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Although there are many classification approaches in IMU-based Human Activity Recognition, they are in
general not explicitly designed to consider the particular nature of human actions. These actions may be
extremely complex and subtle and the performance of such approaches may degrade significantly in such
scenarios. However, techniques like Hidden Markov Models (HMMs) have shown promising performance
on this task, due to their ability to model the dynamics of such activities. In this work, we propose a novel
classification technique for human activity recognition. Our technique involves the use of HMMs to char-
acterize samples and subsequent classification based on the dissimilarity between HMMs generated from
unseen samples and previously-generated HMMs from training/template samples. We apply our method to
two publicly-available activity recognition datasets and also compare it against an extant approach utilizing
feature extraction and another technique utilizing a deep Long Short-Term Memory (LSTM) classifier. Our
experimental results indicate that our proposed method outperforms both of these baselines in terms of several

standard metrics.

1 INTRODUCTION

Microprocessor and integrated circuit technology
have been advanced in leaps and bounds. As such,
they have allowed for the production of large numbers
of sensors and mobile electronic devices with greater
processing capacities and smaller dimensions at ex-
tremely low cost. As a result, sensor-driven solutions
running on mobile devices for smart homes( (Mo-
hammed and Gomaa, 2016), (Mohammed and Go-
maa, 2017)), activity tracking, elderly care, and sports
evaluations, etc. have come to play a significant role
in everyday life. Wearable sensor-based Human Ac-
tivity Recognition (HAR) is increasingly common for
small scale, flexible use and protection of privacy dif-
ferent from any other kind of data acquisition de-
vice (Ashry et al., 2018), (Elbasiony and Gomaa,
2019). Nowadays, smartwatches (Ashry et al., 2020),
smartphones have multiple accurate sensors to help
people better, making them prime candidates for hu-
man activity monitoring.

Apps for smartphones and wearable sensors are
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capable of differentiating between very distinct physi-
cal activities, such as walking and sitting. In addition,
previous research could successfully classify complex
behaviors such as cooking and washing, which occur
by several sensors (Kabir et al., 2016), (Ashry and
Gomaa, 2019). However, there is an inherent ambi-
guity in many day-to-day human actions which are
composed of fine movements, which pose recognition
problems for activity recognition approaches. To the
best of our knowledge, studies are limited in terms of
more nuanced discrimination, (e.g. between get up
or lie down on bed), with just a few sensors. Such
precise activities can be difficult to discern because
they require a physical position (stand, sit) and the
use of hands to execute or communicate with a par-
ticular object. They can also be described as being
“detailed” because, compared to other (whole-body)
activities, these involve a broader range of simulta-
neous yet subtle movements. In this vein, several
machine learning and biomedical disciplines could
benefit from the recognition of detailed activities, in-
cluding health care, monitoring of the elderly and
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lifestyle. This research is therefore focused on the
design of a new method for the recognition and mon-
itoring of detailed human activities, using a combi-
nation of multiple HMMs and dissimilarity measures.
Such research requires the classification of different
detailed behaviors. It is our belief that a more accu-
rate view of a subject’s health and lifestyle may be
provided through more accurate/precise human activ-
ity monitoring.

The contributions from this article are as follows:

1) We propose a composite recognition model
called multiple HAR-HMM, comprising of individual
HMM models per sensor axis per activity. In contrast
to previous works, single HMM models are built for
each activity to be recognized. Then for a given sam-
ple, it calculates the probability of the sample origi-
nating from each activity model and chooses the ac-
tivity with the largest probability as the recognition
result.

2) We provide detailed experimental tests and
analyses on the performance of the proposed multiple
HAR-HMM model. The results suggest that the
proposed technique is more reliable in precision,
recall, and F-metric compared with the recent study
on the same datasets (Gomaa et al., 2017).

The paper is organized as follows. Section 1 in-
troduces the work and its motivations. Section 2
presents a survey of related work. Section 3 presents
the methodology of the multiple HAR-HMM model.
Section 4 discusses the evaluation of the proposed
model. Section 5 concludes the paper.

2 RELATED WORK

2.1 HAR in Literature

In recent years, many studies have addressed the
problem of HAR from different perspectives (Abdu-
Aguye and Gomaa, 2019), (Abdu-Aguye and Gomaa,
2018), (Abdu-Aguye et al., 2019), (Abdu-Aguye and
Gomaa, 2019a), (Abdu-Aguye and Gomaa, 2019b),
(Abdu-Aguye et al., 2020a), and (Abdu-Aguye et al.,
2020b). The challenge associated with HAR is re-
lated to the amount of activities of interest and their
characteristics. Lara et al. (Lara and Labrador, 2012)
states that the complexity of the pattern recognition
problem is determined by the set of activities selected.
Also, short tasks, including opening a door or select-
ing an object, can be done in a wide variety of ways,
which increases with the consideration of different
users (Kreil et al., 2014).

For physical activity recognition, like walking and
standing, a high degree of precision is achieved with
smartphones, attributable mostly to the accelerome-
ter (Machado et al., 2015). However, other techniques
must be reckoned, for recognizing complicated activ-
ities, with similar body movements, such as opening
a door and opening a faucet. They considered com-
plex because they almost haven’t repetitive patterns
like walking, etc. Earlier studies used sound to dis-
criminate activities (Feng et al., 2016). A greater
degree of discrimination may be accomplished by in-
corporating information from many sensors.

Since it is possible to consume the temporal data
structure from the Hidden Markov Model (HMM),
it became an effective classification technique (Cilla
et al., 2009). Some video recognition systems mo-
tivated the option of multiple HMMs, one per activ-
ity (Gaikwad, 2012); (Karaman et al., 2014). By hav-
ing one model per activity, some time periods could
be ignored in continuous stream analysis. Also, at any
moment, new activities could be added to the classifi-
cation, allowing them to personalize this tool. In ad-
dition, temporal sequences, including daily routines,
maybe studied without a wide training set.

In summary, several studies have discussed the
challenge of human activities from machine vision
to ubiquitous sensing. However, there is a lack of
prior studies when it comes to short detailed activ-
ities. In literature, there is very little evidence of
these practices, so this study is an experiment in a
poorly explored field of HAR. The classifier chosen
is based on many HMMs and the smartwatch is a way
to tackle these activities. Its recognition could expand
the range of Activities of Daily Living (ADL) and en-
hance the current HAR systems.

2.2 Used Sensors

The number of sensors and their positions is very im-
portant parameters for the design of any sensor-based
activity recognition device. In respect of positions of
sensors, different parts of the body were selected from
feet to shoulders. The locations selected are chosen
based on the respective activities. For instance, ambu-
lation activities (such as walking, jumping, running,
etc.) were recognized using a waist or a chest sen-
sor (Khan et al., 2010). Whereas, non-ambulation ac-
tivities (such as combing hair, brushing teeth, eating,
etc.) can be classified more effectively using a wrist-
worn sensor (Bruno et al., 2013).

The related systems also required obtrusive sen-
sors linked by wired links on the throat, chest, neck,
thigh, and ankle. It restricts the freedom of human ac-
tivity, also obtrusive sensors are not suitable for med-
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ical purposes involving elderly or patients with heart
disease. In addition, under regulated conditions, some
datasets were obtained and a limited number of ac-
tivities were classified. Such disadvantages are ad-
dressed by using a smartwatch on users’ wrist and
building wide activities in a dataset without oversight
under practical conditions as EJUST-ADL-1 dataset
collected by our CPS lab.

3 PROPOSED MODEL

3.1 Overview of Proposed Method

In the current work, we represent the framework of
this study as shown in Fig 1. we consider all (Iner-
tial Measurement Units) IMU sensors modalities of
the smartwatch; especially the accelerometer and gy-
roscope. This choice is motivated by their ubiquity
in virtually all activity recognition datasets, therefore
permitting the widespread use of our proposed tech-
nique.

For ease of exposition, we describe the proposed
technique subsequently using six time-series: three
from the triaxial accelerometer and three from the tri-
axial gyroscope. When deriving the experimental re-
sults (discussed in Section 4.3), we used all the time
series available from all the IMU sensors in the cho-
sen dataset(s). However, the proposed technique may
be applied in either scenario without a loss of gener-
ality.

We begin by denoting some activity as 4. Then,
each sample of 4, sam is a six-tuple of timeseries raw
data, namely,

sam = (aX7ay7aZ7gX7gyagZ) (1)

where the first three components correspond to the 3
axes of the accelerometer raw data and the last three
correspond to the 3 axes of the gyroscope raw data.
Each of these components is then used to train a Hid-
den Markov Model (HMM) that represents the dy-
namics of the activity in some direction/axis of some
sensor modality. Hence, the sample sam is converted
to a tuple of HMMs representing that particular sam-
ple:

Hsam = (ha)C 5 ha)- P haz ) hgx ’ hg)- ) hgz) (2)

Subsequently, the HMMs of the samples of activity
A, {Hsam}samea are randomly partitioned into two
sets. The first set is called prototypes(A4), and it is
a collection of tuples of HMMs corresponding to a
randomly selected subset of the given samples of 4.
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These represent templates/prototypes of the activity
A. The complementary set of samples (and their cor-
responding HMMs) are used for test purposes. For
reference, the G-HMMs Training module in Figure 1
is responsible for creating and maintaining the set of
prototype HMMs as described.

The exact process of sample classification is de-
scribed as follows. For reference, these operations are
carried out within the G-HMMs Classification mod-
ule in Figure 1. Given a test sample of 6 timeseries
(tri-axial accelerometer and tri-axial gyroscope) s =
(ax,ay,az, gx, 8y, 8z), we then classify s as belonging
to one of the ADL activities using the following pro-
cedure:

1. Derive a tuple of HMMs for the given test
sample s, each one corresponding to one axis
of the sample. Let these models be: H; =
(hy,, oy b s g s g hy._). We describe the partic-
ulars of the HMMs in more detail in Section 4.

2. For each activity A4 € ADL, and for each prototype
sample s’ € prototype(A), do the following:

* Compute the dissimilarity measure between the
HMM tuple H and the HMM tuple Hy, call it
d(H,,Hy). The exact method by which this is
done will be discussed subsequently.

3. From the previous step, we obtain a set of
dissimilarity scores, one per prototype sample
and HMM. Using these scores {d(H,,Hy): s' €
prototype(A4)}, calculate one score D(s,4) that
indicates the overall dissimilarity of the test sam-
ple s to activity 4. We also discuss how D(s, 4)
is computed below.

4. Using the computed set of dissimilarity scores
{D(s,A): A € ADL}, identify the most likely ac-
tivity to generate the test sample s based on the
following criterion:

A* = argmingeaprD(s, A) 3)
3.2 Inter-sample Dissimilarity

We will now describe the exact manner in which
the dissimilarity score between individual samples i.e
d(H,,Hy) is computed. Given two HMMs £ and
hy, we use the Kullback-Leibler divergence (KLD) as
a base to measure the dissimilarity between the two
models (Sahraeian and Yoon, 2011). The KLD mea-
sures the dissimilarity between two probability den-
sity functions as p and ¢ as follows:
p(x)

Dki(pllq) = / p(x)log @dx )
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Figure 1: Framework of the proposed model. A* represents the training/prototype samples across all the considered activities.
N is the total number of Hidden Markov Models obtained per-axis across the prototype samples. 7S1 - T'Sn represent the
per-axis signals for an unseen sample. T is the number of Hidden Markov Models derived from 7'S1-7'Sn which are then

compared against the N prototype HMMs to classify the sample.

Typically, no closed-form solution exists for such
an integration for probability distributions repre-
sented by Hidden Markov Models, so Juang and Ra-
biner (Juang and Rabiner, 1985) proposed a Monte-
Carlo approximation to this integral for comparing
two HMMs (Sahraeian and Yoon, 2011) using a se-
quence of observed symbols. Assume /| and /iy are
two HMMs and assume O = 01, ...,07 is an observa-
tion sequence of length 7', then the KL-dissimilarity
between h; and Ay can be approximated by the fol-
lowing formula:

Dia(n || ) % . (log P(OJhr) ~logP(O]R2)) (5
In this context the observation sequence O corre-
sponds to some timeseries ts of a sensor in a cer-
tain axial direction. As can be seen from (5), KL-
divergence is an asymmetric measure. To allow for
more natural (i.e commutative) comparison between
samples, we derive a symmetric form of the KL-
measure as:

D;g?m _ DKL(hl H h2> ;—DKL(hZ H hl) (6)

Therefore, given two timeseries 751 and ts, represent-
ing two samples of measurements of some sensor in a
particular axial direction (for example, two samples of
x-axis of the accelerometer) of two activities (which
could be different or the same activity), we compute
the dissimilarity score between ts| and zs, as follows:

1. Let h; be the HMM model built from timeseries
1s].

2. Let hy be the HMM model built from timeseries
1sy.

3. Compute the log-likelihoods logP(tsy|hy),
log P(ts1|hy), log P(ts2|h1 ), and log P(ts2 |h2).

4. Compute the KL-divergence Dk (hy || i) as fol-
lows:

1
Dgr(h || ha) = st] (log P(ts1|h1) — log P(ts1|h2))
’ 7

where |rs;| is the length of the timeseries #s.

5. Compute the KL-divergence Dk (hy || hy) as fol-
lows:

1
Dgr(hy || h1) = ] (log P(tsz|hy) — log P(ts2|hy))
®)

where |r5| is the length of the timeseries ts5.

6. Compute the symmetric KL-divergence between
hy and h; as in (6).

7. This last quantity represents the dissimilarity
score between the timeseries ts; and ¢5s5.

Given two tuples of timeseries corresponding to sen-
sor measurements TS = (£Sqx,Say; ! Saz,Sgx; [Sgy,1Sg2)
and TS = (17,180,157, 1S5y, 1Sgy,15y,), We need to
compute the dissimilarity measure between these two
samples. To do this, we develop the HMM mod-
els corresponding to these tuples (12 in total, 6 per

sample): Hrs = (hax, hay, Raz, gy, gy, hg;) and Hyg =
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Figure 2: Figures showing some activities from the E-JUST-
ADLI1 dataset (left) and sensor placement from the USC-
HAD dataset (right).

(P Py s Mgy Mgy oy Py ). We uise the symmetric K-
divergence ((6)) to find the dissimilarity measure be-
tween every pair of corresponding HMMs in the two
tuples. Then, these dissimilarity scores along the dif-
ferent axes of the two sensors (accelerometer and gy-
roscope) are combined together using summation to
produce a single dissimilarity score between the two

measurement tuples 7S and T'S":

d(TS,TS) =Di;" (hax || ha) + DR (hay || hoy)+
Dip" (hae || ) +Digp " (g || )+

D}?i"m(hgy ‘ hig}) JFD}?ZW(th H h;z)
9

Then, given two samples s and s’ consisting of 6-axial
IMU measurements 7'S and 7'S’, then the dissimilarity
of s and s’ is simply taken to be:

d(s,s') = d(TS,TS") (10)

3.3 Sample-activity Dissimilarity

Given a test sample s corresponding to some unknown
activity and a potential activity 4, we compute the
dissimilarity between s and A4 as follows, considering
that we have a set of dissimilarity scores (obtained
from the previous section) indicating the dissimilarity
between s and each of the prototype samples for 4:

d(s,4) = min{d(s,s"): s’ € prototype(A)} (11)

3.4 Classifying Samples

Adopting the notation from the previous section, we
consider that we have computed the sample-activity
dissimilarity scores between the unknown sample s
and each activity 4 in the dataset. Therefore we have
as many dissimilarity scores as there are activities in
the dataset. Finally, s is assigned to/classified as the
activity with the minimum dissimilarity score:

A* = argminyd(s, ) (12)
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4 EXPERIMENTS

In this section we present the details of the experimen-
tal procedure used to evaluate our proposed method.

4.1 Datasets Considered

In order to demonstrate the efficacy of our proposed
HAR-HMM model, we apply it to two publicly-
available activity recognition datasets: EJUST-ADL-
1 dataset (Gomaa et al., 2017) and USC-HAD (Zhang
and Sawchuk, 2012). The details of these datasets are
provided in Table 1 and Fig 2.

4.2 Experimental Setup

In order to demonstrate the efficacy of our proposed
HAR-HMM model, we perform a number of tests
wherein we alter different parameters of the model
and investigate their effects on its performance. A to-
tal of 4 tests were performed, each test with a different
value for the number of hidden states in the HMMs
ranging from 2 to 5 states as shown in Table2 .

We also tested the performance of the method
in the presence of different sensor combinations as
shown in Table 3.

We adopt the following configuration for all tests
performed:

¢ In each test we performed a total of 5 experiments.
Results are averaged over those 5 experiments.

* For each activity, the number of samples taken as
the prototypes is 66% of the total number of sam-
ples. The remaining 34% are used for testing.

* For each experiment we produced the following
performance metrics:

— The confusion matrix for all the 14 activities.

The overall accuracy and its 95% confidence in-
terval.

The sensitivity and specificity for each activity.

The average sensitivity, average specificity, av-
erage precision, and average F-score.

We also compare our proposed technique against
two other methods: the method presented in (Go-
maa et al., 2017) which requires feature extraction,
and another involving the use of a deep LSTM-
based(Hochreiter and Schmidhuber, 1997) classifier
operating directly on the raw data. This is to give a
sense of the relative performance of our method juxta-
posed against feature extraction-based and other state
of the art sequence modelling-based techniques. The
deep classifier consisted of a single LSTM layer and
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Table 1: Details of Datasets Considered.

Dataset Is\lumbe{ of Activities Sensor Locations Sensors Comments
ubjects

USC-HAD Walk forward, walk left, walk right,
(Zhang  and 14 walk up-stairs, walk down-stairs, run FEront right hi 3D accelerometers, 3D gyro- | Consists of 12 activities
Sawchuk, forward, jump, sit on chair, stand, sleep, g P scopes and 2311 samples in total.
2012) elevator up, and elevator down
EJUST- Use telephone, Drink from glass, Pour 14 activities are collected
ADL-1 water, Eat with knife/ fork, Eat with 3D accelerometers, 3D angular using an Apple watch Se-
Dataset (Go- | 3 spoon, Climb/ Descend stairs, Walk, | Right wrist only. velocity, 3D rotation, 3D grav- ries% NuanP; ¢ of samplos
maa et al., Get up/Lie down bed, Stand up/ Sit ity. is 603‘ P
2017) down chair, Brush teeth, Comb hair .

Table 2: Accuracy of method when used with different TP

number of HMM hidden states on E-JUST-ADL1 dataset. Accuracy = N an

No. of Hidden States | Accuracy
2 91.9%
3 90.95%
4 89.52%
5 82.46%

Table 3: Accuracy of method when used with different sen-
sor combinations on E-JUST-ADL1 dataset.

Combination Accuracy
Accelerometer 90.9%
Gyroscope 91.62%
Rotation 90.29%
Gravity 91.62%
Accelerometer, Gyroscope, Gravity 90.95%
Accelerometer, Gyroscope, Rotation 87.62%
Acc., Gyro., Rotation, Gravity 91.9%

was trained for 50 epochs with a batch size of 30 sam-
ples. We consider accuracy, sensitivity, specificity,
precision and F-measure as the metrics of interest. As
stated previously, these metrics are aggregated by av-
eraging over each test run.

‘We use standard definitions for the Precision, Re-
call, Specificity, F-Measure and Accuracy metrics,
described respectively in Equations 13, 14, 15, 16,
and 17. We adopt the following notations:

* N is the number of samples in each activity.
* TP refers to the number of true positives.

» FP is the number of false positives.

* TN is the number of true negatives.

* FN is the number of false negatives.

TP
Precision = ———— (13)
TP+FP
TP
Sensitivity = ——— 14
ensitivity TP+FN (14)
TN
Specificity = ———— 15
peci ficity TN FP (15)
F— Measure — 2 x Precision x Sensitivity (16)

Precision + Sensitivity

4.3 Discussion

We present the results obtained from our experiments
in Table 4. As described previously, we carry out the
experiments on two publicly-available datasets. We
investigate our proposed technique against a feature
extraction-based technique (Gomaa et al., 2017) and
a deep classification technique utilizing a Long Short-
Term Memory (LSTM) network. Note that these re-
sults correspond to a configuration where the HMMs
used have only two hidden states each.

As can be observed from the table, our proposed
method outperforms both of the comparative tech-
niques used on both datasets in all the considered
metrics. Relative to the feature extraction-based
method (denoted as RF in the table), our method
yields better performance as it (by design) respects
the sequential/temporal nature of the data, which
is not necessarily guaranteed with many feature
extraction-based techniques. Additionally, it can be
seen that our method outperforms the deep LSTM-
based classifier (denoted as LSTM in the table). This
can be attributed to the fact that our method is not
only based on sequence-modelling itself, but also
includes similarity-based enhancements in contrast
to the deep classifier. This allows it to leverage the
strengths of both approaches and deliver superior
performance to the deep LSTM-based classifier.

Effect of Sensor Choices. We also investigate the
performance of the method in the presence of differ-
ent sensor combinations. This was done with a view
to discerning the performance of the method in dif-
ferent scenarios, as activity recognition problems may
have different sensor modalities available than the pri-
mary evaluations were performed with. We consid-
ered single modalities and combinations of modali-
ties as shown in Table 3. For clarity of presentation,
we consider only the E-JUST-ADLI dataset and the
accuracy metric in particular.

It can be seen that the method is able to maintain
consistent performance even with the use of single
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Table 4: A comparison between the proposed HMM-based method, LSTM using raw data, and RF (Gomaa et al., 2017) using

two different public datasets.

Dataset Method | Accuracy | Sensitivity | Specificity | Precision | F-Measure
RF 78.5% 70.45% 98.2% 60.5% 65.1%
USC-HAD LSTM 78.57% 72.8% 85.71% 71% 71.88%
HMM 83.95% 83.8% 98.54% 84.36 % 83.49 %
RF 81.64% 82.47% 98.67% 84.6% 83.53%
E-JUSTADL1 | LSTM 87.19% 78.5% 93.1% 77% 77.74%
HMM 91.9% 91.4% 99.37% 92.54% 91.64%

SEnsors.

This is due to its use of both sequence

cision, and F-Measure. A potential drawback of the

modelling and similarity-based techniques, allowing
the system to both capture the intrinsic dynamics of
the activity as captured by the sensor(s) used and
match samples in that context without explicitly
relying on any particular modality. This indicates the
reliability of the technique in a multitude of possible
deployment scenarios.

Effect of HMM Hidden States. We also experiment
with the number of hidden states in the HMMs used.
This is done to determine a suitable value for this pa-
rameter in the context of the stated task. As stated pre-
viously, the initial set of results (Table 4) indicate the
performance of the method at 2 hidden states. There-
fore we vary the number of hidden states from 3 to 5
for this investigation. Similar to the previous section,
we also consider only the E-JUST-ADL1 dataset for
clarity and the accuracy metric.

Increasing the number of hidden states in the
HMMs has a consistently-increasing detrimental ef-
fect on the method. This can be attributed to the fact
that the underlying processes generating the time se-
ries data per axis are fairly simple, and so increasing
the number of hidden states mischaracterizes the pro-
cess. Therefore, the optimal number of hidden states
per HMM in the proposed method is chosen to be 2.

S CONCLUSION AND FUTURE
WORK

In this work, we presented an improved HMM-based
technique for human activity recognition based on
IMU-sourced data. We evaluate our technique on
two publicly-available activity recognition datasets
and also compare it against two baseline methods:
one based on traditional feature extraction, and the
other based on a deep LSTM-based technique using
raw data.

The experimental results yielded indicate that the
proposed method is effective for the stated task, as it
outperforms both baseline methods in terms of sev-
eral metrics eg., accuracy, sensitivity, specificity, pre-
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proposed method is its computational complexity as
it requires the training and retention of a large num-
ber of HMM models. This weakness can be overcome
using parallelization methods such as GPU-based ac-
celeration or similar.

In the future, we intend to investigate the use
of multivariate HMMs to cater for single modalities
rather than individual HMMs per individual axes’ per
modality, as well as multivariate HMMs for all the
axes simultaneously. Furthermore, we intend to inves-
tigate the use of different HMM (dis)similarity mea-
sures on the performance of the proposed method.
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