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Abstract: We are currently experiencing another phase within the digital transformation. This phase is prominently
called the Internet of Things. It is enabled by the progress in energy efficiency, cost and capability both
in sensor-actuator electronics and in data transmission technologies. The envisioned Internet of Things will
consist of billions of connected cyber-physical systems. To fully harvest the potential of this development,
a strategy for robust, interoperable and future-proof network communication between a myriad of different
systems in a global network is required. The ongoing TriCePS project develops both a framework and the
missing building blocks to fulfill those requirements. In this paper, the authors propose the pipeline concept
as such a building block.

1 INTRODUCTION

A cyber-physical system (CPS) is a system that in-
tegrates computation with physical processes. Em-
bedded, networked computers use sensors and ac-
tuators to interact with the physical world. Physi-
cal processes can then affect computation and vice
versa. In contrast to traditional embedded systems,
a CPS is a network of interacting appliances (a sys-
tem of systems if you want) instead of a standalone
device (Minerva et al., 2015). The CPS concept is
strongly related to another concept called Internet
of Things (IoT). IoT describes a global infrastruc-
ture of networked everyday objects (or things), which
are connected through interoperable communication
technologies (Xia et al., 2012). Prominent IoT ap-
plications include smart home, wearables, the con-
nected car and many more. CPS and IoT have become
possible due to the progress in highly capable, low-
cost sensor-actuator electronics and low-cost, energy-
efficient, (deeply) embedded computing and commu-
nication systems.

The ongoing TriCePS project investigates barriers
and possible solutions concerning CPS communica-
tion. During our more fine-grained work on the soft-
ware architecture for the TriCePS project, we iden-
tified some core, technical building blocks that were
required to make our idea work. This work tries to
explain and empathize the importance of pipelines as

one of those building blocks.
The remaining part of this chapter gives a brief

overview of the TriCePS project, more details can be
found in (Du et al., 2019).

1.1 Project Rationale

With a global network of connected entities, there
comes a wide range of communication technologies
and a myriad of actual connections with varying qual-
ities of connectivity. The most obvious reasons for
this volatility being the stochastic nature of packed-
switched networks and the greedy nature of applica-
tions that compete for available bandwidth. The dif-
ferent qualities of connectivity, a multitude of used
communication standards and a wide variety of hard-
ware capabilities create a challenging situation. A
generally suitable CPS architecture requires new ap-
proaches which can fulfill the adaptivity and interop-
erability needs for the integration of highly different
systems under widely varying conditions.

1.2 Project Overview

The TriCePS project addresses the communication-
related challenges in the field of CPS. It aims for
adaptive and interoperable communication in such
systems. If network conditions vary and the current
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conditions are not suitable, various strategies can be
helpful for sending critical data.

First, some form of prioritization can be used.
This typically requires support from and proper con-
figuration of the underlying network and is usually
not well supported in networks that are not under your
control. Second, it is possible to reduce the data but
keep its general type (e.g. through compression or
by sending grayscale images instead of color images).
Third, one can send a different type of data (e.g. text
descriptions instead of a video stream) which can sig-
nificantly change the amount of sent data.

The software framework developed in the course
of the TriCePS project supports all of these ap-
proaches. The focus of this paper will be on the sec-
ond and third approach.

2 RELATED WORK

The overall TriCePS project touches several areas of
research in computer networking including network
monitoring, network measurements, quality of ser-
vice and application layer protocols. As stated, CPS
communication might require adaptivity and/or mod-
ularity. While TriCePS tries to integrate both, related
work is mostly found in either one of the categories.

2.1 Adaptivity

The need for adaptivity is not exclusive to the area
of CPS. In TriCePS, the application layer is informed
about current QoS metrics and has the chance to adapt
accordingly. Similar functionality, often called ”adap-
tive codecs” has been around for quite a while. Adap-
tive Multi-Rate (AMR) audio, which is used in GSM
is a classical example. AMR uses different cod-
ing schemes depending on link quality measurements
(Ekudden et al., 1999). Another prominent and more
recent example is a technique called adaptive bitrate
streaming (ABS), which is used for video. ABS mea-
sures the available bandwidth and adjusts the bitrate
(and quality) of the video stream accordingly. Insights
into how YouTube is handling this can be found in
(Sieber et al., 2016). NADA (Network-Assisted Dy-
namic Adaptation) is another interesting method since
it integrates implicit and explicit congestion signaling
(Zhu et al., 2013).

Besides adaptive codecs, switching the communi-
cation protocol is another form of adaptivity. This can
be important for both interoperability and optimiza-
tion (using the most appropriate protocol for the cur-
rent network conditions). A relevant, related project is

Application-Layer Protocol Negotiation (ALPN), de-
scribed in (Friedl et al., 2014). It allows for proto-
col negotiation within the TLS handshake. The Ses-
sion Initiation Protocol (SIP), including SDP (Session
Description Protocol) can be seen as another example
(Rosenberg et al., 2002).

2.2 Modularity

Software architecture-wise, the kind of modularity we
were looking for within the TriCePS project could
be denoted as building a “communication abstraction
layer”. The following projects (or parts of projects)
or research have similar goals. One relevant im-
plementation is the GNUnet Transport Service API
(Grothoff, 2017). “GNUnet is an alternative network
stack for building secure, decentralized and privacy-
preserving distributed applications.” At its very bot-
tom, it uses something called the “transport underlay
abstraction” and transport plugins to cope with very
different transport mechanisms. Each transport plu-
gin has to provide the means for addressing other en-
tities and sending and receiving of data. Another rel-
evant project is the Common Communication Inter-
face (Atchley et al., 2011), which has its roots in the
area of high performance computing. It was designed
to provide a common API with support for all major
HPC interconnects. Abstraction is provided by the
concepts of endpoints, connections, active messages
for smaller and remote memory access for larger data
movements. The H2020 NEAT project (Grinnemo
et al., 2016) is also related. NEAT is a user-level
networking API that is agnostic concerning the spe-
cific transport protocol underneath. Hiding those de-
tails can have benefits concerning the technical evo-
lution of transport protocols. Changes can potentially
be made “under the hood” (in the transport protocol),
without causing changes in the interface (leaving the
user-level application as is). In this respect, NEAT
provides very similar abstractions to what Triceps
would require to provide a software interface that is
future-proof. Another interesting project is the IETF
Internet-Draft GEARS, the “Generic and Extensible
Architecture for Protocols”. It is an architectural pro-
posal that adopts a three layered architecture (hard-
ware drivers layer, generic abstract layer, application
protocols layer) and the use of data modelling lan-
guages for the development of new protocols (Zhang
et al., 2015). Last but not least, we found SensiNact
(Gürgen et al., 2016) Bridges to be relevant. Sensi-
Nact is a project under the umbrella of the Eclipse
Foundcation. It provides an open IoT platform for
Smart Cities. SensiNact uses the concept of “bridges”
as an abstraction for the interaction with other entities.
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Southbound bridges are those that are specialized for
the interaction with IoT devices like networked sen-
sors. Northbound bridges are used for managerial
tasks and data distribution and implement protocols
like MQTT or HTTP/REST.

3 SMART CAMERA REFERENCE
SCENARIO

A simple example scenario is presented in Figure 1.
A video camera has a network connection to a re-
mote display. The connection will typically cross the
public internet. Furthermore, it may use wireless ac-
cess technologies which will also contribute to vari-
ations in the quality of the connection. The cam-
era will use the concepts outlined in the following
sections to asses the current network conditions and
adapt its strategy of operation. Please note that with
this use case, we assume that the video is watched
live on the remote display, and therefore, timely play-
back is more important than consistent quality (which
is often the case for monitoring applications). Specif-
ically, the camera will emit high quality, high frame
rate video when the network allows it. When network
utilization is high, the camera will switch to differ-
ent modes of operation, e.g. a lower quality, lower
frame rate video, single images or even textual repre-
sentations generated via feature extraction and recon-
structed at the receiver.

Camera Display
Network Link

Figure 1: Schematic view of camera use case.

4 PIPELINES FOR MODULAR
AND ADAPTIVE
COMMUNICATION
ARCHITECTURES

The pipeline concept helps making networked appli-
cations modular and adaptive. This section describes
our thought process concerning modularity before in-
troducing pipelines as a valuable architectural princi-
ple.

When designing a networked application, engi-
neers have to carefully consider the network-related
abstractions they rely on. The socket API is a well
known abstraction in this context but modern soft-
ware systems frequently use higher-level network-
ing libraries or custom-built networking components.
Future-proof networked systems (which are the aim

of the TriCePS project) have to be able to adapt to new
mechanisms of communication. As a genuine exam-
ple, consider that a security flaw is found in the com-
munication protocol used by your application. You
then need a practical way to update your application.
If not considered from the beginning, such changes
can be difficult to manage. Therefore, we propose a
way of thinking that assumes that all parts of your
mechanisms of communication will be replaced some
day in the future. We will now try to describe this way
of thinking in a more formal manner.

4.1 Problem Formulation

Let’s start with the most simplistic model of commu-
nication possible. Figure 2 depicts the initial situa-
tion. Two communicating applications A and B ex-
change information (that can be thought of as wire
image x1).

A B
x

Figure 2: Two communicating applications (A,B) exchang-
ing wire image x.

If we want to change the way this information is
represented (the data format or encoding), or change
the way this information is encapsulated, protected,
acknowledged, etc. (the protocol), we naturally end
up with a different wire image on the link between A
and B, just as depicted in Figure 3 as y.

A‘ B‘
y

Figure 3: Two modified communicating applications
(A’,B’) exchanging a modified wire image (y).

Depending on the actual change (data format, en-
coding, protocol, etc.) A and B might have to change
too (that is why they are called A’ and B’ now). The
interesting question now is, how to propose generic
architectural guidelines so that the difference between
A and A’ – let’s call this difference ∆A has mini-
mal ”intertwinedness”, or, speaking more in terms of
practical software engineering, has well-designed in-
terfaces and abstractions concerning the mechanisms
of communication.

Since we highly anticipate changes concerning
data formats, encodings or protocols in use (or all or
combinations of them), we very much want to have a
strategic way to minimize the intertwinedness of ∆A.

1The wire image (Trammell and Kuehlewind, 2019) is
the sequence of packets sent by each application as seen on
a fictive point of observation on the path of communication.
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A B
x

p

Figure 4: Two communicating applications exchanging
wire image x via protocol p.

Let us reconsider our initial situation, where we
have A and B that exchange information as wire im-
age x via protocol p (see Figure 4, p is also included
there now). We could then add an additional compo-
nent (we call it a handler, more on that nomenclature
later) d, that exchanges wire image x with A via pro-
tocol p and wire image y with B via protocol q (just
as shown in the Figure 5). The addition of d is trans-
parent to A (it still speaks p and sends/receives x).
This is somewhat similar to what protocol convert-
ers do (there is no robust definition of nomenclature
that is known to us, so the terms protocol converters,
protocol bridges and protocol gateways might all be
used here. What is meant is a technical artefact, ei-
ther software or hardware, that can convert between
two protocols).

A B
x

p
d

y

q

Figure 5: Two communicating applications (A,B) with an
additional handler (d) in between.

The protocols p and q might be identical (if only
the data format has changed, not the protocol) but
x and y will be different in any case (otherwise we
would not need this new handler d in between). Now
comes the conceptual trick: You can think of d as be-
ing embodied in A (in contrary to being an extra com-
ponent), as shown in Figure 6.

A B
x

p
d

y

q

Figure 6: Two communicating applications (A,B), where
one (A) has an additional, embodied handler (d).

There are scenarios where the use of an additional
handler d is not possible. End-to-end encryption be-
tween A and B for example, would make an addi-
tional handler d impossible. If, on the other hand,
d is embodied in A and end-to-end encryption hap-
pens between d and B, you have a design where you
can always modify the embodied handler d (we call
this modified handler d’) in such a way that new re-
quirements from B (e.g. wire image z, protocol r)
are met, while maintaining the original interface to-
wards A (wire image x, protocol p), just as illustrated
in Figure 7. Additional handlers can (and often will)
be stateful and can (and often will) require additional
configuration.

A B
x

p
d‘

z

r

Figure 7: Two communicating applications (A,B), where
one (A) has an additional, embodied handler (d’) that can
communicate with B via a new protocol (r instead of q).

When we design the mechanisms of communica-
tion in our software in a way that allows for the ad-
dition of auxiliary handlers, we have good chances
that future changes can be solved via new or updated
handlers. While we discussed individual handlers in
the current section, we will now introduce pipelines
of handlers.

4.2 Pipelines

The thought model of handlers can help to deter-
mine which parts of your application have to be
designed in a manner that makes them replaceable
but it does not necessarily facilitate the process of
doing so. To achieve this, we borrowed the con-
cept of ”pipelines” from Facebook’s Wangle project2,
which itself adapted this from the Netty (Maurer and
Wolfthal, 2016) project. With pipelines ”the basic
idea is to conzeptualize a networked application as
a series of handlers that sit in a pipeline between a
socket and the application logic”. Figure 8 shows an
application where there is no single additional han-
dler d anymore but a whole pipeline (named PL) of
handlers (h1, h2, h3, ...).

A B
x

p

z

r…

PL

h1 h2 h3

Figure 8: Two applications, one with a pipeline of handlers.

Each handler has a specific duty. For example en-
cryption, framing, compression, character encoding,
etc. The aim of this level of modularity is to keep
the complexity associated with handling the differ-
ent communication mechanisms of a wide range of
entities manageable. The concrete dissection of the
pipeline into individual handlers can of course be a
matter of perspective. What we can highly suggest
is to follow the now classic UNIX maxim of ”do one
thing and do it well”.

2https://github.com/facebook/wangle (accessed January
20, 2020)
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5 REFERENCE
IMPLEMENTATION

The ideas presented in the former chapters were not
born from purely theoretical considerations but from
our practical work on a reference implementation of
a software library. Figure 10 shows a schematic
overview of the library as used by two communicating
applications. It can be interpreted with regard to the
reference scenario from chapter II. Node A and node
B represent two communicating applications. Node A
represents the video camera, while node B represents
the remote display. Node A and B are connected over
the Internet. The video signal captured by A is trans-
mitted to and synchronously displayed by B. Both
nodes A and B use of the software library. Further-
more, a new, third entity (entitled repository) comes
into play, which acts as a library for new and updated
handlers. The business logic of node A feeds video
data (denoted as x) into the pipeline. The pipeline
uses a set of handlers 3 to process the video data ac-
cording to current network conditions (as measured
by the network monitoring module). The pipeline
emits a wire image y (using the protocol p) to the net-
work. Node B receives the data, routes it through all
of its pipeline and finally hands over video data (de-
noted as z) to its very own business logic. Varying
network conditions might require the use of a differ-
ent set of handlers in which case the wire image on
the network link (y) will change while the interfaces
towards the business logic on both nodes will stay the
same.

Sending 

still 

images

Sending 

text

Sending 

video

Congestion

Congestion

persists
Congestion

resolved

Congestion

(still)

resolved

Figure 9: State machine for an adaptive camera.

Figure 9 shows this mechanism as a state ma-
chine. When network conditions are good, high qual-

3It is noteworthy that Figure 10 shows one specific, sim-
plified example of a pipeline setup. The two pipelines in
the example hold the same handlers (h1, h2, h3, h4) for
each node. That is not a requirement. Quite contrary, the
two pipelines could each hold a different set and number of
handlers.

ity video4 will be emitted. When congestion is de-
tected, lower quality still images will be emitted and
when conditions get even worse, a text representation
of the moving parts of the image will be emitted. With
bettering conditions, the same process will happen in
reverse order. The state where video is emitted uses
a pipeline with two handlers (transcode video to tar-
get bandwidth, apply framing), the state where still
images are emitted uses a pipeline with three han-
dlers (downsampling, apply image compression, ap-
ply framing) and the state where text is emitted uses
a pipeline with four handlers (use feature extraction,
filter out irrelevant features, apply run-length encod-
ing, apply framing). While video emission will re-
quire 2000 kbit/s of bandwidth, text will only require
20 kbit/s. This means, that for this example, we can
scale network usage by factor 100, while still provid-
ing relevant information on the display on the receiver
side.

Apart from the concrete example, the library func-
tionality can be described as three modules. The Net-
work Monitoring module continuously monitors the
network flows between A and B and supplies network
metrics to both the library and the business logic. The
Pipeline module glues together the individual han-
dlers. Data flows from the business logic of a node
through all handlers in the pipeline, then through the
network to the opposite node, where all handlers are
traversed in reverse order. Finally, the Protocol Ne-
gotiation module makes sure that the applications use
pipeline setups that are compatible with each other
while also taking care of the process of retrieving new
or updated handlers from the repository.

6 CONCLUSIONS

A pipeline-based design of an application layer com-
munication channel can help with making the mech-
anisms of communication much more adaptable. We
used this approach to develop a framework, software
library and demo application that can switch seam-
lessly between handlers. In contrast to other ap-
proaches, TriCePS integrates short-term (think sec-
onds) and long-term (think years) adaptability and
modularity into one. Pipelines proved to be a valid
conceptual enabler for sound and practical dissection
of networked software into lightweight, exchangeable
components (handlers).

4as provided by (Oh et al., 2011)
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Repository

Business logic A

A

x xy

p

Network Monitoring

Library

Pipeline

h1 h2 h3

Protocol Negotiation

Network Monitoring

Library

Pipeline

h3 h2 h1

Protocol Negotiation

B

h4 h5 h6 h7h1 h2 h3

h4 h4
Business logic B

Figure 10: Schematic overview of the reference implementation and its use by two applications.
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