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Abstract: The microbiome of the human body has been shown to have profound effects on physiological regulation and 
disease pathogenesis. However, association analysis based on statistical modeling of microbiome data has 
continued to be a challenge due to inherent noise, complexity of the data, and high cost of collecting large 
number of samples. To address this challenge, we employed a deep learning framework to construct a data-
driven simulation of microbiome data using a conditional generative adversarial network. Conditional 
generative adversarial networks train two models against each other while leveraging side information learn 
from a given dataset to compute larger simulated datasets that are representative of the original dataset. In our 
study, we used a cohorts of patients with inflammatory bowel disease to show that not only can the generative 
adversarial network generate samples representative of the original data based on multiple diversity metrics, 
but also that training machine learning models on the synthetic samples can improve disease prediction 
through data augmentation. In addition, we also show that the synthetic samples generated by this cohort can 
boost disease prediction of a different external cohort. 

1 INTRODUCTION 

The microbiome is a collection of microscopic 
organisms cohabitating in a single environment. 
These organisms have been shown to have a profound 
impact on its environment. Of particular interest is the 
human microbiome and how its composition can 
affect the health and development of the host. In 
particular, the microbiome of the human gut has been 
linked to the pathogenesis of metabolic diseases such 
as obesity, diabetes mellitus, and inflammatory bowel 
disease (Barlow, Yu, & Mathur, 2015; Franzosa et al., 
2019; Tilg & Kaser, 2011). Additionally, the gut 
microbiome has been shown to have an effect on the 
development and modulation of the central nervous 
system (Carabotti, Scirocco, Maselli, & Severi, 
2015), stimulation of the immune system (Fung, 
Olson, & Hsiao, 2017), and even impact the response 
to cancer immunotherapy treatment (Gopalakrishnan, 
Helmink, Spencer, Reuben, & Wargo, 2018). 
Because of the profound effect that the microbiome 
has on the human host, it is of increasing importance 
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to understand how the changes in its composition lead 
to physiological changes in the host. 

An important analysis in microbiome studies 
involves uncovering underlying association between 
microbes and the host’s health status. However, 
statistical modelling of the underlying distribution of 
microbiome data has been a long-standing challenge 
due to the sparsity and over-dispersion found in 
microbiome data. There have been many approaches 
proposed over the past decade, however there is still 
no consensus as to which models and underlying 
assumptions are best suited for handling the 
complexity of the data. (Kurilshikov, Wijmenga, Fu, 
& Zhernakova, 2017; Xu, Paterson, Turpin, & Xu, 
2015). 

Recently, machine learning (ML) models have 
been advocated for a data-driven approach for the 
prediction of the host phenotype (Knights, Parfrey, 
Zaneveld, Lozupone, & Knight, 2011; LaPierre, Ju, 
Zhou, & Wang, 2019; Pasolli, Truong, Malik, 
Waldron, & Segata, 2016). However, one persistent 
challenge is the relatively small size of microbiome 
datasets. It is often the case that datasets have a far 
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greater number of features than the number of 
samples, which can quickly lead to the overfitting of 
models. 

To address these challenges and limitations, we 
construct a novel method for generating microbiome 
data using a conditional generative adversarial 
network (CGAN). We then construct synthetic 
samples using the generative model in order to 
augment the original training set. Data augmentation 
is a technique often used in ML to improve task 
performance and improve generalization (Bowles et 
al., 2018; Mikołajczyk & Grochowski, 2018). By 
generating a large number of synthetic microbiome 
samples that resemble the original data, we show that 
it is possible to improve the performance of ML 
models trained on the generated synthetic samples. 

Generative adversarial networks (GANs) involve 
two neural networks competing against each other in 
an adversarial fashion in order to learn a generative 
model in a non-parametric data-driven approach 
(Goodfellow et al., 2014). GAN models have shown 
success in multiple domains including the generation 
of medical images (Frid-Adar et al., 2018) and single 
cell RNA-Seq gene expression profiles (Ghahramani, 
Watt, & Luscombe, 2018). Additionally, synthetic 
datasets generated using GAN models have shown to 
be able to boost performance of prediction based 
tasks through data augmentation (Che, Cheng, Zhai, 
Sun, & Liu, 2017). A recent study has also explored 
the behaviour of Wasserstein GAN models with 
gradient penalty in microbiome data, showing success 
in generating realistic data compared to other 
simulation techniques (Rong et al., 2019).  However, 
the utility and benefits of using GANs to generate 
microbial synthetic data has not been fully explored. 
Specifically, we hypothesize that the synthetic data 
generated using GAN models can boost the 
performance of downstream analyses. 

In our study, we use a variation of standard GAN 
models called CGAN. CGANs incorporate side 
information into the model to allow the generation of 
samples from different distributions when certain 
underlying conditions, such as disease status, are 
given. CGAN has shown improvement from standard 
GAN models (Mirza & Osindero, 2014). The 
incorporation of side information also allows for the 
training of a single generative model that can 
incorporate different conditions.  

The main contribution of this manuscript is the 
utilization of the CGAN model in order to construct a 
generator that can sample from different conditions to 
provide synthetic data representative of the true data. 
Additionally, we use the generator to synthesize 
samples for data augmentation. We show that the 

generated data not only are similar to the original data 
with respect to diversity metrics, but also that the data 
augmentation can lead to statistically significant 
improvement in the performance of disease 
prediction tasks in ML models. 

2 MATERIALS AND METHODS 

2.1 Datasets Used in Study 

For our study, we use the data reported from two 
different cohorts of patients with inflammatory bowel 
disease (IBD). The Prospective Registry in IBD 
Study at Massachusetts General Hospital (PRISM) 
enrolled patients with a diagnosis of IBD based on 
endoscopic, radiographic, and histological evidence 
of either Crohn’s Disease or Ulcerative Colitis. The 
second dataset is used specifically for external 
validation and consists of two independent cohorts 
from the Netherlands (Tigchelaar et al., 2015). The 
first consists of 22 healthy subjects who participated 
in the general population study LifeLines-DEEP in 
the northern Netherlands. The second cohort consists 
of subjects with with IBD from the Department of 
Gastroenterology and Hepatology, University 
Medical Center Groningen, Netherlands. This 
will be used as the validation dataset. 

Processing of the stool samples collected for both 
datasets is described in the original study (Franzosa et 
al., 2019). Briefly, metagenomic data generation and 
processing were performed at the Broad Institute in 
Cambridge, MA. Quality control for raw sequence 
reads was performed and reads were taxonomically 
profiled to the species level using MetaPhlAn2 
(Segata et al., 2012). The relative abundance values 
are publicly available and were obtained from the 
original study (Franzosa et al., 2019). A summary 
showing the number of IBD patients, healthy 
subjects, and species level microbes for each dataset 
is shown in Table 1.  

Table 1: Datasets used in study. 

 # IBD # Healthy # Microbes 
PRISM 121 34 195 

Validation 43 33 115 

2.2 CGAN Architecture 

In order to generate synthetic microbial community 
structures, we utilize a CGAN architecture. A 
standard GAN is composed of two competing 
networks: a generator and a discriminator. The task of 
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the generator is to learn to generate synthetic data 
representative of real data while the discriminator 
tries to determine if a given sample is synthetic or 
real.  The generator is trained to maximize the 
probability of the discriminator in misclassifying 
samples. At the same time, the discriminator is 
trained to minimize this probability. A CGAN 
expands on standard GAN models by feeding side 
information, i.e., the disease status, to both the 
generator and discriminator. This allows the 
generator to generate synthetic samples conditioned 
on the provided side information. 
     The generator, G, of the CGAN model requires 
two sets of inputs: a set of priors and the conditional 
side information. In our study, we sample our priors 
from the uniform distribution ~Uሺെ1,1ሻ. Both inputs 
are fed through multiple fully connected hidden 
layers of perceptrons and finally to an output layer. 
The output of the generator represents a vector of 
microbial abundance features.  
     The discriminator, 𝐷, takes a sample of microbial 
abundance features as an input in addition to the side 
information. The inputs are passed through multiple 
fully connected layers and then to an output of a 
single node using the sigmoid activation function. 
The sigmoid function is used so that the output is a 
value ranging from 0 and 1. The output of the 
discriminator represents the prediction of the 
probability that the given sample of data is real. 

Both generator and discriminator networks are 
trained in an iterative fashion such that in each epoch, 
the discriminator is first trained on the generated and 
real samples and the network weights are updated. 
After the discriminator has been updated, the 
generator is updated. The loss functions for the 
discriminator and generator are shown below. 

𝐿஽ ൌ
1
𝑛

෍ െlog ሾ𝐷ሺ𝑥௜, 𝑠௜ሻ

௡

௜

ሿ െ logሾ1 െ 𝐷ሺ𝐺ሺ𝑧௜, 𝑠௜ሻ, 𝑠௜ሻሿ (1)
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௡

௜
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Here 𝑛 represents the number of real samples, 𝑧௜ 
represents a vector of priors for the generator, 𝑥௜  is 
the relative abundance vector of a real microbial 
community sample, and 𝑠௜ is the side information that 
the networks are conditioned on. 𝐷ሺ𝑥௜, 𝑠௜ሻ  is the 
discriminator’s prediction if 𝑥௜ is real given the side 
information 𝑠௜. 𝐺ሺ𝑧௜, 𝑠௜ሻ is the generator’s prediction 
of a synthetic sample given the prior noise 𝑧௜ and side 
information 𝑠௜. A figure showing the architecture of 
our CGAN is shown in Fig.1. 

 

Figure 1: Visualization of the CGAN architecture. A set of 
prior noise 𝑧௜  and side information 𝑠௜  corresponding to 
sample 𝑥௜  are used to generate a synthetic sample. The 
discriminator then uses the side information to predict if a 
given sample is real or synthetic.  

3 RESULTS 

3.1 CGAN Training 

CGAN models were trained only using the PRISM 
dataset. Before training, microbial relative abundance 
features present in less than 20% of samples or with a 
mean abundance less than 0.1% across all samples of 
both the PRISM and Validation sets were removed 
from the analysis, resulting in a total of 93 microbial 
features in the PRISM and Validation datasets. 

In our analysis, we sample a vector of size 8 for 
the input 𝑧௜ in the generator model. We add a vector 
of size 2 representing the one-hot encoded value of 
the disease state (IBD or healthy) as the input 𝑠௜ and 
concatenate the two inputs together. The 
concatenated input is then passed through two fully 
connected layers of size 128. Batch normalization is 
performed at each layer. The leaky ReLU activation 
function with an alpha value of 0.1 is performed after 
each batch normalization. Unlike the standard ReLU 
activation function, leaky ReLU still allows a small 
positive gradient for given negative values. The 
output layer of the generator is a vector of size 93 
representing the microbial features. The softmax 
activation function in used in order to reconstruct the 
relative abundance of the microbial community.  

The discriminator network takes a vector of size 
93 representing microbial relative abundance features 
as an input in addition to vector of size 2 representing 
the one-hot encoded disease state for that sample. The 
two inputs are concatenated and fed through two fully 
connected layers of size 128. The leaky ReLU 
activation is again used for each fully connected 
layer. The output of the discriminator is a single node 
with a sigmoid activation to shrink the prediction 
value to be between 0 and 1. 
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Figure 2: PCOA of the training (left), generated (middles), and combined (right) datasets using the Bray-Curtis dissimilarity. 
Red points represent patients with IBD and blue points represent healthy subjects. 

Models were trained using 10-fold cross-
validation. In each partition, 90% of the PRISM 
dataset was used to train the CGAN model. CGAN 
models were trained for 30,000 iterations in which 32 
random samples were selected at each iteration as real 
samples. A synthetic sample was generated for each 
of the 32 real samples using the sample’s respective 
disease state as the side information. The 32 real and 
32 synthetic samples were then fed to the 
discriminator for training and the discriminator was 
updated based on Eq. 1. After updating the 
discriminator, the discriminator is again used to 
predict the synthetic samples and the generator is 
updated based on Eq. 2. Both networks were trained 
using the ADAM optimizer with a learning rate of 
5x10-5 (Kingma & Ba, 2014). For the  implementation 
and training of our CGAN models we used the 
TensorFlow package in Python (Abadi et al., 2016). 

During training, models were saved every 500 
iterations. Additionally, the Principal Coordinate 
Analysis (PCOA) (Wold, Esbensen, & Geladi, 1987) 
of the training set, generated set, and the combination 
of the two sets was visualized and stored. The Bray-
Curtis dissimilarity measure was used in calculating 
the distance matrix for PCOA (Bray & Curtis, 1957). 
The Bray-Curtis dissimilarity quantifies the microbial 
compositional dissimilarity between two different 
samples. Given two microbial samples, 𝑥௔  and 𝑥௕ , 
the Bray-Curtis dissimilarity between the two 
samples is calculated as 

𝐵𝐶ሺ𝑥௔, 𝑥௕ሻ ൌ 1 െ
2𝐶௔௕

𝑆௔ ൅ 𝑆௕
 (3)

where 𝐶௔௕  is the sum of the lesser values for the 
abundances of each species found in both 𝑥௔ and 𝑥௕, 
and 𝑆௔ and 𝑆௕ are the total number of species counted 

in 𝑥௔  and 𝑥௕  respectively. Visual analysis of the 
PCOA plots and the overlap of the original and 
generated data was used to select the best model. An 
example showing the PCOA of a selected model from 
the cross-validated training is shown in Fig. 2. 

3.2 Generated Data Improve 
Prediction Performance 

For each of the partitions in the 10-fold cross-
validation, we simulated 10,000 samples for both IBD 
and healthy groups using the selected best model. 
Relative abundance values were then log-transformed 
and normalized to zero mean and unit variance. Next, 
we trained logistic regression and multilayer 
perceptron neural network (MLPNN) models to 
predict disease status using microbial features. For 
each partition of the cross-validation training, two 
sets of MLPNN and logistic regression models were 
trained. One set of models was trained using the 
original samples in the partition of the training set. 
The second set of models was trained using the 
10,000 simulated samples generated by the CGAN 
trained on the training set. 

To train a logistic regression model on each 90% 
used as training set, we performed internal 5-fold 
cross-validation grid search over L1, L2, and Elastic 
Net regularizations considering 10 penalty strengths 
spaced evenly on a log scale ranging from 1 to 10,000. 
Logistic regression models were trained using the 
Python scikit-learn package (Pedregosa et al., 2011). 

MLPNN models were trained using two fully 
connected hidden layers with 256 nodes each and 
dropout with a rate of 0.5 after each layer. Leaky 
ReLU with an alpha of 0.1 was used as the activation 
function. The output layer contained two nodes using  

DeLTA 2020 - 1st International Conference on Deep Learning Theory and Applications

106



 

Figure 3: Boxplots for the ROC AUC values across 10-fold 
cross-validation for logistic regression and MLPNN models 
trained on original and synthetic data.  

the softmax activation to predict the disease state. 
Networks were trained using the ADAM optimizer 
with a learning rate of 1x10-4. We set aside 20% of the 
training set as a validation set and networks were 
trained until the loss of the validation set had not 
decreased for 100 epochs. The implementation and 
training of the MLPNN models was again done using 
the TensorFlow package in Python (Abadi et al., 2016). 

Using the trained logistic regression and MLPNN 
models generated from a fold’s training set as well as 
the generated dataset, we calculated the area under the 
receiver operating characteristic curve (ROC AUC) 
using the fold’s 10% held out data of true observed 
values. We observed that for logistic regression, the 
models trained using the generated sets had an 
average ROC AUC of 0.849 while the models trained 
on the original data had an average ROC AUC of 
0.778 across the 10 folds. Similarly, for MLPNN 
models, the ROC AUC had a value of 0.889 when 
training on the generated data and 0.847 when 
training on the original data. Using a Wilcoxon 
Signed-Rank test, the ROC AUC when using the 
generated samples was significantly larger than that 
of when using the original data with a p-value of 
0.0249 for logistic regression models and a p-value of 
0.0464 for MLPNN models. Boxplots of the ROC 
AUC values when using original and generated 
datasets is shown in Fig. 3. These results 
demonstrated that the CGAN augmented datasets can 
boost the predictive power of the ML models. 

3.3 Diversity of Generated Data  

Diversity metrics are often used to characterize 
microbiome samples and datasets. In order to check 

how well the generated samples represent the real 
samples, we compare the distributions of the alpha 
and beta diversities for IBD and healthy samples.   

Alpha diversity is a local measure of species 
diversity within a sample. It characterizes the 
microbial richness of a community. For our analysis, 
we use the Shannon Entropy metric to quantify the 
alpha diversity of samples. Given a sample 𝑥 with 𝑚 
relative abun-dance values, the Shannon Entropy is 
calculated as 

𝐻ሺ𝑥ሻ ൌ െ ෍ 𝑥௝ logଶ൫𝑥௝൯

௠

௝ୀଵ

 (4)

Beta diversity, on the other hand, allows us to 
quantify how similar samples are to each other. In our 
study, we use the Bray-Curtis dissimilarity as a 
distance measure of beta diversity, calculated as 
described in Eq. 3. 

To demonstrate the behaviour of the CGAN 
model, we visualize the diversity metrics for the 
training set and for 10,000 generated samples using 
the selected best model. In addition, we calculate the 
diversity metrics of a set of 10,000 generated samples 
using the random initialization of the CGAN before 
any training to show the initial random distribution.  

Before calculating the diversity metrics, we 
clipped the generated samples in order to introduce 
zero values. The softmax function used to generate 
samples provides a vector entirely of positive values. 
However, in reality microbiome data very sparse.  

 

Figure 4: Distributions of (A) the beta diversity based on 
the Bray-Curtis dissimilarity between the training set and 
itself, the generated (CGAN), and random datasets, and (B) 
the Shannon alpha diversity of training, generated, and 
random samples for IBD (left) and healthy (right) samples. 
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Therefore, to induce this sparsity into the 
generated samples, we calculated the minimum value 
across all species found in the training set. We used 
this value as a threshold and set any generated value 
less than the observed minimum to zero. 

After clipping the generated sets, we calculated 
the diversity metrics. When considering beta 
diversity, we only considered the Bray-Curtis 
dissimilarity from the training set to itself, the training 
set to the best generated samples, and the training set 
to the randomly generated samples. The distributions 
of alpha and beta diversity for one of the cross-
validated partitions is shown in Fig. 4. 

We observed that the data generated from the 
selected best model followed very similar 
distributions of the alpha and beta diversities of the 
data used to train the CGAN. We did notice that the 
beta diversity within the training set had a spike near 
one, however upon post-analysis we discovered that 
was caused by samples with only a few numbers of 
microbial species present. 

3.4 Generated Data Is Predictive of 
External Dataset 

To evaluate if the synthetic samples generated from 
the CGAN model were generalizable to a dataset of a 
similar study, we trained a CGAN model using the 
entire PRISM dataset in the same manner as 
described in Section 3.1. The CGAN is trained for 
30,000 iterations and models as well as PCOA 
visualization of the real and synthetic samples are 
saved every 500 iterations. The best model is selected 
based on the PCOA comparison between the training 
and generated sets. A PCOA visualization of the 
PRISM dataset combined with the synthetic data 
generated from the best model and the external 
validation set is shown in Fig. 5. 

Using the best model, we evaluate if the generated 
samples can improve the task of predicting IBD 
status. Logistic regression and MLPNN models are 
trained in a similar fashion as outlined in Section 3.2. 
The model was trained using 10,000 generated 
samples from a CGAN model that was trained on the 
entire PRISM dataset. We then evaluate the model 
performance on the true observations of the external 
validation IBD dataset. We observed an improvement 
in ROC AUC from 0.734 to 0.832 in logistic 
regression models and from 0.794 to 0.849 in 
MLPNN models. This demonstrates that the synthetic 
samples generated using one cohort can augment the 
analysis of a different cohort. 

Lastly, we analyse the distribution of alpha and 
beta diversities of the original PRISM dataset, the 
 

 

Figure 5: PCOA visualization of the combination of the 
PRISM dataset, synthetic data generated by the best CGAN 
model, and the external validation set. Red points represent 
patients with IBD and blue points represent healthy 
patients. 

samples generated after training a CGAN on the 
whole PRISM dataset, and the external validation 
dataset. The alpha diversity is calculated for each 
dataset using the Shannon Entropy metric. The beta 
diversity within the PRISM dataset, from the PRISM 
dataset to the generated samples, and from the 
external validation dataset to the generated samples 
was calculated. In addition, we compared the random 
diversities from the randomly initialized CGAN 
before training. The alpha and beta diversities are 
shown in Fig. 6. 

We observed that the beta diversity between the 
PRISM dataset and the synthetic samples generated 
from it displays similar distributions. Additionally, 
the distribution of the beta diversity values between 
the external validation set and the synthetic samples 
follow a similar pattern, suggesting that the CGAN 
model did not overfit the PRISM dataset and is robust 
in generating synthetic samples. We also observed 
that the alpha diversities within the PRISM, synthetic, 
and external validation datasets showed similar 
distributions. In particular, the alpha diversity within 
the samples of IBD patients was very similar. The 
distributions in the healthy samples were slightly 
different in each of the datasets, however we suspect 
this may be due to the fact that there were far fewer 
cases of healthy samples in the original PRISM 
dataset. 
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Figure 6: Distributions of (A) beta diversity based on the 
Bray Curtis dissimilarity between the training set and itself, 
the validation, the generated (CGAN), and random datasets 
and (B) Shannon alpha diversity of training, validation, 
generated, and random samples for IBD (left) and healthy 
(right) samples. 

4 CONCLUSIONS 

In this study, we have developed a novel approach for 
the generation of synthetic microbiome samples using 
a CGAN architecture in order to augment ML 
analyses. Using two different cohorts of subjects with 
IBD, we have demonstrated that the synthetic 
samples generated from the CGAN are similar to the 
original data in both alpha and beta diversity metrics. 
In addition, we have shown that augmenting the 
training set by using a large number of synthetic 
samples can improve the performance of logistic 
regression and MLPNN in predicting host phenotype. 

A current limitation to this approach involves 
selecting the best CGAN model. Even though visual 
inspection has been a common approach, it is a 
subjective and may miss the optimal model. We plan 
to further this study by investigating stopping criteria 
using alpha and beta diversity metrics in order to 
facilitate CGAN model selection. In addition, we plan 
to evaluate other forms of side information such as 
using time in longitudinal datasets.  
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