
An Innovative Self-Healing Approach with STIX Data Utilisation

Arnolnt Spyros1 a, Konstantinos Rantos2 b, Alexandros Papanikolaou1 c and Christos Ilioudis3 d

1Innovative Secure Technologies P.C., Thessaloniki, Greece
2Department of Computer Science, International Hellenic University, Kavala, Greece

3Department of Information and Electronic Engineering, International Hellenic University, Thessaloniki, Greece

Keywords: Self-Healing Mechanisms, Cyberdefense, Cyberthreats, STIX, Mitigation.

Abstract: Organisations nowadays devote many resources in maintaining a robust security posture against emerging
cyber-threats. This typically requires rapid response against newly identified or shared threat information so
that appropriate countermeasures are immediately deployed to eliminate these threats or reduce the associated
risks. For many shared indicators, like malicious IPs or URLs, such a response might only require minor
modifications to the configuration of security appliances. Self-Healing systems are the mechanism that allows
a system to discover any misconfigurations and apply the necessary corrections in an automated or semi-
automated manner. This paper proposes such a mechanism that can be deployed within large organisations that
either do not have the resources to devote in security and therefore automation is one of their main priorities,
or they outsource their infrastructure’s protection. The use of such a mechanism can relax the increased need
for human resources and can also reduce response times in confronting emerging threats. The architecture and
the details of a reference implementation for local public administrations is also provided.

1 INTRODUCTION

The complexity of modern computing environments
continuously increases and poses significant chal-
lenges to organisations with regards to the efficiency
and reliability of systems. As modern computing en-
vironments require more effort to properly control
and manage, human administrators are sometimes not
able to cope effectively with the aforementioned chal-
lenges. This makes systems more expensive to man-
age and maintain, as well as vulnerable to faults or
external threats. Moreover, the increased system com-
plexity makes them more error-prone to human errors.

Self-Healing systems are introduced as a use-
ful approach in addressing the rising complexity re-
quirements of systems management (Schneider et al.,
2015; Keromytis, 2007). Self-Healing is described
as the ability of systems to autonomously diagnose
and recover from faults with transparency and within
certain criteria. Self-Healing offers advantages such
as reducing the required human interaction, system

a https://orcid.org/0000-0002-4681-104X
b https://orcid.org/0000-0003-2453-3904
c https://orcid.org/0000-0002-0251-0990
d https://orcid.org/0000-0002-8084-4339

maintenance cost and the required workload of hu-
man administration. Furthermore, Self-Healing sys-
tems enhance durability and improve existing mitiga-
tion techniques. One of the main advantages of Self-
Healing is that fault mitigation is accomplished either
autonomously, i.e. without human interaction or re-
quire partial human interaction.

This paper proposes a Self-Healing mechanism
that is specifically designed to facilitate rapid re-
sponse to emerging threats, based on the informa-
tion that the organisation receives in the context of
cyber-threat information sharing (Schaberreiter et al.,
2019a; Rantos et al., 2020). The aim is to provide ad-
ministrators with the means to (semi-)automatically
and remotely adjust their security appliances to con-
front cybersecurity threats. As such, it relaxes the
needs for many human resources devoted to constant
monitoring and adjustment of their configurations.
This is particularly important for organisations, such
as local public administrations, that have multiple de-
vices to monitor but not necessarily have the required
resources. The mechanism proposed in this paper was
designed and developed in the context of CS-AWARE
(A cybersecurity situational awareness and informa-
tion sharing solution for local public administrations
based on advanced big data analysis), a H2020 re-

Spyros, A., Rantos, K., Papanikolaou, A. and Ilioudis, C.
An Innovative Self-Healing Approach with STIX Data Utilisation.
DOI: 10.5220/0009893306450651
In Proceedings of the 17th International Joint Conference on e-Business and Telecommunications (ICETE 2020) - SECRYPT, pages 645-651
ISBN: 978-989-758-446-6
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

645



search project, which aims to provide a cybersecurity
situational awareness solution for small-to medium-
sized IT infrastructures.

The rest of this paper is structured as follows: Sec-
tion 2 provides background information about the in-
troduction of Self-Healing mechanisms in organisa-
tions’ infrastructures. Section 3 introduces the Self-
Healing mechanism in the context of the CS-AWARE
project, while Section 4 describes the architecture of
the proposed solution and Section 5 provides the de-
tails of a reference implementation. Section 6 con-
cludes the paper.

2 BACKGROUND

The concept of Self-Healing is to classify and anal-
yse sensory data in order to autonomously detect and
mitigate potential system faults. The main proper-
ties of Self-Healing implementation are fault detec-
tion, failure root cause diagnosis and deriving a rem-
edy, and recovering with a sound strategy (Psaier and
Dustdar, 2011). One categorisation of Self-Healing
implementation is the level of supervision. Super-
vision is referred to as the degree of required hu-
man interaction concerning the feedback mechanism
and the expansion of Self-Healing mechanisms. Self-
Healing systems are categorised into fully supervised,
semi-supervised or unsupervised (Psaier and Dustdar,
2011; Dean et al., 2012).

One of the main advantages of Self-Healing is
that fault mitigation can be accomplished either au-
tonomously, i.e. without human interaction, or re-
quire partial human interaction, and therefore reduce
the required human interaction, system maintenance
cost and the required workload of human adminis-
tration. Figure 1 provides an overview of the re-
search work accomplished on Self-Healing properties
as published in (Psaier and Dustdar, 2011).

Figure 1: Self-Healing Systems (Psaier and Dustdar, 2011).

There are many Self-Healing models which can
be categorised based on specific criteria. Some of the
most important criteria are:

• Management style.

• Application environment.

• Learning methodology.

Another categorisation of Self-Healing implemen-
tation is the level of required supervision, i.e. the
degree of required human interaction concerning the
feedback mechanism and the expansion of Self-
Healing mechanisms. Self-Healing systems are cat-
egorised as fully supervised, semi-supervised or un-
supervised. Fully supervised Self-Healing imple-
mentations require frequent human interaction, semi-
supervised implementations require periodic human
interaction and unsupervised implementations oper-
ate autonomously without requiring human interac-
tion.

Although unsupervised implementations have
more advantages than semi-supervised and unsuper-
vised approaches, the most common approach of Self-
Healing implementations are top-down fully super-
vised Self-Healing systems. This is due to the fact
that semi-supervised and unsupervised approaches
are more complex. Unsupervised implementations
are usually implemented through the use of ma-
chine learning, thus require more resources, Further-
more, Self-Healing systems that exhibit self-elected
behaviours (system behaviour that derives from au-
tonomous configuration changes) that have not been
previously tested and validated, are more difficult to
maintain and meet the operational goals. Supervised
Self-Healing implementation provides a controllable
environment in which the produced mitigation solu-
tions have been validated by the administrator who is
also aware of the system’s behaviour.

Self-Healing mechanisms have also been designed
for specific domains, addressing the requirements
thereof, like the ones proposed for smart grids (El-
genedy et al., 2015; Zidan and El-Saadany, 2012).

3 CS-AWARE AND
SELF-HEALING

CS-AWARE enables detection, classification and vi-
sualisation of cybersecurity incidents in real-time,
supporting the prevention or mitigation of cyber at-
tacks. The solution CS-AWARE provides is a big
step towards automation of cyber incident detection,
classification and visualisation, and is based on ma-
ture big data analysis tools and methodologies. An

SECRYPT 2020 - 17th International Conference on Security and Cryptography

646



overview of the CS-AWARE architecture is provided
in (Schaberreiter et al., 2019b).

In the context of the CS-AWARE project, an in-
novative Self-Healing approach has been developed
to provide a (semi-) automated external Self-Healing
system which utilises Cyber Threat Intelligence. The
rest of this paper refers to the Self-Healing system as
Self-Healing component.

Other CS-AWARE components associated with
the Self-Healing one are the Data Analysis & Pattern
Recognition component and the Visualisation compo-
nent. The Data Analysis & Pattern Recognition com-
ponent provides input data to the Self-Healing com-
ponent which the latter analyses in order to compose
a mitigation rule. After the successful composition
of the mitigation rule the Self-Healing component en-
riches the data received from the Data Analysis com-
ponent and provides them to the Visualisation compo-
nent.

The Cyber Threat Intelligence data that are being
exchanged are structured in JSON format in compli-
ance with the STIX 2.0 format (STIX, 2017). STIX
2.0 was chosen instead of STIX 1.x due to the advan-
tages offered by the use of JSON schemas.

4 SELF-HEALING
ARCHITECTURE

The Self-Healing component consists of three main
subcomponents and three auxiliary subcomponents.
The main subcomponents are defined in the deliver-
able D2.4 of the CS-AWARE project (CS-AWARE,
2018). Auxiliary subcomponents were designed dur-
ing the development process in order to facilitate the
composition of mitigation rules.

4.1 Main Subcomponents

4.1.1 Self-Healing Policies

Self-Healing Policies is a database which contains
records of potential threats that might be detected in
an LPA (Local Public Administration) system and the
corresponding mitigation rules. The mitigation rules
are stored in a human-readable format as well as in
machine-readable format. Self-Healing Policies are
implemented on a MySQL database whose tables de-
scribe threats, mitigation rules and policies.

Records in these tables contain fields which de-
termine the threat type as well as other information
related to the detected incident. This information is
utilised by the Decision Engine subcomponent to de-
termine which policies apply to the detected threat.

Moreover, the Self-Healing Policies subcom-
ponent includes entries which contain the CLI
(command-line interface) syntax of LPAs central
nodes.

4.1.2 Decision Engine

The Decision Engine initiates the composition of a
rule when a match is found. The matching process is
done by scanning the Threat table in the Self-Healing
policies subcomponent database based on the Threat
Type field in order to identify the threat. Subse-
quently, Decision Engine performs a scan on the Poli-
cies table for a matching rule.

In case of a successful match, Decision initiates
its composition. The output of Decision Engine sub-
component is a rule in a human-readable format.

4.1.3 Security Rules Composer

Security Rules Composer accepts input from the De-
cision Engine subcomponent. The Decision Engine
provides a rule in a human-readable format as in-
put data and Security Rules Composer subcomponent
converts the mitigation rule in a machine-readable
format based on the CLI syntax of the affected node.
In case that the vendor of the affected node does not
provide CLI, then the mitigation rule cannot be con-
verted to a machine-readable format and the Self-
Healing provides the rule in a human-readable format
as a recommendation.

4.2 Auxiliary Subcomponents

4.2.1 Parser

The Parser parses the STIX package and extracts use-
ful data for the process of mitigation rules composi-
tion. The extracted data is used for the initialisation
of Java objects which contain information about de-
tected threats, the affected LPA and the affected node
or nodes.

4.2.2 Rule Applicator

Rule Applicator is responsible for enriching the STIX
package with the mitigation rule, sending data to the
Visualisation component and for applying the rule on
the remote machine. Rule Applicator enriches the
STIX package with a Course of Action SDO (STIX
Domain Object) which contains information about the
mitigation rule composed by the Self-Healing. Sub-
sequently, Rule Applicator sends the enriched STIX
package to the Visualisation component via a REST

An Innovative Self-Healing Approach with STIX Data Utilisation

647



Figure 2: Self-Healing activity diagram.

API. In case the mitigation rule must be applied re-
motely then the Self-Healing connects to the remote
node via SSH using credentials that are defined exclu-
sively for the Self-Healing component. Self-Healing
has the required privileges on the affected node in
order to apply mitigation rules without encounter-
ing any restrictions. The connection is established
only if the LPA admin has provided such permission
to the Self-Healing component. In case the STIX
package does not include sufficient information about
the threat source, then the Self-Healing provides a
generic mitigation rule as a recommendation.

4.2.3 Logger

Logger writes a log entry in the log file which con-
tains information about how the mitigation rule was
implemented. Mitigation rules composed by the Self-
Healing component incorporate three alternatives: In-
form LPA admin upon which acts to perform in order
to avoid the threat or reduce the impact, ask for ad-
min’s permission in order to apply the mitigation rule,
automatically apply the rule.

4.2.4 Input-output

Self-Healing component accepts input data from the
Data Analysis & Pattern Recognition component via
a REST API. They contain various information about
detected threats and the affected LPA which is used to
determine the proper mitigation rule (Table 1).

4.3 Relevant Dynamic Behaviour

The Self-Healing component operations are organised
in four levels:

• Data parsing (performed by the Parse subcompo-
nent),

• Human-readable mitigation composition (per-
formed by the Decision Engine subcomponent),

• Machine-readable mitigation composition (per-
formed by the Security Rules Composer subcom-
ponent), and

• Mitigation application (performed by the Rule
Applicator subcomponent).

Figure 2 shows the interaction among the Self-
Healing sub-components while Figure 3 demonstrates
the interaction between the Self-Healing and Visuali-
sation component as a result of the input provided by
the Data Analysis & Pattern Recognition component.

Received data is first parsed to retrieve useful data
which is then used as input data for the Decision
Engine to diagnose the threat type and initiate the
corresponding mitigation rule which is provided in a
human-readable format. The mitigation rule is then
forwarded to the Security Rules Composer subcom-
ponent to query the Self-Healing Policies database if
the LPA security mechanism has a CLI and determine
whether the human-readable rule can be converted to
a machine-readable set of actions.

• Security mechanism does not support CLI: The
mitigation rule cannot be converted to a machine-
readable format and therefore is directly provided

SECRYPT 2020 - 17th International Conference on Security and Cryptography

648



CS-AWARE Post-Analysis Activity DiagramCS-AWARE Post-Analysis Activity Diagram

Self-HealingSelf-Healing Information SharingInformation SharingVisualizationVisualizationData AnalysisData Analysis

In
te

ra
ct

io
n

 a
m

o
n

g 
D

at
a 

A
na

ly
si

s,
 V

is
u

al
iz

at
io

n,
 I

nf
o

rm
at

io
n

 S
ha

ri
n

g 
an

d
 S

el
f-

h
ea

lin
g 

co
m

p
o

n
e

n
ts

In
te

ra
ct

io
n

 a
m

o
n

g 
D

at
a 

A
na

ly
si

s,
 V

is
u

al
iz

at
io

n,
 I

nf
o

rm
at

io
n

 S
ha

ri
n

g 
an

d
 S

el
f-

h
ea

lin
g 

co
m

p
o

n
e

n
ts

Information 
Aggregation and 

Sanitization

Identify healing 
solution

Information 
Sanitization

Provide analysis 
result

STIX

STIX

Combine with info from 
other sources

Prepare statistics/
reports

LPA-specific 
information

No user interaction required

Need to be able to 
uniquely identify 
incidents to combine 
data-analysis result 
with healing 
suggestion

Enforce self-healing 
solution

Visualize output for 
user

Request LPA/CS-
AWARE-admin 

permission

User interaction 
required

Permission 
Granted

Report action

Report solution & 
User Decision

No permission granted

No solution/Generic 
solution found

Solution identified

Publish for external 
entities

Solution requires 
admin action 

(self-healing does 
not have the

 capacity to enforce 
measures)

Needs permission

Permission not 
required

Multi-language support, 
users, types of users

Needs 
Permission 

Any LPA-specific 
information has 
to be removed

Figure 3: Post-Analysis activity diagram.

as a recommendation. The received STIX pack-
age is enriched with a Course of Action SDO and
a Relationship SDO which links the mitigation
with the given threat and then forwarded to the Vi-
sualisation component. Self-Healing writes a log
entry in the log file.

• Security mechanism supports CLI: The mitiga-
tion rule is converted in a machine-readable for-
mat based on product’s CLI syntax. The machine-
readable rule is forwarded to the Rule Applicator
that forwards the rule to the Visualisation compo-
nent in order to ask for the LPA administrator’s
permission to apply the rule automatically.

– Administrator accepts the automatic applica-
tion: The mitigation rule is applied on the af-
fected machine. The received STIX package is
enriched with a Course of Action SDO and a
Relationship SDO which links the mitigation
with the given threat, and is then forwarded
to the Visualisation component. Self-Healing
writes a log entry in the log file.

– Administrator declines the automatic applica-
tion: The mitigation rule is provided as a rec-
ommendation. The received STIX package is
enriched with a Course of Action SDO and a

Relationship SDO which links the mitigation
with the given threat, and is then forwarded
to the Visualisation component. Self-Healing
writes a log entry in the log file.

Each Self-Healing subcomponent supports a specific
set of operations which diagnose the threat type and
compose the proper mitigation rule. At first the miti-
gation rule is composed in a human-readable format.
Subsequently the human-readable mitigation is con-
verted to a machine-readable rule which can then be
applied on the affected node remotely and without re-
quiring human interaction.

5 USE CASE

A STIX package is provided to the Self-Healing com-
ponent as input. The STIX package contains infor-
mation about a Brute Force Attack that was detected
in an LPA system. Apart from threat information,
the package contains information concerning the af-
fected LPA. After finishing the parsing process the
Self-Healing extracts the following information:
1. The Brute Force Attack is performed from the

123.183.209.131 IPv4 address.

An Innovative Self-Healing Approach with STIX Data Utilisation

649



Table 1: Fields of the STIX2.0 package received from the
Data Analysis & Pattern Recognition component.

NAME DESCRIPTION
Threat id Threat’s STIX package id.
Threat type
(optional)

DoS, DDoS, Ransomware, etc.

Threat group
Server threats, Network threats,
System threats, or Database
Threats

LPA Name of the LPA at which the
threat was detected

Severity (LPA-
specific)

Level of threat’s severity with re-
gards to the LPA.

Tool used (op-
tional)

Information about the tool that
was used to develop or spread the
threat.

Affected Prod-
ucts

Malicious or vulnerable products
info.

LPA Affected
Products

LPA malicious or vulnerable prod-
ucts information.

OS informa-
tion

OS distribution, OS version, OS
system type.

Firewall infor-
mation

Firewall software name.

Risk Mitiga-
tion Strategy

Actions to mitigate the detected
threat.

2. The affected node runs Linux Ubuntu 16.04.

3. The affected node uses the iptables as firewall.

For the needs of the Use Case test the affected LPA
system is virtualised using a VM (Virtual Machine)
created with the Oracle VM VirtualBox. Initially, the
VM contains only the default chains as well as the
CSAWARE-IN custom chain (see Figure 4).

Figure 4: VM iptables chains listing before applying miti-
gation rule.

The steps followed by the Self-Healing systems as
a response to receiving the aforementioned malicious
IP are the following:

1. The Self-Healing component receives the follow-
ing STIX package as input data.

{
"type":"bundle",
"id":"bundle--ab68225c-91cf-47fc-b27b

-78949b703437",
"objects":[
{
"type":"indicator",
"id":"indicator--6742956c-f31a-465f-

bde8-1453822d9948",
"created":"2018-05-06T06:34:55.000Z",
"modified":"2018-05-08T13:49:12.000Z

",
"name":"Brute Force Attack",
"pattern":"[ipv4-addr:value =

’123.183.209.131’]",
"valid_from":"2018-05-06T06:34:55Z",
"labels":[
"malicious-activity"

]
},
{
"type":"identity",
"id":"identity--023d105b-752e-4e3c

-941c-7d3f3cb15e9e",
"created":"2016-08-23T18:05:49.307Z",
"modified":"2016-08-23T18:05:49.307Z

",
"name":"affected_LPA_x",
"identity_class":"organization"

},
{
"type":"observed-data",
"id":"observed-data--32dab7d0-1522-4

a08-826b-015fc1369bdb",
"created":"2016-08-23T18:05:49.307Z",
"first_observed":"2018-03-26T14

:21:25.283Z",
"last_observed":"2018-03-26T14

:21:25.283Z",
"modified":"2018-03-26T14:21:25.283Z

",
"number_observed":1,
"objects":{
"0":{
"name":"Canonical Ubuntu Linux

16.04 LTS",
"type":"software",
"vendor":"Canonical",
"version":"7.0",
"cpe":"cpe:2.3:o:canonical:

ubuntu_linux:16.04:*:*:*:lts
:*:*:*"

},
"1":{
"name":"iptables Firewall",
"type":"software",
"vendor":"Linux",
"version":"1.8.0"

}
}

}
]

}

SECRYPT 2020 - 17th International Conference on Security and Cryptography

650



2. After completing all required Self-Healing opera-
tions, the mitigation rule is remotely applied on
the virtual machine. Furthermore, Self-Healing
composes a human-readable mitigation which is
displayed to the user.

3. The Rule Applicator subcomponent of the Self-
Healing enriches the STIX package with a Course
of Action SDO which contains information about
the mitigation rule that was generated by the Self-
Healing component.
...

{
"type":"course-of-action",
"id":"course-of-action--8e2e2d2b-17d4

-4cbf-938f-98ee46b3cd3f",
"created":"2016-08-31T11:37:49.307Z",
"modified":"2016-08-31T11:37:49.307Z

",
"name":"mitigation",
"description":"iptables -A CSAWARE-IN

-s 123.183.209.131 -j REJECT"
}

4. The CSAWARE-IN chain now contains the miti-
gation rule that was generated by the Self-Healing
component.

6 CONCLUSIONS

The extensive exposure of organisations to existing
and emerging cyberthreats has forced them to invest
on mechanisms that efficiently consume shared threat
intelligence information and reduce response times in
adapting their security posture. Self-Healing mech-
anisms provide the means for administrators to ad-
dress the complexity of systems management and mit-
igate potential system faults. In this paper we pro-
posed a Self-Healing solution that has been designed
in the context of the CS-AWARE project to address
the needs of local public administrations that typi-
cally do not have the expertise or the resources to
manage security and other appliances. The proposed
solution provides a method to appropriately mitigate
cyber threats, while still allowing the system admin-
istrator to have control over these actions.

ACKNOWLEDGEMENTS

This work has been supported by the EU research pro-
gram CS-AWARE (A cybersecurity situational aware-
ness and information sharing solution for local public
administrations based on advanced big data analysis)
project. Call: DS-02-2016, Grand Agreement No.:
740723.

REFERENCES

CS-AWARE (2018). CS-AWARE framework. Deliverable
D2.4. Available online: https://cs-aware.eu/2019/03/
28/d2-4-cs-aware-framework/.

Dean, D. J., Nguyen, H., and Gu, X. (2012). UBL: unsu-
pervised behavior learning for predicting performance
anomalies in virtualized cloud systems. In Proceed-
ings of the 9th international conference on Autonomic
computing - ICAC ’12, page 191, San Jose, California,
USA. ACM Press.

Elgenedy, M. A., Massoud, A. M., and Ahmed, S. (2015).
Smart grid self-healing: Functions, applications, and
developments. In 2015 First Workshop on Smart Grid
and Renewable Energy (SGRE), pages 1–6, Doha,
Qatar. IEEE.

Keromytis, A. D. (2007). Characterizing software self-
healing systems. In Gorodetsky, V., Kotenko, I., and
Skormin, V. A., editors, Computer Network Security,
pages 22–33, Berlin, Heidelberg. Springer Berlin Hei-
delberg.

Psaier, H. and Dustdar, S. (2011). A survey on self-
healing systems: approaches and systems. Comput-
ing, 91(1):43–73.

Rantos, K., Spyros, A., Papanikolaou, A., Kritsas, A., Il-
ioudis, C., and Katos, V. (2020). Interoperability
Challenges in the Cybersecurity Information Sharing
Ecosystem. Computers, 9(1):18.

Schaberreiter, T., Kupfersberger, V., Rantos, K., Spyros, A.,
Papanikolaou, A., Ilioudis, C., and Quirchmayr, G.
(2019a). A quantitative evaluation of trust in the qual-
ity of cyber threat intelligence sources. In Proceedings
of the 14th International Conference on Availabil-
ity, Reliability and Security, ARES ’19, pages 83:1–
83:10, New York, NY, USA. ACM.

Schaberreiter, T., Röning, J., Quirchmayr, G., Kupfers-
berger, V., Wills, C. C., Bregonzio, M., Koumpis, A.,
Sales, J. E., Vasiliu, L., Gammelgaard, K., Papaniko-
laou, A., Rantos, K., and Spyros, A. (2019b). A Cy-
bersecurity Situational Awareness and Information-
Sharing Solution for Local Public Administrations
based on Advanced Big Data Analysis: The CS-
AWARE Project. In Bernabe, J. B. and Skarmeta,
A., editors, Challenges in Cybersecurity and Pri-
vacy – the European Research Landscape, RIVER
PUBLISHERS SERIES IN SECURITY AND DIGI-
TAL FORENSICS, pages 149–180. River Publishers,
Netherlands.

Schneider, C., Barker, A., and Dobson, S. (2015). A survey
of self-healing systems frameworks: A SURVEY OF
SELF-HEALING SYSTEMS. Software: Practice and
Experience, 45(10):1375–1398.

STIX (2017). Structured threat information expression
(STIX) version 2.0. OASIS standard https://www.
oasis-open.org/standards#stix2.0.

Zidan, A. and El-Saadany, E. (2012). A cooperative multi-
agent framework for self-healing mechanisms in dis-
tribution systems. Smart Grid, IEEE Transactions on,
3:1525–1539.

An Innovative Self-Healing Approach with STIX Data Utilisation

651


