
Emerging Design Patterns for Blockchain Applications

Vijay Rajasekar1, Shiv Sondhi1, Sherif Saad1 and Shady Mohammed2

1School of Computer Science, University of Windsor, Canada
2Faculty of Computer Science & IT, Ahram Canadian University, Egypt

Keywords: Software Engineering, Software Patterns, Empirical Analysis, Anti-patterns, Blockchain.

Abstract: Blockchain or Distributed Ledger Technology (DLT) introduces a new computing paradigm that is viewed by
experts as a disruptive and revolutionary technology. While bitcoin is the most well-known successful appli-
cation of blockchain technology, many other applications and sectors could successfully utilize the power of
blockchain. The potential applications of blockchain beyond finance and banking encouraged many organiza-
tions to integrate and adopt blockchain into existing or new software systems. Integrating and using any new
computing paradigm is expected to affect the best practice and design principles of building software systems.
This paper summarizes our ongoing research on collecting, categorizing and understanding, existing software
design patterns when building blockchain-based software systems. It collects and categorizes the existing
software (design and architectural) patterns that are commonly linked to blockchain and distributed ledger
technology. We provide an informal analysis of the identified patterns to highlight their maturity. Finally,
we discuss the current research gap in software engineering for blockchain-based applications and propose
potential research directions.

1 INTRODUCTION

A blockchain is a distributed store or ledger of records
that is usually used to store transactional data. How-
ever, there is no restriction on the type of data that can
be stored health records for health applications, own-
ership records for property management and even ex-
ecutable code in the form of smart-contracts. This in-
dicates how flexible blockchains can be. Blockchain
technology came into existence when a white paper
titled Bitcoin: A peer-to-peer electronic cash system
was announced by Satoshi Nakamoto in 2008. How-
ever, the word blockchain was never used in the paper
specifically. The paper discusses a peer-to-peer ver-
sion of electronic cash that overcome a well-known
limitation in electronic cash (cryptocurrency) known
as double-spending.

One of the major milestones in blockchain tech-
nology was the introduction of a blockchain frame-
work named Ethereum (Buterin, 2014). It pro-
vides a powerful application stack embedded within
each node of the Ethereum network, known as the
Ethereum Virtual Machine. It also provides Solidity,
a programming language for writing smart contracts,
inspired by many object-oriented programming lan-
guages, to simplify and standardize the development

of Decentralized Applications or DApps. The devel-
opment of DApps in Ethereum is achieved through
writing smart contracts using Solidity and implement-
ing other parts of the DApp using Web3 (Buterin,
2014).

Today, there are many blockchain/distributed
ledger platforms that enable the development
of blockchain-based applications or integrating
blockchain into existing software systems. For
instance, we have Hyperledger Fabric, Quorum,
Corda, Ripple, Tezos, Sawtooth, BigChainDB,
OpenChain, etc. All of these platforms provide
technology stacks that enable the developers to build
and blockchain-based applications. The recent devel-
opments of blockchain platforms and the widespread
of blockchain-based applications introduced new
challenges to the software development commu-
nityblockchain developers encountering several
challenges when working with blockchain. To solve
these challenges, blockchain developers introduced
new software design patterns or adapted existing
patterns.

Software design patterns played a significant role
in software engineering practice and education since
the term was coined (Gamma et al., 1993). De-
sign patterns are generally considered as the accepted

242
Rajasekar, V., Sondhi, S., Saad, S. and Mohammed, S.
Emerging Design Patterns for Blockchain Applications.
DOI: 10.5220/0009892702420249
In Proceedings of the 15th International Conference on Software Technologies (ICSOFT 2020), pages 242-249
ISBN: 978-989-758-443-5
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



practices applied to software system design, which
help in making the system portable, clean and effi-
cient. It is not entirely clear how design patterns af-
fect the performance of a system; although a few tra-
ditional patterns do optimize memory consumption
(Flyweight Pattern) and speed optimization (Proxy
Pattern).

These patterns however, are not a one-size-fits-all
utility. Different systems benefit from different pat-
terns; so selecting the correct ones for your appli-
cation is important. Similarly, when new technolo-
gies crop up, they create the need for new design pat-
terns. Examples include technologies like cloud com-
puting, the internet of things and blockchain. Since
these technologies differ significantly from traditional
software systems, they require design patterns that are
suited to their unique attributes. Here, we attempt to
find and validate the effect of design patterns on the
efficiency, security and reusability of blockchain ap-
plications.

This short paper is organized as follows. In sec-
tion 2, we identity and discuss common blockchain
design patterns. In section 3 we provide brief empir-
ical analysis and discuss how the patterns have ma-
tured with time. Finally, in section 4 we provide the
conclusion for our findings and our stance on the mat-
ter.

2 BLOCKCHAIN DESIGN
PATTERNS

Several studies have been proposed in the literature to
introduce some new patterns or to extend existing pat-
terns to fit blockchain-application requirements. This
section compiles the patterns found and presents each
one with a description, the need for the pattern and
the consequences of using it. Wherever applicable,
real-world context is also provided.
Checks-Effects-Interactions Description - The con-
tract first checks whether the necessary conditions are
met, then makes necessary changes to the contract
state (effects) and finally passes control to another
contract (interactions) (Wohrer and Zdun, 2018).
Need - If the ”interactions” occur before the ”ef-
fects” are recorded and the invoked contract makes
a callback to the original one, the system state can
be exploited. And it was, in the hack of The DAO
(Atzei et al., 2017). The attacker made a recursive
call to a function in such a way that the contract’s
funds were transferred (interaction) before the pro-
gram could ever record the transfer of funds (effects).
Consequences - The advantage of this software pat-
tern is that it ensures all debits and credits are

recorded before any further transactions can be made.
A disadvantage is that the pattern is counter-intuitive
in the sense that it is generally good practice to wait
for a function to execute successfully, before making
any state changes.
Secure Ether Transfer Description - This is in-
fact an anti-pattern. The low-level Solidity function,
address.call() should not be used to invoke a con-
tract. Instead, the high-level address.send() or ad-
dress.transfer() should be preferred because they set
a limit on the amount of gas1 the contract can forward
to any invoked contract. (Wohrer and Zdun, 2018;
Whrer and Zdun, 2018)
Need - Since the low-level function will forward all
remaining gas to the invoked contract, using it allows
further invocations to be made, provided the gas sent
in the original call is sufficiently larger than the re-
quired minimum.
Consequences - The advantage is that if the amount
of gas transferred is capped, the extra invocations will
end eventually due to insufficient funds.
Oracle Description - A contract or blockchain-based
application may sometimes need to access informa-
tion from the external world. The oracle pattern uses
a third-party verifier to verify that information stored
off-chain is valid, before it can be relayed to the
blockchain. (Xu et al., 2018; Whrer and Zdun, 2018;
Zhang et al., 2018)
Need - There are several scenarios where a blockchain
may need to access external data. This depends on
the application’s use-case but a few examples are:
stock market data, weather-related data and bank ac-
count information. Since such information is stored
off-chain, it’s validity may be compromised and the
trust generated by the blockchain can be compro-
mised without even attacking it directly.
Consequences - Some considerations when using an
oracle are to be sure you can trust the third-party.
It can also be argued that this introduces an element
of centralisation in the blockchain-based application.
But that is something that can be controlled while de-
veloping the oracle, as shown by (Griffith, 2017) and
(Costa, 2019).
Off-chain Datastore Description - If the raw data to
be stored on the blockchain takes too much memory,
calculate a hash for the entire raw data and store this
on the blockchain instead.(Lu et al., 2018)
Need - Since the blockchain is a distributed store of
data, many nodes in the network must store the en-
tire blockchain, which becomes infeasible if too much
data is stored in every block. Additionally, on public
blockchains, storing data requires money and can get

1Gas is a monetary token or the ”cost” for any transac-
tion in Ethereum

Emerging Design Patterns for Blockchain Applications

243



expensive quickly.
Consequences - The hash will let you know if the data
has been tampered with or not. This is called hash in-
tegrity. However, tampering cannot be reversed and if
the data is deleted or lost, only its hash remains per-
manently.
State Channel Description - Micro-transactions
should not be stored on the blockchain; they should
be stored off-chain and only the final settled amounts
should be stored on-chain (Xu et al., 2018). There
are some use-cases of this pattern, the most common
being the Lightning Network in Bitcoin (Poon and
Dryja, 2015) and Plasma in Ethereum.
Need - As mentioned, storing large amounts of data
on the blockchain is not sustainable for scalability
and sometimes cost issues. In the case of micro-
transactions, the amount being transacted is signifi-
cantly lesser than the processing fees and will take up
as much space as any other transaction on the chain.
Consequences - Using the state channel pattern can
thus save storage space and costs. A drawback could
be the trustworthiness of the state-channel protocol
which is different from the blockchain’s.
Contract Registry Description - Every contract and
its address are stored off-chain as key-value pairs.
This mapping is mutable since it is off-chain, which
means that the address of a contract can be updated in
the registry. Since calls to any contract will now go
through the registry, this leaves all dependencies in-
tact. (Xu et al., 2018; Whrer and Zdun, 2018)
Need - Code on a smart contract may need to be mod-
ified or updated to deal with bugs and changing re-
quirements. Since data on a blockchain cannot be
modified, the registry pattern offers an abstraction
over contract names and their code.
Consequences - The advantage is that this allows us
to update our contract logic and can be used to rectify
bugs and errors. The registry being stored off-chain
seems like a drawback but Ethereum itself stores a lot
of important data off-chain as we’ll see in Section 3.
Data Contract Description - Store data and code on
separate contracts to decouple them.(Xu et al., 2018;
Whrer and Zdun, 2018)
Need - If a contract stores its data within itself, mod-
ifying the contract using the registry or proxy pat-
tern will mean rewriting all of the data to the up-
dated version as well. Since the outdated contracts
still remain on the blockchain, and are only indirectly
replaced by the updated versions, the data will be
stored redundantly with every new version of the con-
tract (Volland, 2018). Conversely, storing the data on
a data contract would reduce redundant data storage
and save space as well as money.
Consequences - The consequences of this separation

are the obvious cost and storage efficiency. Some
negative consequences would be that the separation
of logic from data increases complexity of code due
to external calls. Moreover, external calls increase
chances of unintended behaviour.
Embedded Permission Description - Contracts must
have an embedded permission field for certain critical
functions, which allows only authorized users to run
them. This is comparable to an end-user not having
access to all the back-end code.(Xu et al., 2018; Lu
et al., 2018)
Need - A good example of a critical or sensitive func-
tion is self destruct() in Solidity2. The absence of em-
bedded permission to execute this particular function
was leveraged in the Parity Wallet hack (Destefanis
et al., 2018).
Consequences - To use this design pattern one must
first decide on the method to check for permissions.
For instance, you could perform authorization using
the user’s private key, although this may pose prob-
lems when permissions change or a private key is lost.
Factory Contract Description - This pattern is simi-
lar to the idea of a class in programming languages. It
entails storing a template contract on the blockchain
to instantiate other contracts having a similar struc-
ture and flow.(Xu et al., 2018; Zhang et al., 2018)
Need - Using a factory contract helps make a DApp’s
code modular and reduces the amount of updates re-
quired when new functionality is added to the DApp.
It also ensures that certain design principles are con-
sistent throughout the application.
Consequences - The factory contract makes it easier
for beginners to create contracts which follow prede-
fined best-practices. It can reduce the use of ineffi-
cient design but may however, imply extra costs. This
is specifically applicable if the application is running
on a public blockchain as it most likely will be.
Emergency Stop Description - Include the ability for
an authorized party to stop the execution of a con-
tract.(Wohrer and Zdun, 2018)
Need - If a contract is executing malicious functions
recursively or for several iterations, without the abil-
ity to interrupt, the malicious function can run in-
definitely and the nodes can do nothing till execu-
tion completes. While the attacker hacked The DAO,
the participants on the Ethereum network could only
watch as their money was slowly siphoned out of their
contracts and into the attacker’s.
Consequences - Having an authorized emergency stop
functionality will allow an authorized party to prevent
further damage in cases of malicious or erroneous ex-
ecutions. Choice of the authorized party is an impor-

2It is technically an opcode for the EVM - like the ones
in low-level assembly languages

ICSOFT 2020 - 15th International Conference on Software Technologies

244



Table 1: Design Patterns Discussed.

Name Domain Usefulness Similar Traditional Patterns
Checks-Effects-Interactions Security Avoid unexpected errors Chain of Responsibility

Secure Ether Transfer Security Minimize risk —
Oracle Data Maintain integrity —

Off-chain Datastore Data Storage and Integrity —
State Channel Structural Storage —

Contract Registry Structural Flexibility Proxy Pattern
Data Contract Structural Avoid unexpected errors —

Embedded Permission Security Authentication and authorization Facade
Factory Contract Creational Convenience Factory
Emergency Stop Security Minimize Risk Memento

Mutex Security Synchronisation Mutex
Create Balance Limit Security Minimize Risk —

Reverse Verifier Data Availability and Authentication Observer
Incentive Execution Behavioral Good practice Composite
Commit and Reveal Security Authentication and Authorization Iterator

Proxy Contract Structural Flexibility Proxy Pattern
Dynamic Binding Structural Authentication and Authorization Chain of Responsibility

Flyweight Structural Storage Flyweight
Tight Variable Packing Behavioral Storage —

tant consideration. Moreover, having a single author-
ity may lead to centralisation - to tackle this multi-
party authorization can also be used.
Mutex Description - This patern is similar to mu-
texes in traditional programming. It prevents a con-
tract from executing code in its parent contract, un-
til the parent has executed completely. (Wohrer and
Zdun, 2018) The parent contract here is the contract
that invokes another contract.
Need - Having a recursive call (or a callback) that
modifies the state of the parent, before it has finished
its execution, can cause serious issues as described
several times above. Using a mutex is just another
way to assure that such attacks (like re-entrancy) can-
not occur.
Consequences - There aren’t many negative conse-
quences of using a mutex - generally if you find the
mutex hindering your task, there’s probably a better
way to accomplish the task.
Contract Balance-limit Description - This pattern
states that a contract should not hold any more funds
than a predefined balance-limit. It must reject any
further transactions made to it except for forced pay-
ments 3. (Wohrer and Zdun, 2018)
Need - This design pattern will reduce the risk if any
individual contract is compromised. Having a con-
tract with too much capital reduces the target area for
a potential attack to take place.
Consequences - The consequences of this design pat-
tern are that once the balance-limit has been reached,
the contract will not accept any more gas, therefore

3Functions like self destruct() and also mining rewards
sent to a contract, cannot be declined. Therefore they are
”forced” payments

nobody can invoke the contract again unless there is
some provision to send the funds elsewhere.

Reverse Verifier Description - Sometimes an appli-
cation may need to access data from the blockchain.
Like the oracle pattern, reverse verifier is used to ver-
ify data being sent to an external source from the
blockchain.(Xu et al., 2018)
Need - It is common to have application data in a
traditional database and store only a hash on the
blockchain. One shortcoming of this is that we cannot
prevent tampering of data in the database. The tam-
pering will be detected however, thanks to the hash
value. The reverse verifier checks for hash integrity
when blockchain data is requested by external com-
ponents.
Consequences - One possible consequence of using
a reverse verifier is that communication between ex-
ternal components and the blockchain may take some
time. Additionally, the reverse verifier must also be a
trusted party.

Incentive Execution Description - Make seldom-run
utility functions piggyback onto contracts that execute
more often.
Need - Some functions perform tasks like cleaning
up expired records, making dividend payouts and de-
stroying deprecated contracts. These utility functions
also require gas to be executed, and the payout is usu-
ally not enough to offset the execution cost. Therefore
reimbursing callers or adding these functions to other
contracts are possible solutions. (Xu et al., 2018)
Consequences - There are some things to consider if
this pattern is used. For starters, the type of contract
that the utilities are appended to; if it contains sensi-
tive functions, experiences a lot of traffic or is called

Emerging Design Patterns for Blockchain Applications

245



more often than the utilities must be, it is not a good
fit. Also, the amount of gas required to invoke the
contract may increase due to the utility functions.
Commit and Reveal Description - This pattern
works by hiding certain secret variables in a contract’s
function, and only displaying the final values. Autho-
rized users may have access to the secret.(Whrer and
Zdun, 2018)
Need - If a contract’s internal state is visible to the
network, it is possible for a malicious user to take ad-
vantage, and invoke the contract with deliberately se-
lected variables that change the state to one they de-
sire. So, this pattern hides some variables from the
network, reducing the probability of such injection at-
tacks.
Consequences - Implementing this pattern requires
overhead in terms of code. Deciding access roles will
also need consideration to prevent centralisation of
the system.
Proxy Contract Description - Create a proxy for
each contract, which will accept, and then forward
the parameters to the current version of the con-
tract.(Whrer and Zdun, 2018)
Need - This pattern is similar in purpose to the con-
tract registry. They both help in modification and up-
dating of contracts.
Consequences - A contract registry has two obvious
advantages over a proxy contract: there is only one
contract registry but there are several proxies, and us-
ing a proxy contract does not allow anything to be re-
turned to the invoking contract. One advantage, is that
the proxy contracts unlike the registry, will be stored
on-chain.
Dynamic Binding Description Create a dynamic as-
sociation between a contract and its authorized users’
addresses, in such a way that the addresses are not de-
fined in the contract. Instead, the users send a secret
key to another, designated contract, which forwards
the request to the the main one if the key is valid.(Lu
et al., 2018)
Need - This pattern can be used in cases where an ex-
tra layer of security is required. Since the authorized
user’s address is not listed on the contract, it is not
visible to the public.
Consequences - This design pattern ensures privacy
and also respects the authorization and authentication
protocols of the network. It may however, increase
gas overhead due to the extra contract invocations and
can raise problems if the secret key is lost or compro-
mised.
Flyweight Description - Inspired in part by the data
contract design pattern, the flyweight contract stores
data that is shared by a group of clients in one com-
mon place.(Zhang et al., 2018)

Need - Since this pattern is essentially a data contract
itself, the need is the same - to decouple data from
programmatic logic. It also helps conserve space by
storing a single copy of data that is shared between a
group of contracts.
Consequences - The consequences of using the fly-
weight are that lots of storage space is saved, which
translates to money saved. It also means that updating
a contract will not affect the shared data. Some con-
siderations while using this pattern are: accessing the
data may require extra gas and, some provisions are
required for when the data needs to be updated.
Tight Variable Packing Description - Store static
variables in smart contracts as the smallest possible
data type that they can fit in. For example don’t store
a value as an int if it could be stored as a byte. (Vol-
land, 2018)
Need - This is because storage costs money on
Ethereum and other public blockchains.
Consequences - There are no negative consequences
of using the pattern - it should be followed in tradi-
tional programming as well, but has greater conse-
quences in blockchain-oriented software.

In Table 1 each design pattern is assigned a do-
main that describes what aspect of the blockchain the
pattern affects. The domains are listed below with a
brief note on each.
• Security - Includes design patterns that increase

security of the system.
• Data - Includes design patterns that deal with data

on and off the blockchain.
• Creational - Include design patterns that deal

with creation of contracts on the blockchain.
• Structural - Include design patterns that define

structural properties that lead to new functionality.
• Behavioral - Include design patterns dealing

mainly with good practices and specific behaviors
of contracts on the blockchain.

3 PATTERNS MATURITY

We have discussed common design patterns in
blockchain-oriented software and how they may be
useful to developers. Some of these patterns emerged
as a means to tackle malicious users on the pub-
lic internet and others to make an application more
cost-effective or scalable. In this section, we discuss
how the design patterns have matured over years and
whether they hold any value in blockchain-oriented
software engineering at all.

The oracle or external data verifier, has emerged
as one of the most prominent design patterns in the

ICSOFT 2020 - 15th International Conference on Software Technologies

246



industry today. Part of its popularity lies in the fact
that companies and individuals began implementing
oracles as a distributed application i.e. the oracle
itself was built on a blockchain. This enables ora-
cles to be used in other industries for data validation
as well. ChainLink is one such company that has
quickly risen to fame (Ellis et al., 2017). It offers a
distributed solution to the external data access prob-
lem. The great thing about ChainLink is that it works
as an oracle verifier, as well as a reverse verifier, i.e.
it can validate data coming from a blockchain appli-
cation too. There are many projects like ChainLink
that create distributed oracles and such services are
used by other popular DApps. Chainlink itself, con-
nects DApps to external APIs and also provides sup-
port for blockchain transactions. It has partnered with
the likes of Google, Binance and other major players
in the DLT/Blockchain industry.

One DApp that uses Chainlink’s oracle services is
Loopring - an open protocol for building decentral-
ized exchanges. Despite the P2P and decentralized
nature of blockchains, most cryptographic assets to-
day are exchanged at centralised exchanges (like Bi-
nance, Bitmex, etc). When trading through these cen-
tralised exchanges, traders must transfer their assets
to a wallet provided by the exchange, and then the ex-
change will facilitate the trade. One problem here is
that after transferring your assets, you are no longer
in control of them - the exchange does not provide the
wallet’s private key to traders. During this interme-
diary period, you can’t control what happens to your
assets and Loopring identifies this as a single point
of failure. Their website lists around 40 hacks of ex-
changes and online marketplaces since 2013, each re-
sulting in a loss of tens of millions of dollars on av-
erage. All of this money ultimately belongs to traders
using the exchange. Loopring’s aim is to create non-
custodial, decentralised exchanges. To do this, they
use zero-knowledge proofs (ZKP). ZKP aims to allow
a user to prove they know a secret value, without dis-
closing the secret itself. In other words, a trader can
prove that he knows his private key without actually
disclosing it. This is an application of the commit-
and-reveal design pattern, where secret values are
hidden from unauthorized users and only the final so-
lutions are visible. Using this pattern, Loopring is try-
ing to make blockchains scalable and increase trans-
action throughput. Apart from commit-and-reveal,
Loopring uses an off-chain data storage in addition
to the Ethereum blockchain.

Another pattern that receives some attention
is the flyweight pattern. The DApp for Smart
Health (DASH) is a distributed application that
uses blockchain technology in the healthcare sector

(Zhang et al., 2018). Patient records and information
are stored on the blockchain. However, storing insur-
ance policies, coverage details and other patient infor-
mation requires a lot of storage which causes scalabil-
ity issues. Using the flyweight pattern, DASH stores
all policies separately and creates references to appro-
priate policies for each patient. Since the number of
insurance policies is a much smaller subset compared
to the number of patients, the flyweight pattern helps
to save a lot of storage space.

Coming to the giants in the blockchain space; the
Bitcoin community has been working hard on the
lightning network since 2016 with the first version
going live in early 2018. The Lightning Network is
defined as a Layer 2 protocol that functions on top
of a blockchain-enabled cryptocurrency like Bitcoin
(Poon and Dryja, 2015). The protocol is in its early
stages and is only available for public tests now. It
uses the state channel design pattern by enabling
micro-transaction networks to work at a higher layer
of abstraction than the payment protocol. Once a cer-
tain number of micro-transactions have been recorded
and settlement occurs, the final amounts are added
onto the blockchain. However, recent research sug-
gests that the micro-transaction network is highly
centralised (Lin et al., 2020). It has found ”hubs”
on the network that handle a majority of the micro-
transactions. Further, taking out one of these hubs
results in the network collapsing into several compo-
nents. This is undesirable as it can lead to splits in
the network, where two or more groups of validators
(validating micro-transactions) start working on sepa-
rate chains, leading to two or more competing chains.
This could destroy the network since each group is
likely playing by its own rules. It is worth noting here
that the main Bitcoin network too is controlled ma-
jorly by only 5 mining pools (companies).

Ethereum, on the other hand, quite successfully
uses some of the discussed patterns. Ethereum’s en-
vironment is designed as a state machine. The state
of the network includes the current state of each con-
tract as well as the amount of funds available at each
address. The state of a contract is defined by its inter-
nal variables and the funds available to it. This state
information is stored on an external database (Lev-
elDB and RocksDB) as a trie data structure 4. The
root is hashed and stored with every new block on the
blockchain for hash integrity. Additionally, the exter-
nal database stores current as well as past state-tries of
the network, which enables the network to roll-back
the state if needed.

The off-chain data storage design pattern is wo-

4A trie is like a binary tree except that each tree node
may have upto n child nodes

Emerging Design Patterns for Blockchain Applications

247



ven right into Ethereum. The external database
is stored at all validator nodes (called full-nodes).
Ethereum also allows ownership of contracts which
gives owners certain privileges, defined by the own-
ers themselves. These privileges usually translate to
permissions to run certain functions in the contract
(like contract termination), thus creating a sort of em-
bedded permission. Additionally, patterns like tight
variable packing are genenrally good practice, es-
pecially when dealing with public blockchains where
storage costs money and may cause scalability issues.

After a few hacks on Ethereum’s platform, the de-
velopers started working to prevent further malicious
activity on the network. Checks-effects-interactions
and mutexes are two design patterns that were sug-
gested to safeguard against future attacks. They were
mostly relevant to hacks like The DAO’s which was
a re-entrancy attack. Re-entrancy is an attack where
contract execution passes recursively from an invoked
contract to itself in such a way that the ”effects”
of the calling contract occur after its ”interactions”.
This means that the state is never updated since the
recursive call occurs beforehand and continues in-
definitely. Using mutexes and the checks-effects-
interactions flow-control can help against such attacks
but suppose that a hacker does succeed somehow, the
emergency stop pattern and balance limits can min-
imize the risk associated with the malicious activity.

Similar to how the above design patterns emerged,
the secure ether transfer anti-pattern also came
about for a similar purpose. The high-level transfer()
and send() functions were created in Solidity to help
against re-entrancy attacks. These functions add a cap
of 2300 units of gas to be passed to a contract on
invocation; limiting the number of times a recursive
call can continue (any interaction with a contract in
Ethereum requires gas). However, after the Istanbul
hard fork5, the secure ether transfer anti-pattern was
scrapped. These changes directly affected the trans-
fer() and send() functions. Now gas amounts required
for different contract invocations increased in many
cases. Therefore limiting the gas was now detrimen-
tal, as the limit was not enough to see the desired
number of invocations through. In other words, the
high-level transfer and send functions now constrain
the ability to execute necessary functions in Ethereum
- leading the developer community to advise against
the use of these two functions (Marx, 2019). In ret-
rospect, they called it a quick-fix for the issues re-
vealed by the hacks. The advise now is to use the low-
level call() function along with the checks-effects-
interactions and mutex patterns.

5Istanbul hard fork was an update to Ethereum that made
fundamental changes to the existing protocols

4 CONCLUSION

In this paper, we identified common software design
patterns and investigated their maturity using an em-
pirical analysis approach. We only consider a pro-
posed pattern (design solution) as a mature pattern
if it has been adapted/used by either a blockchain
platform or was applied in a well-known blockchain-
based application. In general, the identified patterns
could be categorized into five main categories. These
categories are patterns for data management, pat-
terns for security assurance, patterns for smart con-
tracts, patterns for communication with external enti-
ties, and finally patterns to reduce computational cost.
Moreover, some patterns are designed for specific
blockchain platforms or commonly used in public or
private blockchain networks. In the literature, we did
not find any quantitative or qualitative assessments for
the proposed patterns. Therefore, for some patterns, it
is not clear exactly how they affect the quality of the
produced system or application. Moreover, extracting
or identifying the patterns is a time consuming and
intensive task, that could only be achieved using code
review and white-box analysis. These are some of the
limitations that we plan to address in our future re-
search.

ACKNOWLEDGEMENT

This research was supported by the Scotiabank
Global Trade Transactions Initiative administered
by the University of Windsor’s Cross-Border Insti-
tute and Mitacs. We thank our colleagues from Sco-
tiabank and Cross-Border Institute, who provided in-
sight and expertise that greatly assisted the research.
However, they may not agree with all of the interpre-
tations/conclusions of this paper.

We are also immensely grateful to Dr.William An-
derson from the University of Windsors Cross-Border
Institute for his comments on an earlier version of
the manuscript, although any errors are our own and
should not tarnish the reputations of any other person.

REFERENCES

Atzei, N., Bartoletti, M., and Cimoli, T. (2017). A survey
of attacks on ethereum smart contracts (sok). pages
164–186.

Buterin, V. (2014). Ethereum: A next-generation smart
contract and decentralized application platform. Ac-
cessed: 2016-08-22.

Costa, P. (2019). Github repository: Blockchain oracle.

ICSOFT 2020 - 15th International Conference on Software Technologies

248



Destefanis, G., Marchesi, M., Ortu, M., Tonelli, R., Brac-
ciali, A., and Hierons, R. (2018). Smart contracts vul-
nerabilities: a call for blockchain software engineer-
ing? In 2018 International Workshop on Blockchain
Oriented Software Engineering, pages 19–25.

Ellis, S., Juels, A., and Nazarov, S. (2017). Chainlink: A
decentralized oracle network.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1993).
Design patterns: Abstraction and reuse of object-
oriented design. In Proceedings of 7th European Con-
ference on Object Oriented Programming, pages 406–
431.

Griffith, A. (2017). Github repository: Concurrence.io.
Lin, J.-H., Primicerio, K., Squartini, T., Decker, C., and Tes-

sone, C. J. (2020). Lightning network: a second path
towards centralisation of the bitcoin economy.

Lu, Q., Xu, X., Liu, Y., and Zhang, W. (2018). Design
pattern as a service for blockchain applications. pages
128–135.

Marx, S. (2019). Blog: Stop using solidity’s transfer() now.
Poon, J. and Dryja, T. (2015). The bitcoin lightning net-

work: Scalable off-chain instant payments.
Volland, F. (2018). Github blog: Solidity patterns.
Whrer, M. and Zdun, U. (2018). Design patterns for

smart contracts in the ethereum ecosystem. In 2018
IEEE International Conference on Internet of Things
(iThings) and IEEE Cyber, Physical and Social Com-
puting (CPSCom) and IEEE Smart Data (SmartData),
pages 1513–1520.

Wohrer, M. and Zdun, U. (2018). Smart contracts: security
patterns in the ethereum ecosystem and solidity. In
2018 International Workshop on Blockchain Oriented
Software Engineering (IWBOSE), pages 2–8.

Xu, X., Pautasso, C., Zhu, L., Lu, Q., and Weber, I.
(2018). A pattern collection for blockchain-based ap-
plications.

Zhang, P., Schmidt, D., White, J., and Lenz, G. (2018).
Blockchain Technology Use Cases in Healthcare.

Emerging Design Patterns for Blockchain Applications

249


