Access
Control Policies. IEEE Trans. on Dep. and Sec. Comp.,
5(4):242–255.

Kühnhauser, W. E. and Pölck, A. (2011). Towards Access
Control Model Engineering. In Proc. 7th Int. Conf. on
Inf. Syst. Secur., volume 7093, pages 379–382.

Li, N. and Tripunitara, M. V. (2006). Security Analysis in
Role-Based Access Control. ACM Trans. on Inf. and
Syst. Secur., 9(4):391–420.

Lipton, R. J. and Snyder, L. (1977). A Linear Time Algo-
rithm for Deciding Subject Security. Journal of the
ACM, 24(3):455–464.

Mondal, S., Sural, S., and Atluri, V. (2009). Towards Formal
Security Analysis of GTRBAC Using Timed Automata.
In Proc. 14th ACM Symp. on Access Control Models
and Technol., pages 33–42.

Ranise, S., Truong, A., and Armando, A. (2014). Scal-
able and Precise Automated Analysis of Administrative
Temporal Role-based Access Control. In Proc. 19th
ACM Symp. on Access Control Models and Technol.,
pages 103–114.

Sandhu, R., Bhamidipati, V., and Munawer, Q. (1999). The
ARBAC97 Model for Role-based Administration of
Roles. ACM Trans. on Inf. and Syst. Secur., 2(1):105–
135.

Sandhu, R. S. (1992). The Typed Access Matrix Model.
In Proc. IEEE Symp. on Research in Secur. and Priv.,
pages 122–136.

Sandhu, R. S., Coyne, E. J., Feinstein, H. L., et al. (1996).
Role-Based Access Control Models. IEEE Comp.,
29(2):38–47.

Sasturkar, A., Yang, P., Stoller, S. D., et al. (2011). Pol-
icy Analysis for Administrative Role-Based Access
Control. Theor. Comp. Sci., 412(44):6208–6234.

Schlegel, M. and Amthor, P. (2020). Beyond Administration:
A Modeling Scheme Supporting the Dynamic Analysis
of Role-based Access Control Policies. In Proc. 17th
Int. Conf. on Secur. and Crypt. (to appear).

Exploiting Hot Spots in Heuristic Safety Analysis of Dynamic Access Control Models

531

Sharifi, A. and Tripunitara, M. V. (2013). Least-restrictive
Enforcement of the Chinese Wall Security Policy. In
Proc. 18th ACM Symp. on Access Control Models and
Technol., pages 61–72.

Stoller, S. D., Yang, P., Gofman, M. I., et al. (2011). Sym-
bolic Reachability Analysis for Parameterized Admin-
istrative Role-Based Access Control. Comp. & Secur.,
30(2–3):148–164.

Tripunitara, M. V. and Li, N. (2007). A Theory for Compar-
ing the Expressive Power of Access Control Models.
Journal. of Comp. Secur., 15(2):231–272.

Vimercati, S. D. C. d., Samarati, P., and Jajodia, S. (2005).
Policies, Models, and Languages for Access Control.
In Proc. 4th Int. Workshop on Databases in Netw. Inf.
Syst., volume 3433/2005 of LNCS, pages 225–237.

Zhang, X., Li, Y., and Nalla, D. (2005). An Attribute-based
Access Matrix Model. In Proc. 2005 ACM Symp. on
Applied Comp., pages 359–363.

SECRYPT 2020 - 17th International Conference on Security and Cryptography

532

