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Abstract: Decision trees are among the most popular classification methods due to ease of implementation and simple 
interpretation. In traditional methods like CART (classification and regression tree), ID4, C4.5; trees are 
constructed by myopic, greedy top-down induction strategy. In this strategy, the possible impact of future 
splits in the tree is not considered while determining each split in the tree. Therefore, the generated tree cannot 
be the optimal solution for the classification problem. In this paper, to improve the accuracy of the decision 
trees, we propose a genetic algorithm with a genuine chromosome structure. We also address the selection of 
the initial population by considering a blend of randomly generated solutions and solutions from traditional, 
greedy tree generation algorithms which is constructed for reduced problem instances. The performance of 
the proposed genetic algorithm is tested using different datasets, varying bounds on the depth of the resulting 
trees and using different initial population blends within the mentioned varieties. Results reveal that the 
performance of the proposed genetic algorithm is superior to that of CART in almost all datasets used in the 
analysis.  

1 INTRODUCTION 

Classification is a technique that identifies the 
categories/labels of unknown observations/data 
points, and models are constructed with the help of a 
training dataset whose categories/labels are known. 
There are many different types of classification 
techniques such as Logistic Regression, Naive Bayes 
Classifier, Nearest Neighbor, Support Vector 
Machines, Decision Trees, Random Forest, 
Stochastic Gradient Descent, Neural Networks, etc. 
Classification techniques are divided into two groups: 
(1) binary classifiers that classify two distinct classes 
or two possible outcomes and (2) multi-class 
classifiers that classify more than two distinct classes. 
Also, many of these methods are constructed with a 
greedy approach. Hence, these approaches always 
make the choice that seems to be the best at each step. 
However, these greedy approaches may not result in 
an optimal solution. 

Decision trees (DT) are one of the most widely-
used techniques in classification problems. They are 
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guided by the training data (xi, yi), i = 1, . . . , n. 
(Bertsimas and Dunn, 2017). DTs recursively 
partition the training data’s feature space through 
splits and assign a label(class) to each partition. Then 
created tree is used to classify future points according 
to these splits and labels. Since, conventional decision 
tree methods are creating each split in each node with 
greedy approaches and top-down induction methods, 
which may not capture well the underlying 
characteristics of the entire dataset. The possible 
impact of future splits is not considered while 
determining each split in the tree. Thus, attempts to 
construct near-optimal decision trees have been 
discussed for a long time (Safavian and Landgrebe, 
1991).  

The use of heuristics in creating decision trees 
with the greedy approach is discussed widely in the 
literature. Heuristic algorithms will be applied to 
construct decision trees from scratch or to improve 
the performance of constructed trees. Kolçe and 
Frasheri (2014) study on the greedy decision trees and 
focus on four of the most popular heuristic search 
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algorithms, such as hill-climbing, simulated 
annealing, tabu search, and genetic algorithms (Kolçe 
and Frasheri, 2014). For continuous feature data, 
evolutionary design is suggested in Zhao and 
Shirasaka (1999) and an extreme point tabu search 
algorithm is proposed in Bennett and Blue (1996). 

There are some examples for optimal decision 
trees. For example, Blue and Bennett (1997) use a 
Tabu Search Algorithm for global tree optimization. 
In their paper, they mention that “Typically, greedy 
methods are constructed one decision at a time 
starting at the root. However, locally good but 
globally poor choices of the decisions at each node 
can result in excessively large trees that do not reflect 
the underlying structure of the data”. Gehrke et al. 
(1999), develop a bootstrapped optimistic algorithm 
for decision tree construction. 

The genetic algorithm (GA) have been proposed 
to create decision trees in the literature and have been 
discussed in two different ways to find near-optimal 
decision trees. One method is for selecting features to 
be used to construct new decision trees in a hybrid or 
preprocessing manner (Bala et al., 1995) and others, 
applies algorithm directly to constructed decision 
trees to improve them (Papagelis and Kalles, 2000). 
Also, additionally, Chai et al. (1996) construct a 
linear decision binary tree with constructing 
piecewise linear classifiers with the GA. Therefore, 
we choose to use a GA to construct highly accurate 
decision trees to expand the search area so as not to 
get stuck in local optima and get close to the near-
optimal tree.  

In GA literature, different approaches are used to 
construct an initial population. Most of them use 
randomly generated populations (Papagelis and 
Kalles, 2000; Jankowski and Jackowski, 2015) and 
some of them use a more intelligent population with 
the help of greedy algorithms (Fu et al., 2003; Ryan 
and Rayward-Smith, 1998). In Fu et al. and Ryan et 
al.’s works, C4.5 is used as a greedy algorithm to 
construct the initial population. An intelligent 
population helps to start the algorithm with better 
fitness values. Also, in their paper, they discussed that 
using C4.5 is a bit computationally expensive.  

In this work, we develop a GA to construct high 
accuracy decision trees. Also, we use greedy 
algorithm CART trees in the initial population to 
improve these trees’ performance. In GA, to 
implement evolutionary operations, decision trees 
must be represented as chromosome structures. In this 
work, we propose a structure to encode a decision tree 
to a chromosome and to generate the initial 
population, we divide the original dataset into subsets 
with reasonable size and generate trees with these 

subsets on CART. Then in GA full-size dataset and 
the initial population are used to create more accurate 
trees. So, we want to use the power of CART trees in 
our algorithm and we are trying to improve the 
performance of greedy CART solutions. 

The rest of the paper is organized as follows. In 
Methodology section, you can find a more detailed 
explanation of our implementation of GA, 
chromosome structure and generated initial 
populations. Subsections of the Methodology section 
present the encoding/decoding decision trees to/from 
chromosomes, genetic operators like mutation and 
crossover, fitness functions. Experiment and 
Computational Result section explains the 
experimental details and results.  Finally, Conclusion 
section concludes all of this work.  

2 GENETIC ALGORITHM AS A 
SOLUTION METHOD 

In this paper, we discuss GA to improve the 
performance of decision trees. For the GA 
implementation, we concentrate on the following 
facts: (1) new chromosome structure, (2) initial 
population, (3) fitness function, (4) selection 
algorithm, (5-6) genetic operations, (7) generation 
and (8) stopping condition and overall flow of GA. 
These are explained in detail in following subsections 
to understand the essentials of our GA. 

2.1 Encoding the Solution 
Representation (Chromosome 
Structure) 

The representation of a solution using the 
chromosome is critical for relevant search in solution 
space and tree-based representation for the candidate 
solution is the best one (Jankowski and Jackowski, 
2015). A chromosome must contain all split decisions 
and rules to decode it into a feasible decision tree. 

 

Figure 1: Tree structure and split rules at depth 3. 
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Decision trees are constructed based on split rules 
and in each node, split occurs with a rule, and data-
points are following the related branch based on that 
rule. Also, in this paper, we concentrate on binary 
split trees so there are only two branches in each node 
splits, which means splits are bidirectional. Left 
branch refers less than operation and the right branch 
refers greater than or equal to operation (see Figure 
1). So, in GA’s solution representation if we encode 
which feature is used as a rule in which branch node, 
and their threshold values we will construct a tree 
with this linear representation. Then the fitness value 
will be calculated easily. To encode that 
representation, we use a modification of Jankowski 
and Jackowski (2015) as follows. 

𝑎ଵ 𝑎ଶ 𝑎ଷ 𝑎ସ 𝑎ହ 𝑎 𝑎 

𝑏ଵ 𝑏ଶ 𝑏ଷ 𝑏ସ 𝑏ହ 𝑏 𝑏 

Figure 2: Chromosome structure for depth 3 tree. 

Each branch node is stored in a depth-first manner 
as an implicit data structure in two arrays (see Figure 
2). All feature IDs are maps to an integer and each 
feature values are maps to normalized continuous 
values between [0,1], so each component is numeric. 

The dimension of a chromosome is 2x(2D-1). We 
use 2 rows where first-row stores split feature 
information and second-row stores threshold values 
for the related feature. Number of columns equal to 
the number of total branch nodes, 2D-1, where D is 
the depth of a tree. Also, in our algorithm D is used 
as a fixed parameter, thus chromosome dimension is 
also fixed. We define a tree if and only if the right 
branch always follows the “>=” rule and left branch 
follow “<” rule. Thus, if the related feature of the 
node’s rule and the threshold for that rule is known, 
they are enough to construct a tree easily. So, the 
chromosome structure of depth 3 is presented below. 

One of the decision trees at depth 3 is represented 
in Figure 3. To explain it in detail, split feature at the 
root node is 15th feature and threshold is 0.295. So, in 
 

 

Figure 3: Example chromosome and related decision tree at 
depth 3. 

training data, datapoints whose 15th feature is less 
than 0.295, follow left branch, accumulated in node 2 
and points greater than or equal to 0.295, follow right 
branch and accumulated in node 5. Second column of 
the chromosome represents the rule of left node, node 
2, then split feature is 9th feature and threshold is 
0.843. Thus, data points accumulated in node 2 
follows that rule, they are split according to their 9th 
feature and if the value is less than 0.843 they follow 
left branch, accumulated in node 3 and points greater 
than or equal to 0.843 follows right branch and 
accumulated in node 4. Then 3rd column of the 
chromosome is the left branch of the node 2 and split 
feature is 17th one, threshold is 0.149. Then if 17th 
features of data points in the node 2 are less than 
0.149 datapoints assign to Leaf #1 and others assign 
to Leaf #2. 

2.2 Generation of Initial Population 

To generate initial solutions/populations for the GA, 
CART (Breiman et al., 1984) is used as a constructive 
algorithm. But GA needs an initial population that has 
more than 1 solution, so as Fu et. al (2003) used in 
their paper, some sub-trees are created for the initial 
population. In this paper, we generate sub-trees using 
two ways: randomly and with the CART algorithm. 
For random trees, we generate a tree with randomly 
chosen features for each node of a tree with given 
depth and random threshold values within the 
normalized values between 0 and 1. For sub-CART 
trees, a whole size data set is divided into some 
number of subsets randomly with a decided instance 
size (explained in Section 3.3) and CARTs are 
generated for these subsets. Some data points can be 
in multiple subsets. When subsets of this dataset are 
used in CART, a solution will be found for these 
subsets and we call them as sub-trees. Then original 
data will be classified using these subtrees and fitness 
value for each subtree is calculated for the whole 
dataset. Fitness is defined as the total 
misclassification error, which will be discussed in 
more detail later.  

We use two different initial population mixtures 
(1) random trees only and (2) random trees, subtrees 
generated via CART, and 1 full CART solutions. 
Details for these population types and effects of these 
selections are discussed in Section 3. 

2.3 Fitness Value 

Fitness Value will be calculated as total number of 
misclassified points or total correctly classified points 
of each individual tree. A misclassification is number 
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of points that are labeled incorrectly. In other words, 
in classification trees, leaf nodes are labeled with the 
majority points’ class labels after split rules. 
Therefore, other minority points are labeled 
incorrectly, and the total number of that minority 
points is equal to the misclassification error and 
others are labeled correctly. Aim of our algorithm and 
all other classification algorithms are minimizing 
number of misclassification or maximizing number of 
correctly classified points, which are almost the same 
things. 

In our algorithm, we choose maximizing correctly 
classified points as an objective. Thus, our fitness 
value is equal to total number of correctly classified 
points. We choose this one because of the working 
principle of our selection algorithm, we explain it in 
the following section in more detail.  

When a new tree is reproduced after evolutionary 
operations, fitness value needs to be updated. Firstly, 
points are assigned to related leaf nodes according to 
new split rules. Then, each leaf is labeled with 
majority class, we call poin ts labeled incorrectly 
according to their real class labels, as misclassified 
points and others labeled as correctly classified 
points.  

In the GA algorithm, we calculate the fitness 
function value of each individual sub-tree with the 
whole dataset instead of the related subset, because, 
in this paper, the classification tree must be generated 
for the whole dataset which considers all data points 
completely. 

2.4 Parent Selection 

In GA, during children production, the algorithm uses 
the current generation to create children that make up 
the next generation based on the fitness value. In GA 
and other evolutionary algorithms, to select parents, 
some well-known selection methods are tournament 
selection, roulette wheel selection, rank-based 
selection, etc. In these selection methods, each 
individual in the population can be selected more than 
once, so each individual spread its genes to possibly 
more than one child.  

In our implementation of the GA, we use roulette 
wheel (RW) selection. Roulette wheel selection is 
under the title of Fitness Proportionate Selection 
Methods. In these methods, every solution has a 
probability of being selected according to their fitness 
values proportion. In roulette wheel, fitness values of 
each tree in the current generation take a place in the 
wheel according to their weighted fitness value. Thus, 
higher fitness takes wider proportion and it will be 

selected with a higher probability. Furthermore, we 
want to choose high accuracy trees as a parent to 
spread its genes to the next generations. This will help 
us to reproduce stronger children. If fitness value is 
used as a total number of correctly classified points, 
the roulette wheel works well and will chooses high 
accurate trees with higher probability. So, to select 
stronger parents, which has less number of misclassed 
points and more correctly classified ones, roulette 
wheel method is the proper one. That’s why we 
choose our objective as maximize fitness function 
which is total number of correctly labeled points. 

2.5 Crossover Operation 

The algorithm creates crossover children by 
combining pairs of selected parents in the current 
population. Firstly, two individuals (parents) are 
chosen using the RW method. From chosen trees, a 
random cut point is selected according to a randomly 
generated number which can take values between 1 
(root node) to n (total number of tree nodes). After 
identifying the random cut points in both parents, new 
individuals (offspring) are created by replacing sub-
part form the first parent by the one from the second 
parent. We cut each parent from the exact same 
point/node and replace the remaining part with a same 
sized sub-parts. Figure 6 illustrates an example of the 
crossover operation.  
Also, in this paper’s algorithm, crossover is applied on 
linear chromosome in two ways, 1-point, and 2-point 
crossover. In 1-point crossover, the sub-part starting from 
the cutting node (and runs through the last node of the 
selected parent) is exchanged; whereas in 2-points 
crossover, we exchange interior sub-parts. In more detail, 
we cut sub-trees at the same level from each parent. In 
Figure 4, possible cut points for depth 2 trees are shown. 1-
point crossover is applied when parents are cut from the 1st 
or 2nd cut points and crossed each other. 2-point crossover 
is applied when the part between the 1st and 2nd cut point  
 

 

Figure 4: Possible crossover cut points in depth 2; 1 or 1-2 
or 2. 

 

Figure 5: Possible crossover cut points in depth 3; 1 or 1-4 
or 2-3 or 3-4 or 4 or 5-6 or 6. 
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Figure 6: Crossover operation on selected parent and generated children in depth 3 trees. 

is crossed. To be more precise, after the crossover 
operation, depth of the tree cannot change because we 
cut each parent from the exact same point. Figure 5 
shows cut points for depth 3. For 1-point crossover at 
depth 3, possible cut points will be 1, 4 or 6 and for 
2-point crossover, possible parts will be between 1-4, 
2-3, 3-4 or 5-6. These specific cut-parts represent 
each meaningful sub-tree in a maximal tree. This 
specification also prevents depth change in the 
crossover. 

In Figure 6, you can see the illustration of 1-point 
crossover on the depth 3 tree. We cut each parent 
from the 4th cut point, which is decided randomly in 
the algorithm, and cut parts crossing between each 
other.  

2.6 Mutation Operation 

Mutation operation makes changes on the individual 
tree in the population. In the proposed algorithm, this 
change is applied, based on mutation rate, on to the 
generated children`s randomly selected node to create 
a mutated child. With the help of mutation, GA 
enables us to search a broader space with providing 
genetic diversity. In our implementation, we use node 
base mutation similar to Jankowski and Jackowski 
(2015), we randomly change both feature and split 
threshold of a randomly selected node (see Figure 7).  

 

Figure 7: Tree node mutation. 

Figure 7 illustrates how mutation operation 
applied on Child 1, which comes from the crossover. 
In this mutation, 5th node is selected randomly, and 
this node’s feature ID and threshold value are 
changed with randomly chosen feature ID and 
threshold value. With mutation, the class assignment 
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of leaf nodes may also change based on the majority 
class on each node because split rule is changed. Also, 
there is a restriction, mutation will be applied to all 
branch nodes except the root node. 

2.7 Replacement and New Generation 

To generate a new generation of the GA, we applied 
the elitism procedure.  Elitism keeps a proportion 
known as elite rate, of the fittest candidates into the 
next generation. For example, given a population of 
100 individuals, if you have an elite rate of 5%, you 
choose to keep the five best individuals of the current 
generation to the next generations and you apply 
crossover and mutation to generate the rest of the new 
generation. 

2.8 Stopping Criteria and Overall 
Algorithm 

In the literature, there are many different applications 
of GA implementation. The flowchart in Figure 8 
shows the general steps of our GA implementation. 

 

Figure 8: Flow of GA. 

To explain our algorithm in more detail, the steps 
of GA implementation is as follows: 

Repeat below steps TotalRun times: 

 Generate an initial population (first generation) 
of size N with the selected mixture. 

 Initialize a variable, Iter, for keeping track of 
successive iterations where the best tree found in 
each generation has not changed. 

 Repeat while Iter < MaxIter: 
o Select eliteRate*N best individual from 

the previous generation and keep them 
into the new generation. 

o Repeat until the new generation is 
fulfilled to size N. 

- Randomly select two members from 
the previous generation based on 
roulette wheel method.   
- Run the crossover operator: input 
selected two members and obtain two 
children.   
- Add new children to the new 
generation   
-  Run the mutation operator: input one 
of the currently generated children 
from crossover and apply mutation if 
mutationRate is satisfied. 
- Replace mutated child in the new 
population. 
-  If the new generation cannot provide 
a better tree and fitness value than the 
previous generation’s best, increase 
Iter by 1.  

 Select the best tree in the final generation 
and its fitness. 

We repeat these steps TotalRun times in order to 
minimize the effects of randomization on overall 
performance. Also, we choose the final solution as the 
best tree found in all TotalRun runs. 

3 COMPUTATIONAL RESULTS 

In this section, we explain our datasets, parameters, 
initial populations, then the computational results of 
the proposed approach on different variations of 
datasets are discussed. We compare the performance 
of our GA to that of CART. 

3.1 Datasets  

To evaluate the effects of data size, number of 
features and class we use six different datasets with 
different dimensions and characteristics. These 
datasets are obtained from the UCI machine learning 
repository (Lichman, 2013). Some of these datasets 
are used in other classification studies as well, such 
as study about optimal classification tree (Bertsimas 
and Dunn, 2017). Details about each dataset are 
described below (see Table 1). 
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Table 1: Details of datasets used in experiments. 

Data Set 
Name 

Number of 
Points (n) 

Number of 
Classes (K) 

Number of 
Features (p)

Wine 173 3 13 

Chess 3196 2 36 

Image 
Segmentation 

210 7 19 

Avila 20867 12 10 

Parkinson 756 2 754 

Madelon 2600 2 500 

We are given each dataset to GA in the form of 
(X, Y). To be more general, each dataset containing n 
observations, each observation is defined with p 
features and K possible class label. The x values for 
each feature across the data are normalized between 
0 and 1, which means each xi ∈ [0, 1]p. 

We apply 5-fold cross-validation to estimate the 
performance of our algorithm to minimize the 
overfitting problem. We split each dataset as 80% for 
training and 20% for testing sets. And then we take 
an average of 5 runs` accuracies. 

3.2 Parameters 

 In our proposed GA, we use four parameters: (1) 
maxIter which is used for restricting the ineffective 
improvement moves to stop algorithm, (2) Elite Rate 
represents the proportion of best individual to keep in 
next generation, (3) Mutation Rate is the proportion 
for mutation operation applied on children and (4) 
TotalRun which is the total number of replications. 
For maxIter, in each ineffective generation, iteration 
counter increases but if the new generation improves 
the best solution and updates the best tree so far, 
iteration does not increase and iteration counter is 
reset. If the iteration counter reaches maxIter, GA 
terminates. We take TotalRun amounts of replications 
because, in the applied algorithm, there are lots of 
randomization in reproduction operators as selection, 
crossover and mutation. So, we apply some 
replications and decrease the effect of randomness 
over each procedure. In this work, we use the 
parameter values as shown in Table 2.  Sensitivity 
analysis is applied to these parameters and final 
values are selected as the values that yield the best 
performance. 
 

Table 2: Values of each parameter. 

Parameter Value 

MaxIter 10 

Elit Rate 0.2 

Mutation Rate 0.1 

Total Run 100 

3.3 Initial Population 

As mentioned before, this work aims to improve the 
performance of GA by using a specific initial 
population. We use two different population blends 
for initializing our algorithm. These mixtures include 
random trees, sub-CART trees which are generated 
with sub-sets of the whole datasets and 1 CART tree 
which is constructed with the full-size training set. 

Table 3: Content of population blends. 

Population Content 

MIX_V1 30 Random Trees 

MIX_V2 
30 Random + 30 Sub-CART + 1 full-
CART Trees 

We generate each random tree by assigning 
random rules for a given depth. Random feature ID 
for each node, which is integer, is assigned between 
[0, p] and threshold value, which is continuous, 
between [0,1]. For constructing CART trees, we used 
the rpart package (Therneau et al. 2019) in the R 
programming language version 3.5.3 (R Core Team 
2019). In the rpart function, there is a control 
parameter called minbucket, which limits the 
minimum number of observations in any leaf node to 
prevent overfitting. We use this parameter as 
(0.05*n). 

We add CART based decision trees into the initial 
population and our aim is to beat CART 
performances with the help of GA. We will evaluate 
the contributions of CART based initial population in 
the next subsection. 

3.4 Experimental Analysis and Result 

As mentioned in previous subsections, we use 6 
different datasets with different sizes, and we divide 
them into 5 folds. We aim to find more accurate trees 
rather than the CART. As an initial population, we 
use 2 different population mixtures with different size 
(see Table 3). 
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Our first initial population includes 30 different 
random trees with a given depth. And second initial 
population type includes the same 30 random trees 
plus 30 sub-CART and 1 full-sized CART solution.  
Also, we train each dataset at 4 different depths as {2, 
3, 4, 5}.  

We take 100 replication runs to minimize effects 
of randomization. So, to compare our GA results we 
 

take best tree found in overall 100 runs as a final 
solution. In the below tables, “mean out-sample 
accuracy” is refer to average out-sample accuracy of 
the best tree found in 100 runs of 5 folds. 

We use average out-sample accuracies across 5 
folds to compare the performance of our algorithm 
against CART in cross-validation manner. Also, to 
show the exact improvement performance of our  
 

Table 4: Full results at depth 2. 

DATASET  Mean Out-Sample 
Accuracy 

Mean In-Sample 
Accuracy Improvement 

Time(sec) 

Wine 
CART 88.78% 0.112 
GA MIX_V1 88.19% +12.22% 0.460 
GA MIX_V2 88.21% +2.67% 0.767 

Chess 
CART 76.69% 0.131 
GA MIX_V1 86.64% +17.47% 7.543 
GA MIX_V2 86.92% +0.52% 7.700 

Segment 
CART 37.14% 0.169 
GA MIX_V1 57.14% +8.10% 0.566 
GA MIX_V2 58.10% +3.10% 0.645 

Avila 
CART 50.10% 0.257 
GA MIX_V1 51.14% +3.14% 32.721 
GA MIX_V2 51.97% +0.78% 41.768 

Parkinson 
CART 79.89% 0.349 
GA MIX_V1 79.10% +2.71% 1.697 
GA MIX_V2 81.88% +0.07% 1.872 

Madelon 
CART 65.19% 0.783 
GA MIX_V1 57.00% +5.45% 7.248 
GA MIX_V2 66.38% +0.77% 11.629 

The best performing solutions for each dataset are highlighted in bold. 

Table 5: Full results at depth 3. 

DATASET  Mean Out-Sample 
Accuracy 

Mean In-Sample 
Accuracy Improvement 

Time(sec) 

Wine 
CART 91.02% 0.214 
GA MIX_V1 96.60% +8.01% 0.733 
GA MIX_V2 91.57% +2.53% 1.464 

Chess 
CART 90.43% 0.249 
GA MIX_V1 90.43% +12.64% 11.192 
GA MIX_V2 93.80% +3.38% 12.466 

Segment 
CART 52.38% 0.254 
GA MIX_V1 68.57% +17.38% 0.984 
GA MIX_V2 80.48% +10.36% 1.150 

Avila 
CART 52.43% 0.278 
GA MIX_V1 51.08% +3.26% 59.846 
GA MIX_V2 54.70% +1.33% 92.289 

Parkinson 
CART 80.95% 0.526 
GA MIX_V1 78.44% +3.11% 3.120 
GA MIX_V2 82.80% +1.03% 3.887 

Madelon 
CART 69.04% 1.004 
GA MIX_V1 60.00% +6.31% 14.336 
GA MIX_V2 69.27% +0.37% 16.901 

The best performing solutions for each dataset are highlighted in bold. 
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algorithm over training set, we share average in-
sample accuracy improvement as the difference 
between the accuracy of the best accurate tree out of 
100 run and the initial best accurate tree in the initial 
generation. Table 4 presents these in-depth direct 
comparisons at depth 2 and Table 5 at depth 3. Result 
tables for depth 4 and 5 are provided in the Appendix. 
`Time` is the total time in seconds for population 
initialization plus GA execution time.  

GA is codded in Java language (Java version 
1.8.0) and computed on Eclipse IDE version 4.14.0. 
These computations are done in a PC with Intel Core 
i7-8550U 1.8GHz, 8GB RAM.  

In Table 4, at depth 2, 5 out of 6 datasets show GA 
with CART based initial population (MIX_V2) is 
stronger than CART with an improvement over 
CART of about 1% to 10% nominal improvement 
depending on the dataset. Also, in some datasets, the 
performance of the GA with random initial 
population ( MIX_V1) is also stronger than the pure 
CART performance but in general GA with MIX_V2 
population has the best performance over CART and 
GA with MIX_V1. 

Improvement amounts of GA with MIX_V2 
increases at higher depths. Moreover, at higher 
depths, GA with MIX_V2 population is always the 
best one. Especially at depth 5 (see Appendix 2), for 
all the 6 datasets, GA with MIX_V2 is always the best 
method.  

 For more detail, let's analyze the results of Avila 
dataset at depth 2-3-4 and 5. When depths are getting 
deeper, out-sample accuracies are also increased. 
Although, in-sample accuracy improvements are 
almost same for all depths. But, more crucial point is 
difference between the MIX_V1 and MIX_V2. At all 
depths, MIX_V2 is always outperformed CART and 
MIX_V1. Only Wine dataset at depth 2 cannot 
outperform CART at MIX_V1 and MIX_V2. But in 
higher depths, we can beat CART performance as 
well. 

These results show that our GA can outperform 
CART in all datasets when depth 3. On the other 
hand, in mean in-sample perspective, GA with 
MIX_V1 shows higher average in-sample accuracy 
improvement. This metric shows effect of GA over 
the initial population with the training set. In 
MIX_V1 initial population we use only random trees 
and their initial accuracies are very low over the 
training set. After the GA implementation, we can 
increase the accuracy of these random trees 
dramatically. This shows, our GA works well to 
increase the initial fitness of the provided problem 
within a reasonable execution time for small and 
medium size datasets.  

We conclude that GA found trees with higher 
prediction accuracy compared to greedy CART 
algorithm in a reasonable time for small and medium 
size datasets. For large size datasets (n>20,000), the 
execution time increases, especially when we 
increase the population size along with the data size. 
But in all dataset sizes, we can observe at least 1% 
accuracy improvement, which is crucial in 
classification problems. Thanks to GA to improve the 
performance of the given initial population and find 
trees with better accuracies. 

4 CONCLUSIONS 

In this article, we describe and evaluate an 
evolutionary algorithm, GA, for decision tree 
induction. In conclusion, because of the 
disadvantages of greedy approaches, some heuristics 
will be combined to improve their performances. 
Genetic algorithm is chosen in this work to combine 
with CART. So, we use random initial population as 
well to compare the performance of including CART 
subtrees into the initial population. In GA, crossover 
is applied to all parents, and mutation is applied only 
for the given proportion of the children coming from 
the crossover. In mutation, the randomly chosen node 
is mutated.  

Results show GA improves the performance of 
given trees in the initial population. But if the initial 
population contains random trees only, GA cannot 
outperform CART solution usually. So, when we 
include CART solutions to the population we can 
improve their performances and outperform CART. 
Results show MIX_V2 initial population is better 
than de MIX_V1 population 5 out of 6 datasets at 
depth 2, 3 and MIX_V2 is always the better one at 
depth 4 and 5.  

For future work, some additional steps will be 
applied to this presented heuristic to observe more 
improvements and some other heuristic methods will 
be experienced to construct more accurate trees. For 
example, in presented GA, some additional 
operations and improvement moves will be tested and 
selected according to their contribution. Also, we will 
consider pruning steps in GA implementation and we 
will be limiting some parameters like minbucket and 
complexity parameter, which are used in constructing 
CART. Additionally, we will generate different initial 
population mixtures with the help of different 
decision tree induction strategies and compare their 
performance with the proposed ones.  
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APPENDIX 

Appendix 1: Full results for depth 4. 

DATASET  Mean Out-
Sample Accuracy 

Mean In-Sample 
Accuracy Improvement 

Time(sec) 

Wine 
CART 91.02% 0.214 
GA MIX_V1 92.11% 10.67% 1.654 
GA MIX_V2 91.03% 3.09% 2.653 

Chess 
CART 89.86% 0.391 
GA MIX_V1 90.49% 15.09% 22.899 
GA MIX_V2 94.09% 0.23% 18.734 

Segment 
CART 69.05% 0.222 
GA MIX_V1 77.14% 22.02% 1.994 
GA MIX_V2 84.29% 7.02% 1.890 

Avila 
CART 55.20% 0.303 
GA MIX_V1 50.56% 2.23% 145.270 
GA MIX_V2 57.04% 0.86% 188.793 

Parkinson 
CART 80.95% 0.715 
GA MIX_V1 77.51% 3.11% 5.952 
GA MIX_V2 83.20% 1.49% 7.657 

Madelon 
CART 69.27% 1.109 
GA MIX_V1 58.73% 2.55% 25.317 
GA MIX_V2 70.04% 0.60% 28.863 

The best performing solutions for each dataset are highlighted in bold. 
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Appendix 2: Full results for depth 5. 

DATASET  Mean Out-Sample 
Accuracy 

Mean In-Sample 
Accuracy Improvement 

Time(sec) 

Wine 
CART 91.02% 0.237 
GA MIX_V1 91.60% 9.70% 4.140 
GA MIX_V2 94.40% 3.37% 3.300 

Chess 
CART 89.86% 0.427 
GA MIX_V1 94.15% 15.81% 55.128 
GA MIX_V2 94.40% 0.66% 36.076 

Segment 
CART 77.14% 0.253 
GA MIX_V1 77.14% 15.48% 3.150 
GA MIX_V2 84.76% 4.52% 3.546 

Avila 
CART 58.82% 0.529 
GA MIX_V1 50.32% 6.71% 139.102 
GA MIX_V2 60.04% 1.08% 314.508 

Parkinson 
CART 80.95% 0.767 
GA MIX_V1 81.08% 2.15% 6.699 
GA MIX_V2 83.86% 1.69% 14.384 

Madelon 
CART 69.27% 1.164 
GA MIX_V1 58.58% 5.30% 38.731 
GA MIX_V2 70.85% 1.13% 53.497 

The best performing solutions for each dataset are highlighted in bold. 
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