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Abstract: Defect prediction and estimation techniques play a significant role in software maintenance and evolution. Re-
cently, several research studies proposed just-in-time techniques to predict defective changes. Such prediction
models make the developers check and fix the defects just at the time they are introduced (commit level). Nev-
ertheless, early prediction of defects is still a challenging task that needs to be addressed and can be improved
by getting higher performances. To address this issue this paper proposes an approach exploiting a large set of
features corresponding to source code metrics detected from commits history of software projects. In partic-
ular, the approach uses deep temporal convolutional networks to make the fault prediction. The evaluation is
performed on a large data-set, concerning four well-known open-source projects and shows that, under certain
considerations, the proposed approach has effective defect proneness prediction ability.

1 INTRODUCTION

Software maintenance and evolution are human-based
activities that unavoidably introduce new defects in
the software systems. Test cases (Myers and Sandler,
2004) and code reviews (A. Ackerman and Lewski,
1989) are two traditional techniques to check if per-
formed modifications introduced new defects in the
source code. However, available resources are of-
ten limited and the schedules are very tight. An ef-
ficient alternative way to perform this task is repre-
sented by the adoption of statistical models to predict
the defect-proneness of software artifacts exploiting
information regarding the source code or the develop-
ment process (Pascarella et al., 2019). The existing
techniques evaluate the defectiveness of software ar-
tifacts by performing long-term predictions or just-in-
time (JIT) predictions. The former technique allows
to analyze the information accumulated in previous
software releases and, then, predicting which artifacts
are going to be more prone to defect in future releases.
For instance, Basili et al. investigated the effective-
ness of Object-Oriented metrics (Chidamber and Ke-
merer, 1994; Bernardi and Di Lucca, 2007) in pre-
dicting post-release defects (Basili et al., 1996), while
other approaches consider process metrics (Hassan,

2009; Ardimento et al., 2018). However, the long-
term defect prediction models have limited usefulness
in practice because they do not provide developers
with immediate feedback (Kamei et al., 2013) on the
introduction of defects during the commit of artifacts
on the repository.

JIT technique, instead, overcomes this limitation
exploiting the characteristics of a code-change to per-
form just-in-time predictions.

With respect to other existing JIT defect predic-
tion models (Yang et al., 2015; Kamei et al., 2013;
Hoang et al., 2019) this work explores a deep learning
framework based on temporal convolutional networks
(TCN) to predict in which components code changes
most likely introduce defects. The TCNs are charac-
terized by casualness in the convolution architecture
design and sequence length (Bai et al., 2018). This
makes them particularly suitable to our context where
the causal relationships among the internal quality
metrics evolution and bug presence should be learned.
The proposed approach exploits numerous features
about source code metrics previously detected from
the available sequence of commits. The evaluation
is performed on a large data-set, including 4 open-
source projects. The obtained results are satisfactory.
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The paper is structured as follows. In section 2
some background information is provided. In section
3, a brief discussion of related work is reported. The
proposed approach is described in Section 4 while the
experiment results are discussed in Section 5. Finally,
in Section 7 and 8 respectively, the threats to validity
and the conclusions are reported.

2 BACKGROUND

2.1 Deep Learning Algorithms

The proposed approach is based on the adoption of
Deep Learning (DL) algorithms. DL extends clas-
sical machine learning by adding more complexity
into the model as well as transforming the data us-
ing various functions that allow their representation in
a hierarchical way, through several levels of abstrac-
tion composed of various artificial perceptrons (Deng
et al., 2014; Bernardi et al., 2019). Indeed, DL is
inspired by the way information is processed in bio-
logical nervous systems and their neurons. In particu-
lar, DL approaches are based on deep neural networks
composed of several hidden layers, whose input data
are transformed into a slightly more abstract and com-
posite representation step by step. The layers are or-
ganized as a hierarchy of concepts, usable for pattern
classification, recognition and feature learning.

The training of a DL network resembles that one
of a typical neural network: i) a forward phase, in
which the activation signals of the nodes, usually trig-
gered by non-linear functions in DL, are propagated
from the input to the output layer, and ii) a backward
phase, where the weights and biases are modified (if
necessary) to improve the overall performance of the
network.

DL is capable to solve complex problems particu-
larly well and fast by employing black-box models
that can increase the overall performance (i.e., in-
crease the accuracy or reduce error rate). Because
of this, DL is getting more and more widespread, es-
pecially in the fields of computer vision, natural lan-
guage processing, speech recognition, health, audio
recognition, social network filtering and moderation,
recommender systems and machine translation.

3 RELATED WORK

Several recent studies have focused on applying deep-
learning techniques to perform defect prediction. In
(Yang et al., 2015), the authors proposed the usage of

a deep-learning approach called Deep Brief Network
(DBN). They mainly used the original DBN as an
unsupervised feature learning method to preserve as
many characteristics of the original feature as possible
while reducing the feature dimensions. The authors
evaluate the proposed approach on data of 6 large
open-source software projects achieving an average
recall of 69% and an average F1-score of 45%. In
(Phan et al., 2018), the authors proposed a prediction
model by applying graph-based convolutional neural
networks over control flow graphs (CFGs) of binary
codes. Since the CFGs are built from the assembly
code after compiling its source code, this model ap-
plies only to compilable source code. Some studies
(Wang et al., 2016) have used existing deep learn-
ing models, such as DBN and long short-term mem-
ory, to extract features directly from the source code
of the projects. In (Xu et al., 2019) authors used
a deep neural network with a new hybrid loss func-
tion to train a DNN to learn top-level feature repre-
sentation. They conduct extensive experiments on a
benchmark data-set with 27 defect data. The experi-
mental results demonstrate the superiority of the pro-
posed approach in detecting defective modules when
compared with 27 baseline methods. In (Manjula
and Florence, 2019), the authors proposed a feature
optimization model using a genetic algorithm to se-
lect a feature subset used, then, as the input of a
DNN. They carried out an empirical investigation on
five projects belonging to the well-known PROMISE
data-set. They obtained an accuracy value of 98%,
that is, to the best of our knowledge, the best result
known in the literature. Anyway, the limit of this
study is that it is not possible to explore the source
code and the contextual data are not comprehensive
(e.g., no data on maturity are available). Moreover,
in some cases, it is not possible to identify if any
changes have been made to the extraction and com-
putation mechanisms over time. Concerning the de-
scribed approach, our study proposes a JIT software
prediction technique. As mentioned in Section 1, JIT
permits the developers to check and fix the defects
just at the time they are introduced achieving the fol-
lowing advantages:

• large effort savings, over coarser-grained predic-
tions, thanks to identification the defect-inducing
changes that are mapped to smaller areas of the
code;

• immediate and exact knowledge of the developer
who committed the changes;

• freshness of the design decisions made by the de-
velopers.
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Recently research on JIT techniques applied to soft-
ware defect prediction (SDP) has increased rapidly.
The study reported in (Kamei et al., 2013) proposes
a prediction model based on JIT quality assurance to
identify the defect-inducing changes. Later on, the
authors also evaluated how JIT models perform in
the context of cross-project defect prediction (Kamei
et al., 2016). Their main findings report good ac-
curacy for the models in terms of both precision
and recall but also for reduced inspection effort. In
2015, Yang et al. (Yang et al., 2015) proposed the
use of a deep-learning approach for JIT defect pre-
diction obtaining better performance for average re-
call and F1-score metrics. Later, Yang et al. (Yang
et al., 2016a) compared simple unsupervised models
with supervised models for effort-aware JIT-SDP and
found that many unsupervised models outperform the
state-of-the-art supervised models. In (Yang et al.,
2017) Yang et al. uses a combination of data prepro-
cessing and a two-layer ensemble of decision trees.
The first layer uses bagging to form multiple random
forests while the second layer stacks the forests to-
gether with equal weights. Afterward, this study was
replicated in (Young et al., 2018) where authors ap-
plied a new deep ensemble approach assessing the
depth of the original study and achieving statistically
significantly better results than the original approach
on five of the six projects for predicting defects (mea-
sured by F1 score). Chen et al. (Chen et al., 2018)
proposed a novel supervised learning method, which
applied a multi-objective optimization algorithm to
SDP. Experimental results, carried out on six open-
source projects, show that the proposed method is su-
perior to 43 state-of-the-art prediction models. They
found, for example, that the proposed method can
identify 73% buggy changes on average when using
only 20% efforts (i.e., time for designing test cases or
conducting rigorous code inspection). Pascarella et al.
(Pascarella et al., 2019) proposed a fine-grained pre-
diction model to predict the specific files, contained
in a commit, that are defective. They carried out an
empirical investigation on ten open-source projects
discovering that 43% defective commits are mixed
by buggy and clean resources, and their method can
obtain 82% AUC-ROC to detect defective files in a
commit. Hoang et al. (Hoang et al., 2019) pro-
posed a prediction model built on Convolutional Neu-
ral Network, whose features were extracted from both
commit messages and code changes. Empirical re-
sults show that the best variant of the proposed model
achieves improvements in terms of the Area Under the
Curve (AUC), from about 10.00% to about 12.00%,
compared with the existing results in the literature.
Finally, Cabral et al. (Cabral et al., 2019) conducted

the first work to investigate class imbalance evolution
in JIT SDP founding that this technique suffers from
class imbalance evolution.

Concerning the above discussed JIT methods, our
approach proposes a new classification method based
on TCNs. Our main assumption is that the TCNs
are particularly suitable in the JIT-SDP problem that
is characterized by a huge amount of data (extracted
at the commit level) organized as multivariate time-
series.

4 APPROACH

In this section, we describe the approach used to pre-
dict the defect prone system classes using the metrics
model. The approach consists of two essential ele-
ments: i) the feature model, ii) and the TCN classifier.
In the following subsections, these two components
are thoroughly detailed and explained.

4.1 The Proposed Features Model

The proposed features model is reported in Table 1.
The table shows the list of the adopted features (i.e.,
internal quality source code metrics from CK (Chi-
damber and Kemerer, 1994) and MOOD (Brito e
Abreu and Melo, 1996) suites) and their correspond-
ing description.
Figure 1-(a) depicts the tool-chain used for the fea-
tures extraction.

In the Commits/Bugs analysis all the commits log
messages have been analyzed and parsed to extract
the description of the changes performed on the files
of the code repository. The information about the
commits’ log messages is extracted by the GIT repos-
itory searching for bug identifiers. The information
about the bugs is gathered by the bug tracking system
(BTS).

In detail, to evaluate the number of commits and
bugs for each class we build the log from the BTS
repository and extract, for each commit, the files
changed, the commit ID, the commit timestamp, the
commit parent, the total number and the names of files
changed, the commit note. With this information, we
can identify fix-inducing changes using an approach
inspired by the work of Fischer (Fischer et al., 2003),
i.e., we select changes with the commit note matching
a pattern such as a bug ID, issue ID, or similar, where
ID is a registered issue in the BTS of the project.
Hence the ID acts as a traceability link between the
GIT repository and BTS repository. Then the issue
type attribute is used to classify the issues and to se-
lect only bug fixes discarding any other different kinds
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Table 1: Source Code Quality Metrics used in the Features Model.

Source Code Metrics Description
Number of Attributes Defined (Ad) Attributes defined within class
Number of Attributes Inherited (Ai) Attributes inherited but not overridden
Number of Attributes Inherited Total (Ait) Attributes inherited overall

Number of Attributes Overidden (Ao) Attributes in class that override an
otherwise-inherited attributes

Number of Public Attributes Defined (Av) Number of defined attributes that are pub-
lic

Class Relative System Complexity (ClRCi) avg(Ci) over all methods in class
Class Total System Complexity (ClTCi) sum(Ci) over all methods in class

Depth of Inheritance Tree (DIT) The maximum depth of the inheritance hi-
erarchy for a class

Number of Hidden Methods Defined (HMd) Number of defined methods that are non-
public

Number of Hidden Methods Inherited (HMi) Number of inherited (but not overridden)
methods that are non-public

Method Hiding Factor (MHF) PMd / Md
Inheritance Factor (MIF) Mi / Ma

Number of Methods (All) (Ma)
Methods that can be invoked on a class (in-
herited, overridden, defined). Ma = Md +
Mi

Number of Methods Defined (Md) Methods defined within class
Number of Methods Inherited (Mi) Methods inherited but not overridden
Number of Methods Inherited Total (Mit) Methods inherited overall

Number of Methods Overidden (Mo) Methods in class that override an
otherwise-inherited method

Number of Attributes (NF) The number of fields/attributes
Number of Methods (NM) The number of methods

Number of Methods Added to Inh. (NMA) The number of methods a class inherits
adds to the inheritance hierarchy

Number of Inherited Methods (NMI) The number of methods a class inherits
from parent classes

Number of Ancestors (NOA) Total number of classes that have this class
as a descendant

Number of Children (NOCh) Number of classes that directly extend this
class

Number of Descendants (NOD) Total number of classes that have this class
as an ancestor

Number of Links (NOL) Number of links between a class and all
others

Number of Parents (NOPa) Number of classes that this class directly
extends

Number of Public Attributes (NPF) The number of public attributes
Number of Static Attributes (NSF) The number of static attributes
Number of Static Methods (NSM) The number of static methods
Number of Public Methods Defined (PMd) Number of defined methods that are public

Raw Total Lines of Code (RTLOC) The actual number of lines of code in a
class

Specialization Index (SIX) How specialized a class is, defined as (DIT
* NORM) / NOM;

Total Lines of Code (TLOC) The total number of lines of code, ignoring
comments, whitespace.

Weighed Methods per Class (WMC) The sum of all of the cyclomatic complexi-
ties of all methods on a class
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Figure 1: Overall process and classifier architecture.

of issues (e.g., improvement, enhancements, feature
additions, and refactoring tasks). This is needed to
identify, for each class, only the issues that were re-
lated to bug fixes, since we use them to tag faulty re-
visions of each class. Finally, we only consider issues
having the status CLOSED and the resolution DONE
since their changes must be committed in the reposi-
tory and applied to the components in the context of
a commit. This allows identifying bugged classes for
each commit in the GIT repository. At the same time,
the source code at each commit has been downloaded
and analyzed for evaluating the internal quality met-
rics of Table 1 over time. To this aim, several tools
for metrics calculation have been exploited (Hilton,
2020; Aniche, 2015; Spinellis, 2005). Finally, as de-
picted in Figure 1-(b) the metrics and the bugs data,
evaluated at each commit, are merged into a unified
training and testing dataset. During this step, the raw
data-set is also cleaned by removing incomplete and
wrong samples and normalizing the attributes (min-
max normalization). The final dataset, for each class
of the system, contains the evolution, by commits, of
the calculated metrics integrated with bug presence

information.

4.2 The Temporal Convolution Network
Classifier

The classifier architecture is shown in Figure 1-(c).
The convolutional operations in the TCN architec-

ture are discussed in (Bai et al., 2018). Specifically,
the TCN network exploits a 1D FCN (fully convolu-
tional network) and padding to enforce layer length
coherence. The architecture applies causal convolu-
tions to ensure that when evaluating the output at cur-
rent time t only current and past samples are consid-
ered. The dilated convolutions specify a dilation fac-
tor fd among each pair of neighboring filters. The
factor fd grows exponentially with the layer number.
If the kernel filter size is kl , the effective history at the
lower layer is (kl−1)∗d, still growing exponentially
by network depth.

For classification, the last sequential activation of
the last layer is exploited since it summarizes the in-
formation extracted from the complete sequence in
input into a single vector. Since this representation
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may be too reductive for the intricate relationships
(as those present in bugs and internal quality metrics
multivariate time-series), we added a hierarchical at-
tention mechanism across network layers inspired by
(Yang et al., 2016b). As shown in Figure 1-(c), if the
TCN has n hidden layers, Li is a matrix comprised
of the convolutional activations at each layer i (with
i = 0,1, . . . ,n) defined as:

Li = [li
0, l

i
1, ..., l

i
T ],Li ∈ RK×T ,

where K is the number of filters present in each layer.
Hence layer attention weight lai ∈ R1×T can be eval-
uated as:

lai = so f tmax(tanh(wT
i Li))

where wi ∈ RK×1 are trainable parameter vectors. The
combination of convolutional activations for layer i
is calculated as ai = a f (Hiα

T
i ) where ai ∈ RK×1 and

a f is an activation function (we experimented with
ReLU, Mish and Swish). At the output of the hidden-
level attention layers, the convolutional activations
A = [a0,a1, ...,ai, ...,an] (with A ∈ RK×n) are used to
calculate the last sequence representation to perform
the final classification:

α = so f tmax(tanh(wT A))

y = a f (Aα
T )

where w ∈ RK×1,α ∈ R1×K ,y ∈ RK×1.
The considered architecture can be instantiated

with a variable number of hidden layers where each
hidden layer is the same length as the input layer.

Referring to Figure 1-(c), we exploited the follow-
ing three types of layers:

• Input Layer: it represents the entry point of the
considered neural network, and it is composed of
a node for each set of features considered at a
given time;

• Hidden Layers: they are made of artificial neu-
rons, the so-called “perceptrons”. The output of
each neuron is computed as a weighted sum of its
inputs and passed through an activation function
(i.e., mish, swish, and ReLu) or a soft-plus func-
tion.

• Attention Layers: allows modeling of relation-
ships regardless of their distance in both the input
and output sequences.

• Batch Normalization: Batch normalization is
added to improve the training of deep feed-
forward neural networks as discussed in (Ioffe and
Szegedy, 2015).

• Output Layer: this layer produces the requested
output.

The TCN training is performed by defining a set of
labeled traces T = (M, l), where each of the M rows
is an instance associated with a binary label l, which
specifies if a class is bugged or not as exemplified in
Figure 1-(c). For each of the M instances, the process
computes a feature vector Vf submitted to the classi-
fier in the training phase. In order to perform valida-
tion during the training step, 10-fold cross-validation
is used (Stone, 1974). The trained classifier is as-
sessed using the real data contained in the test set
made of classes (and hence bugs) that classifier has
never seen.

During the training step, different parameters of
the architecture are tested (i.e., number of layers,
batch size, optimization algorithm, and activation
functions) in order to achieve the best possible per-
formance as further detailed in the next section.

The considered TCNs architecture was trained by
using cross-entropy (Mannor et al., 2005) as a loss
function, whose optimization is achieved by means of
stochastic gradient descent (SGD) technique. Specifi-
cally, we adopted a momentum of 0.09 and a fixed de-
cay of 1e−6. To improve learning performances, SGD
has been configured into all experiments with Nes-
terov accelerated gradient (NAG) correction to avoid
excessive changes in the parameter space, as specified
in (Sutskever et al., 2013).

5 EXPERIMENT DESCRIPTION

The experimentation is conducted by using the feature
model and the TCN classifier described in Section 4.

Specifically, the tool-chain described in Figure 1
is applied to four different Java open-source projects.
The projects are selected by considering the neces-
sity to generalize the obtained results. However, as
discusses in (Hall et al., 2012), the data-sets, used in
the empirical investigation strongly affect prediction
performance. For this reason, the selected projects
differ for their application domain, size, number of
revisions. Table 2 describes their characteristics: the
total number of commits analyzed for each project,
the total number of bugs fixed and detected for each
project, the analyzed period represented by the date
of the first and the last commit detected.

All the projects in the table, have an available Git
repository that is active and contains more than one
release. Finally, the considered systems are also used
in other studies allowing to easily evaluate and com-
pare the obtained results.

The assessment is conducted by identifying the
best parameters reported in Table 3 found us-
ing a Sequential Bayesian Model-based Optimiza-
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Table 2: Analysed Software Systems.

System Commits Bugs Period
Log4j 3275 647 2001-02-28/2015-06-04

Javassist 888 260 2004-07-08/2019-10-14
JUnit4 2397 153 2001-04-01/2019-04-03

ZooKeeper 1939 1787 2008-06-24/2019-10-10

tion (SBMO) approach implemented using the Tree
Parzen Estimator (TPE) algorithm as defined in
(Bergstra et al., 2011).

The parameters reported in the table are the fol-
lowing:

• Network Size: we considered two levels of net-
work sizes (small, medium), depending on the ac-
tual number of layers. A small size consists of a
maximum of 1.5 mln of learning parameters. The
medium size is composed of a number of param-
eters between 1.5 mln and 7 mln;

• Activation Function: we tested three different ac-
tivations functions: Swish and Mish (Ramachan-
dran et al., 2017) in addition to the well-known
ReLu;

• Learning Rate: it ranges from 0.09 to 0.1;

• Number of Layers: the numbers of considered
layers is 6,7,9;

• Batch Size: batch size belongs to the set
{64,128,264} and is handled, for a multi-GPU
system, as suggested in (Koliousis et al., 2019);

• Optimization Algorithm: we tested the Stochas-
tic Gradient Descent (SGD) (Schaul et al., 2013),
RmsProp (Wang et al., 2019), Nadam (Wang
et al., 2019).

• Dropout rate: it is fixed to 0.15.

The experiments run on the TensorFlow 2.1 deep
learning platform and used PyTorch 1.4 as a machine
learning library. The hardware environment of the
platform is a workstation with one dual-core micro-
processor: two Intel (R) Core (TM) i9 CPU 4.30 GHZ
64GB of RAM, one equipped with NVIDIA Tesla T4
AI Inferencing GPU and the other with Nvidia Titan
Xp.

6 DISCUSSION OF RESULTS

The plot depicted in Figure 2 shows the distribution
of (a) accuracy and (b) F-measure over the hyper-
parameters configurations. As the figure shows, the
worst results are obtained for projects having a lower
number of detected bug (e.g. Javassist and JUnit4),
while satisfactory results are obtained considering

data-set with a large number of detected bugs (e.g.,
Log4J and Zookeeper). The parameters permutations
providing the best accuracy and F-measure by the
project are listed in Table 4. Most of the models be-
have consistently and there are quite small differences
among networks with six and seven layers. It’s also
interesting to observe that there is a small set of mod-
els that are not able to learn from the data and looking
carefully at those models they fall into two categories:
(i) models with more than nine layers and medium
sizes; (ii) models trained with learning rates higher
than 0.015. For the first case increasing the dataset is
needed and it is likely to improve final performances.

Configurations
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Configurations

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68

F1-Junit F1-JavaAssist F1-Log4J F1-Zookeper

(b)

Figure 2: Scatter plots of distributions of accuracy (a) and
F-measure (b) for each model configuration comparing ob-
tained results on the four analyzed systems.
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Table 3: Hyper-parameters Optimization and selected ranges.

Hyperparameters Ranges
Network size Small, Medium
Activation Function (AF) Mish, ReLu, Swish
Learning Rate (LR) [0.09, 0.12]
Number of layers { 6, 7, 8, 9 }
Batch size { 64, 128, 256 }
Optimization Algorithm (OA) SGD, Nadam, RMSprop

Table 4: Permutations providing the best validation accuracy for each project.

Project AF LR No.
Layers

Batch
size OA Dropout

Rate Accuracy Loss F1 Training
Time (sec)

Log4j mish 9 7 64 SGD 0.15 0.996 0.0512 0.81 10275.51
Javassist mish 9 6 64 SGD 0.15 0.822 0.1770 0.72 2791.87s
JUnit4 mish 9 8 64 Nadam 0.15 0.916 0.0597 0.65 4534.22s
ZooKeeper ReLu 9 6 64 SGD 0.15 0.997 0.0002 0.87 6159.53

7 THREATS TO VALIDITY

In this section, the threats to the validity of the re-
search proposed are discussed.

Construct Validity: A threat to construct valid-
ity concerns with the source code measurements per-
formed. To mitigate this threat, we used three publicly
available tools (Hilton, 2020; Aniche, 2015; Spinellis,
2005). We decided to use more than one tool to check,
whenever possible if the measures obtained from one
tool are the same calculated by the other ones. More-
over, the fact that both the tools and the OSSs are pub-
licly available makes possible to replicate the mea-
surement task in other studies. Another threat con-
cerns with the class imbalance problem often encoun-
tered in SDP. In order to ensure that the results would
not have been biased by confounding effects of data
unbalance we adopted the SMOTE technique as de-
scribed in (Chawla et al., 2002).

Internal Validity: Threat to internal validity con-
cerns whether the results in our study correctly follow
from our data. Particularly, whether the metrics are
meaningful to our conclusions and whether the mea-
surements are adequate. To this aim, an accurate pro-
cess for the data gathering has been performed.

External Validity: Threat to external validity con-
cerns the generalization of obtained results. To mit-
igate this threat, in our investigation we considered
well-known OSS systems that are continuously evolv-
ing and different for dimensions, domain, size, time-
frame, and the number of commits. However, our re-
sults can not be generalized to commercial systems
due to the existing differences between OSS systems
and commercial systems such as the nature of re-

ported defects. In OSS systems, defects can be re-
ported by customers, for stable releases, and by de-
velopers during development activities. In commer-
cial projects, instead, the defects modeled and there-
fore studied are only those reported by customers for
released versions. Moreover, we limited our inves-
tigation to Java systems because the tools exploited
to compute the considered metrics only work for this
programming language. Thus, we cannot claim gen-
eralization concerning systems written in different
languages as well as to projects belonging to indus-
trial environments.

8 CONCLUSIONS AND FUTURE
WORK

In this work, we defined a deep learning approach
based on temporal convolutional networks for just-in-
time defect prediction. To predict changes that will
introduce software defects, we used a fine-grained
quality metrics features model. The approach exploits
a large data-set, from four open-source projects, with
the assessment of 33 class level source code metrics
detected commit by commit. The evaluation carried
out shows that the predictions performed with our
approach are satisfactory and the accuracy obtained
is greater than the 0.90 in most cases, achieving the
0.99 value in the case of the ZooKeeper and Log4J
projects. To our knowledge, it is the best result in re-
lated literature. However, a limit of our work is that
our model, like all prediction models, requires a large
amount of historical data to train a model that will per-
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form well. In practice, training data may not be avail-
able for projects in the initial development phases, or
for legacy systems that do not have archived histor-
ical data. For this reason, in the future, we plan to
apply our approach in a cross-project context, where
models can be trained using historical data from other
projects. Moreover, we intend to extend the set of
metrics considered as features also including process
metrics. Finally, we plan to evaluate the effectiveness
of our model in-field, through a controlled study with
practitioners to make defect prediction more action-
able in practice and support in real-time development
activities, such as code writing and code inspections.
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