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Abstract: Notion of neighbourhoods is critical in many applications such as social studies, cultural heritage manage-
ment, urban planning or environment impact on health. Two main challenges deal with the definition and
representation of this spatial concept and with the gathering of descriptive data on a large area (country). In
this paper, we present a use case in the context of real estate search for representing French neighbourhoods in
a uniform manner, using a few environment variables (e.g., building type, social class). Since it is not possible
to manually classify all neighbourhoods, our objective is to automatically predict this new information.

1 INTRODUCTION

Data science is a recent discipline which aims at ex-
ploiting data for producing new knowledge. It is at
the crossroads of data management, statistics, ma-
chine learning and visualization. It is also usually
associated with Big Data, as the amount of avail-
able information grows exponentially every year. Two
main tasks for data scientists involve data preparation
and prediction on observations through the detection
of patterns (Dhar, 2013). Numerous application do-
mains benefit from this discipline: health, transport,
environment, media, biology, astronomy – to only cite
a few. Relating data science experiences enable to
demonstrate the feasibility of such projects, the im-
portance of main tasks such as data preparation and
the quality of predictive models.

In this paper, we are interested in the study of ter-
ritories, a long-standing research topic which has re-
cently gained more attention with the emergence of
smart cities (Caragliu et al., 2011). Many works in
Digital Humanities aim at studying neighbourhoods,
since this spatial delimitation enables the detection of
local trends (Delmelle, 2015). Our work is also re-
lated to neighbourhoods in the context of real estate
search, especially when moving to a new city (e.g.,
job transfer). Indeed, people who look for renting or
buying an accommodation may not necessarily have
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prior knowledge about their future city or area. Thus
it is difficult to choose a suitable neighbourhood to
live in. One may look for a vibrant neighbourhood
with many pubs while other may prefer a quiet res-
idential area close to schools and parks. Although
several works were designed to tackle this challenge
(Yuan et al., 2013; Tang and Sangani, 2015; Le Fal-
her et al., 2015; Barret et al., 2019), most of them are
either dedicated to a few cities, or the predicted cri-
teria are limited to have a clear understanding of the
neighbourhood. Thus, our objective is to character-
ize neighbourhoods according to a few criteria such
as social class (e.g., lower, middle) or morphological
position (e.g., urban, rural).

Our paper describes a use case for predicting
the environment of a neighbourhood in France. To
reach this goal, the main challenging processes of data
science are required. We first introduce related work
(Section 2). Next, we present our method for mod-
elling, collecting and integrating data about neigh-
bourhoods (Section 3), and we describe our choices
for prediction (Section 4). In Section 5, preliminary
experiment results are detailed and analysed. Section
6 concludes and highlights perspectives.

2 RELATED WORK

Multiple projects focus on studying neighbourhoods.
A recent paper shows that the definition of the area
perceived as neighbourhood is different according to
the point of view (e.g., administrative, from locals,
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economic), and consequently, its delimitation are not
completely fixed (Bonneval et al., 2019).
Gathering data collection is a critical issue and
most projects or application do not detail this process.
The website DataFrance1 integrates data from diverse
sources, such as indicators provided by the National
Institute of Statistics (INSEE), geographical informa-
tion from the National Geographic Institute (IGN) and
surveys from newspapers for prices (L’Express).
Comparison between neighbourhoods is performed
in many works. Cosine similarity and Jaccard metric
are the most used methods to perform such compari-
son (Yu et al., 2016). They enable a direct computa-
tion of the similarity degree between two spatial areas
described as vectors of values. For instance, authors
of HoodSquare exploit Foursquare check-ins, place
types (e.g., restaurant, office, entertainment) and tem-
poral information to detect neighbourhood boundaries
and similar areas (Zhang et al., 2013). The work from
Le Falher et al. discovers similar neighbourhoods be-
tween cities (Le Falher et al., 2015). To reach this
goal, they use classification algorithms applied on so-
cial networks data.
Prediction and recommendation are main objec-
tives when working with neighbourhoods. The study
from Tang et al. compare Airbnb announcements in
San Francisco to determine their price and neighbour-
hood (Tang and Sangani, 2015). The VizLIRIS appli-
cation uses machine learning to detect similar areas
in France, which is convenient when moving to a new
location (Barret et al., 2019). Besides, it includes a
grouping functionality for displaying similar neigh-
bourhoods in a selected area or city. In South Ko-
rea, finding the most relevant neighbourhood and ac-
commodation is based on similar user profiles (Yuan
et al., 2013). For instance, the household composi-
tion and the distance from home to work are part of
these profiles. Case-based reasoning is performed to
associate a new profile to existing ones, and thus to
adjust recommendations. Finally, the objective of the
Livehoods project is to deduce city’s dynamics from
its resident’s behaviour (Cranshaw et al., 2012). Ex-
periments in Pittsburgh, using 18 million check-ins
and validated by 27 interviews, have confirmed that
municipal districts have a different shape than a rep-
resentation based on their usage.
Several applications, which are closer to the context
of this paper, produce neighbourhood recommenda-
tions. The following list is non exhaustive and centred
on France. Kelquartier2 describes the main French
cities using quantitative criteria (e.g., average income,

1http://datafrance.info/
2http://www.kelquartier.com/

density of schools, density of shops). Home in Love3,
vivroù4 and Cityzia5 are more oriented towards users
as they take into account itineraries (e.g., from and
to work) or life style. All aim at recommending the
most relevant neighbourhood(s). Finally, ville-ideale6

is a collaborative website for evaluating French cities.
Users give a score (out of 10) for each of the ten cat-
egories, from healthcare to security or culture. Al-
though not at a fine-grained level, user comments may
include mentions of neighbourhood, which is useful
for a (manual) estimation of its quality.
Positioning. Our contribution differs from existing
works on several points. First, some works are lim-
ited to a few cities, which is not possible in a con-
text of job transfer. Our approach should work for
a whole country. Although exploiting user profiles
is interesting, they are not always available. Relying
on social data implies prior analysis in order to avoid
bias (e.g., over-represented class of people or activ-
ities). Most approaches focus on life quality while
our goal is to describe environment. Finally, neigh-
bourhoods may be described using tens or hundreds
of criteria, which makes it difficult both for obtaining
a simple representation of the area and for explain-
ing or proving justifications about recommendations.
Figure 1 summarizes the main steps of our proposi-
tion, from data preparation (concepts definition, data
gathering and integration, presented in Section 3) and
prediction (representativeness, feature selection and
algorithm execution, described in Section 4).

Figure 1: The main steps of our approach.

3 DATA PREPARATION

In his study about data science, Donoho estimates
that data scientists spend 80% effort to prepare data
(Donoho, 2017). Indeed this process consists in de-
termining the main concepts to be used, gathering and
extracting information that describe these concepts
and integrating them into a single database.

3http://homeinlove.fr/
4http://www.vivrou.com/
5http://www.cityzia.fr/
6http://www.ville-ideale.fr/
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3.1 Concepts Definition

The first concept that needs to be defined is the neigh-
bourhood (Bonneval et al., 2019). The definition of
this spatial object clearly depends on the point of
view: administrative people could refer to a voting
or cadastral definition while geographers could rely
on natural borders. Residents also have their own
boundaries in mind and an economic point of view
can span over several neighbourhoods. Given these
constraints, we have chosen to use IRIS7 as neigh-
bourhoods, i.e., small division units of the French
territory defined for statistical purposes (with about
2,000 residents, thus mainly small-sized in cities and
wider in rural areas). They are defined by INSEE, the
National Institute of Statistics, which ensures a cer-
tain data quality and frequent updates. In addition to
their official nature, the main advantage is that each
IRIS includes many indicators such as the average in-
come, the number of bakeries, the number of build-
ings built before 1950 or the percentage of residents
per socio-economic category. These indicators could
serve as features for the prediction part. There are
around 49,800 IRIS in France, with an average of 550
indicators per IRIS. In the rest of this paper, we use
either IRIS or neighbourhood with the same meaning.

To clarify the representation of neighbourhoods,
we have collaborated with sociologists who have de-
fined six environment variables8, each with its pos-
sible values. They are summarized in Table 1. Type
of building represents the most common buildings in
the neighbourhood (from large housing complexes to
individual houses). Usage describes local activities
while landscape defines the quantity of surrounding
natural elements. Social class denotes the degree of
wealth. Morphological position indicates the distance
of an IRIS from a city centre. And the geographi-
cal position (nine values) stands for the direction to-
wards the city centre of the closest city9. The objec-
tive of these variables is to facilitate the description of
a neighbourhood in the context of a real estate search,
and to enable the comparison of neighbourhoods in
social sciences studies for instance. By investigat-
ing scientific literature, IRIS data, online information
such as http://www.kelquartier.com/ and street views,
social science researchers have annotated so far 270
IRIS using these six variables. Note that this manual

7http://www.insee.fr/en/metadonnees/definition/c1523/
8In machine learning, variables usually represent fea-

tures while outcome is referred to as target values and
classes. However, we keep the term variables for classes
in this paper for consistency with social sciences.

9Geographical position can bear implicit knowledge,
e.g., East part of cities were traditionally poorer due to in-
dustrial pollution coming from West winds.

assessment requires at least 1 to 2 hours (per IRIS)
when done properly.

3.2 Data Gathering

The main notions of neighbourhood and environment
variables have been defined. A second challenge deals
with the collection of relevant data about neigh-
bourhoods, which results from various discussions
with social science researchers. In the era of smart
cities, open data become more and more available
(Ojo et al., 2015). However, it is still necessary to
check for data quality (e.g., provenance, frequency of
updates, usage in other projects). Our choice of IRIS
as neighbourhoods was also supported by the fact
they come with many indicators about population,
buildings, shops, leisures, education, etc. First, each
neighbourhood includes 17 descriptive characteris-
tics (identifier, IRIS name, city name, postcode, ad-
ministrative department, administrative region, type,
etc.). These indicators are mostly useful for visu-
alization. The remaining hundreds of indicators are
either quantities (e.g., number of bakeries, of ele-
mentary schools, of tennis courts), unit quantities
(e.g., average income, average income for the agri-
cultural class), socio-economic coefficients (e.g., Gini
coefficient10, S80/S20 ratio11), percentages (e.g., per-
centage of unemployed people, percentage of fiscal
households) or string values (e.g. notes about in-
comes). In addition, each IRIS has a geometry (i.e.,
list of coordinates delimiting a polygon), which is
useful for cartographic visualization. From this ge-
ometry, it is possible to compute the surface of the
neighbourhood, an important feature. Indeed, cities
are usually made of small IRIS while rural areas have
larger IRIS.

Once the data sources have been identified and
data extracted (using dumps, API, queries), data
needs to be cleaned because it may contain anoma-
lies, inconsistencies or missing values. This process
is often referred to as data cleaning or data wrangling
(Donoho, 2017). In our case, a few IRIS have in-
correct boundaries (e.g., overlapping edges in their
geometries) and they have been corrected using GIS
tools. Another problem is related to unknown values,
which are globally solved during the next step.

3.3 Data Integration

Relevant data sources have been identified, but they
are still scattered around and heterogeneous. Data in-
tegration aims at centralizing merged data and pro-

10http://en.wikipedia.org/wiki/Gini_coefficient
11https://www.insee.fr/en/metadonnees/definition/c1666
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Table 1: Environment variables and their possible values.

Building type Usage Landscape Social class Morphological Geographical
Housing estates Housing Urban Lower Central Centre

Mixed Shopping Green areas Lower middle Urban North
Towers Other activities Forest Middle Peri-urban North East

Housing subdivisions Countryside Upper middle Rural East
Houses Upper ...

viding an uniform query access (Halevy et al., 2006).
IRIS data is spread in tens of CSV files (one for pop-
ulation, another one for education, etc.), produced at
different periods and by different persons. Besides,
they are not organized or structured in the same man-
ner (different interpretation of a concept, label hetero-
geneity, grouping or splitting of IRIS, etc.). Several
processes are required when integrating data. First
schema or ontology matching needs to be performed
in order to detect correspondences between concepts
or metadata (Bellahsène et al., 2011). In our con-
text, data sources have almost no overlapping and
this matching task is manual. For instance, renam-
ing headers in CSV files solves label heterogeneity.
Another important process is record linkage or data
matching (Christen, 2012; Shen et al., 2015), which
consists in detecting equivalent information (e.g., tu-
ples, entities, values). It avoids redundancies and fa-
cilitates merging. Although IRIS have an identifier,
the fact that some of them were merged or split be-
tween two files was a challenge. A script has been
written to detect missing IRIS and changes in specific
attributes (IRIS name, city name), and the decision to
discard or add an IRIS was manual.

During integration, we have also created a new
attribute labelled grouped indicators, which reflects
the content of a neighbourhood with a higher level
of abstraction. For example, the grouped indica-
tor health sums up the number of doctors, pharma-
cies, hospitals, etc. Local commerces (which exclude
large supermarkets) aggregates the number of bak-
eries, butcheries, open markets, etc. In total, thir-
teen grouped indicators have been defined and added
as features for each IRIS. The surface of polygons
is also computed during this step. Unknown values
have been replaced by the median score of the col-
umn: zero values are not acceptable (specific meaning
that an IRIS does not have a given feature) and the
average is more sensitive to outliers. The last issue
is the difference of units and meaning between indi-
cators (e.g., quantities, percentages, quantiles). Some
classification algorithms require comparable informa-
tion. Social science collaborators suggested that pop-
ulation and population density were the most relevant
normalization factors. Both the size and the number
of residents have an impact on the characteristics of

an IRIS (e.g., two neighbourhoods may have 5,000
residents, but one of them is a large rural area around
a village while the other is a small city area). Con-
sequently, all indicators have been normalized ac-
cording to the population density.

Since IRIS are spatial objects, we have chosen the
GeoJSON format 12 to store them. In the end, we
obtain a consolidated MongoDB database named
mongiris13. It contains 49,800 French neighbour-
hoods fully covering the country along with integrated
data to describe them. A Python API is also provided
to facilitate the querying of the database (e.g., retrieve
an IRIS from its code, get a list of all neighbours).

4 PREDICTION

Relevant data has been collected and aggregated into
the mongiris database. It contains about 49,800
neighbourhoods, among which 270 have been exper-
tised (i.e., their six environment variables have been
filled in by social science researchers). The objec-
tive is to predict values of the environment variables
for the remaining neighbourhoods. We face two main
challenges: the former is the number of expertized
IRIS (270) with regards to the total number (49,800),
only 0.6%, so it is important to check whether the
annotated neighbourhoods are sufficiently representa-
tive of the complete set. The latter deals with the high
number of indicators (550 in average for each IRIS),
which may negatively impact prediction due to over-
fitting. This section presents our solutions to tackle
these challenges.

4.1 Representativeness

Given the ratio between annotated IRIS and the re-
maining ones (0.6%), we perform a quick analysis
to check for representativeness. Indeed, prediction
results may also been explained when the quantity
of examples is not sufficient to represent the whole
dataset. Yet, it is very difficult to compute this rep-
resentativeness and we have chosen to study some of
our environment variables.

12http://geojson.org/
13http://gitlab.liris.cnrs.fr/fduchate/mongiris
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The morphological variable indicates whether a
neighbourhood is inside or far from a city. According
to the IRIS definition8, 16100 IRIS were constructed
using cities with more than 10,000 inhabitants and
most towns with more than 5,000 residents. To cover
the rest of the territory, one IRIS was created for each
remaining town, resulting in more than 33,000 ad-
ditional neighbourhoods. If we consider that these
sparsely populated places are rural areas, we estimate
that 68% of IRIS are rural in the whole dataset. How-
ever, 14 out of the 270 annotated IRIS are considered
as rural, thus representing only 5%. This difference
can be easily explained by the fact that in our context
of job transfer, people tend to leave small towns to
the benefit of larger cities. Thus there is a bias for this
morphological variable.

The landscape variable is closely related to the
morphology. We roughly assume that urban and green
areas are usually found in cities while forestry and
countryside are mainly linked to rural. These last
two categories describe 46 of our annotated IRIS, thus
representing 17%. We are very far from the 68% ex-
pected in France, so this variable is biased too.

The social class variable is difficult to analyse,
especially because the class definitions are not clear.
In France, 59% of households belong to the middle
class, including lower and upper middles (Bigot et al.,
2011). A commonly accepted definition of middle
class consists of incomes ranging from 70% to 150%
of the median income, which represent 71% of IRIS.
Since 82% of our annotated neighbourhoods are in
the middle class, this denotes a slight bias towards the
whole dataset.

The geographical variable has a more balanced
distribution. There are around 25 IRIS for most val-
ues. But a few directions, such as centre, south and
north, have twice more IRIS. The case of centre is
understandable due to its correlation with the central
morphology, but more research in social science is
needed to explain others.

Variables building type and usage cannot be di-
rectly studied.

4.2 Feature Selection

In the popular book from Lillesand et al., authors pro-
pose that "a rule about the relationship between train-
ing sample size n and data dimensionality p is that n
lies between 10p and 100p" (Lillesand et al., 2015).
In our context, we have 270 samples and an average
of 550 indicators, while a reasonable number of fea-
tures should be between 3 and 27. To tackle this
challenge (i.e., too many features), we first remove
indicators that are not useful for machine learning:

17 descriptive characteristics (e.g., city name, IRIS
name), 59 empty or invariant features, and 213 over-
detailed indicators (e.g., only "tennis courts" is kept
as feature while "tennis courts with at least one cov-
ered" and "tennis courts with at least one lighted" are
discarded). The 647 original indicators have been re-
duced to 362 features (55% of the original). Yet, this
number is still quite high.

The next option for removing features is to check
their correlation (Bruce and Bruce, 2017). Indeed,
when two features are strongly correlated, they lead to
the same trend during learning. Figure 2 depicts a cor-
relation matrix for the 362 indicators, computed using
Spearman coefficient (Mukaka, 2012). The darker a
point is, the least correlation between the correspond-
ing two indicators. Only a few of them are not much
correlated with the others (dark lines), and the major-
ity have a strong correlation (white areas). Indicators
with a perfect correlation to another one are deleted.

Figure 2: Correlation matrix between 362×362 indicators.

A third idea is to select the most relevant indica-
tors (for each variable) using feature importance tech-
niques (Guyon and Elisseeff, 2003). Algorithm 1 il-
lustrates this process by generating ranked lists of fea-
tures (lines 3 and 4) based on algorithms Extra Trees
(ET) and Random Forest (RF). The output of these
algorithms are merged, and to avoid strong impact of
a category of indicators (e.g., related to population),
an indicator is removed if its parent is already in the
list (lines 6 to 11). In the end, we obtain several list
of features noted Lk

v which contain the most k relevant
indicators for variable v. We have chosen to retain
several lists containing from 10 to 100 indicators due
to the complexity of prediction.

When features have been selected, the learning
process can be run, as shown in the next section.
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Algorithm 1: Selection of relevant features.
input : set of indicators I , set of variables V
output: lists of features Lk

v
1 for v ∈ V do
2 Lv←− /0;
3 FET

v ←− ET.rank_features(I );
4 FRF

v ←− RF.rank_features(I );
5 F ←− FET

v ∪ FRF
v ;

/* sort, specific to general */
6 F ←− sort(F);
7 for f ∈ F do
8 p f ←− parent(f);
9 if p f ∈ F then

10 p f .score←− p f .score+ f .score;
11 F ←− F−{ f};

12 for k ∈ [10,20,30,40,50,75,100] do
13 Lk

v←− top-K(F , k);

5 EXPERIMENTS

This section covers our preliminary experiments.

5.1 Experiment Protocol

We use the popular scikit-learn library for machine
learning (Pedregosa et al., 2011). We are in a classi-
fication problem and five scikit-learn algorithms have
been used14: Logistic Regression (LR), Random For-
est (RF), K-Nearest Neighbours (KNN), Support Vec-
tor Classification (SVC), and AdaBoost (AB). Many
parameters have an impact in machine learning (Jor-
dan and Mitchell, 2015), and we tested several con-
figurations (e.g., weights, maximum depth in trees,
number of neighbours, distance metric) to retain the
best one. The annotated neighbourhoods are split
into 80% training data and 20% evaluation data with
cross-validation, as recommended in the literature
(Bruce and Bruce, 2017). We use accuracy as qual-
ity metric, i.e. the fraction of correct predictions. It
is common to have outliers in data, especially when
working with real-world data. They can be detected
using Isolation Forest algorithm for example, but it
requires a manual approbation (i.e., verifying that the
distribution confirms the outlier). Although outliers
may decrease accuracy, we have a tiny supervised
dataset and removing outliers means even less super-
vised data in our context.

14Other algorithms such as Stochastic Gradient Descent
or Nearest Centroid have been tested, but they mostly follow
the same trend or achieve insufficient accuracy.

5.2 Results

The main objective is to correctly predict the values
for each environment variable of an IRIS. Recall that
we have generated, for each variable, lists of top-10,
up to top-100 features. Tables 2 to 7 provides the
accuracy score (percentage) computed for each vari-
able using different algorithms. In these tables, the
baseline list I stands for all indicators (i.e., no fea-
ture selection) while Lk represents a list of k selected
features. The underlined scores indicates the best re-
sult for an algorithm (i.e., by column). A bold score
means that the corresponding list of features achieves
a better score than the list I . The highlighted cells
correspond to the best score in the whole table.

Table 2 presents the quality results for the build-
ing type variable. Without feature selection, quality
spans from 36% to 57%. Smaller lists enable an im-
provement over list I (e.g., L20). The best score is
achieved by RF with list L20.

Table 2: Prediction quality for variable building type.

LR RF KNN SVC AB
I 46.6 57.0 55.2 45.5 36.5

L10 44.3 59.3 57.8 44.7 41.7
L20 49.2 60.0 56.3 43.6 43.6
L30 45.1 58.9 55.9 43.6 32.1
L40 46.2 59.3 54.8 43.2 27.6
L50 46.6 58.9 54.8 45.5 32.4
L75 44.3 58.2 55.2 45.9 32.0
L100 43.6 57.0 55.2 45.5 36.5

Table 3 shows prediction quality for the usage
variable. The scores without selection is tighter, be-
tween 50% and 65%. A few of the smallest lists per-
form better than the baseline one, but without signifi-
cant improvement. RF obtains the best result with list
L50.

Table 3: Prediction quality for variable usage.

LR RF KNN SVC AB
I 52.9 64.5 59.3 51.1 55.6

L10 52.6 61.2 63.8 49.6 59.6
L20 55.9 64.1 63.0 49.6 56.6
L30 51.1 61.2 62.3 49.6 60.8
L40 57.8 63.0 60.8 49.2 56.3
L50 56.3 64.9 62.2 46.6 61.1
L75 50.7 63.4 60.8 51.1 58.2
L100 53.7 64.5 59.3 51.1 55.6

Table 4 provides accuracy scores for the land-
scape variable. Similarly to previous results, small
lists are able to improve quality over list I with three
algorithms. SVC obtains the same score whatever the
list.
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Table 4: Prediction quality for variable landscape.

LR RF KNN SVC AB
I 53.7 60.8 59.6 47.7 50.3

L10 48.1 62.7 59.6 47.7 51.8
L20 51.5 63.0 60.4 47.7 52.6
L30 50.3 60.8 61.9 47.7 52.5
L40 49.2 62.7 61.5 47.7 49.2
L50 47.7 61.5 61.1 47.7 48.1
L75 52.6 62.3 59.3 47.7 48.5
L100 56.3 60.8 59.6 47.7 50.3

Table 5: Prediction quality for variable social class.
LR RF KNN SVC AB

I 44.4 51.1 42.1 45.5 36.5
L10 43.6 46.6 43.9 44.7 41.7
L20 39.1 46.6 45.1 43.6 43.6
L30 41.4 49.6 45.1 43.6 32.1
L40 39.1 51.8 46.6 43.2 27.6
L50 42.1 48.1 44.3 45.5 32.4
L75 45.1 48.1 44.0 45.9 32.0
L100 40.7 51.1 42.1 45.5 36.5

Table 5 depicts quality results for the social class
variable. The lists of selected features, either small
or large depending on the algorithm, allows a better
quality in a few cases. The best score is slightly above
50%, which shows that this variable is difficult to pre-
dict. Yet, many features describe incomes (median,
per decile), population characteristics (number of stu-
dents, employees, farmers, unemployed, etc.).

Table 6 details quality obtained for the morpho-
logical position. The L10 list mainly wins against the
baseline list, except with SVC which achieves similar
scores (44%) whatever the features.

Table 6: Prediction quality for variable morphological.

LR RF KNN SVC AB
I 46.6 59.7 58.2 44.7 45.8

L10 48.5 60.0 60.8 44.0 49.9
L20 44.0 61.2 58.5 44.4 48.5
L30 39.2 61.2 58.2 44.4 48.8
L40 33.5 61.2 58.6 44.4 50.7
L50 36.1 59.3 57.4 44.4 46.2
L75 41.3 60.8 57.1 44.7 49.2
L100 43.2 59.7 58.2 44.7 45.8

Table 7 is dedicated to geographical position.
Scores are far lower than for other variables (33% as
best value), which is not surprising given the a-priori
irrelevant indicators for this prediction. Still, small
lists mostly perform better than the baseline.

We conclude this experimental section with a
discussion. Best scores range from 33% for geo-
graphical position and 50% for social class to 60-
65% for the remaining four variables. Although al-

Table 7: Prediction quality for variable geographical.

LR RF KNN SVC AB
I 22.0 33.6 27.2 25.0 15.6

L10 25.3 29.9 27.6 24.6 21.9
L20 26.1 31.3 29.5 25.3 20.1
L30 26.1 31.7 28.3 27.2 17.5
L40 29.1 32.8 28.3 24.6 17.1
L50 25.0 32.1 27.2 23.8 19.0
L75 24.6 32.8 27.2 25.0 17.9
L100 24.6 33.6 27.2 25.0 15.6

gorithms obtain different scores with the baseline list,
their results mainly improve by a few percent (in av-
erage per column) when using other lists of features,
which could demonstrate that current indicators are
not sufficient or useful. These results are promising,
but still require improvements, especially regarding
the representativeness issues presented in Section 4.1.
It was not possible to predict on a sufficient num-
ber of new IRIS because the manual verification is
time-consuming, as explained in Section 3.1. Among
the ten algorithms and configurations we have tested
so far, Random Forest seems to be the most interest-
ing in our context because it achieves all best scores.
Some algorithms were not suitable, for instance SVC
requires many features (best results with all indicators
or with largest lists of features). Our algorithm for
feature selection has also proven useful, since many
lists outperform the baseline (whatever the algorithm
or variable). Lists of 20 up to 50 features are particu-
larly effective. However, the improvement is not sig-
nificant (a few percent at best compared to baseline).
On the contrary, larger lists (top-100) usually provide
the same quality as the baseline.

6 CONCLUSION

In this paper, we have presented a use case for pre-
dicting the environment of any neighbourhood in
France through six descriptive variables. We have
studied the representativeness of our 270 annotated
neighbourhoods compared to the whole set of 49,800
to detect some bias. Due to a large quantity of avail-
able indicators, we also selected a subset for each
variable. Our experiments show that (small) lists gen-
erated with our feature selection perform better than
a learning using all indicators. However, the overall
prediction scores need to be improved before predict-
ing at a larger scale.

The main perspective is to achieve better predic-
tion results. Our first results could be exploited by so-
cial science researchers in order to facilitate the man-
ual annotation of neighbourhoods, thus increasing the
amount of examples. Another possibility could be the
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generation of a bigger synthetic dataset, which share
similarities with the 49,800 neighbourhoods. We also
plan to integrate prices and points of interest (that
could reflect the nature of a neighbourhood, for in-
stance an organic shop is usually found in middle or
upper class neighbourhoods).A fourth perspective is
the correlation between variables, which are not to-
tally independent. For instance, a rural area has more
chances to be classified as countryside and to host
houses. The prediction of a given variable could im-
pact the classification of others, especially the most
difficult ones such as geographical or social. Finally,
we plan to release a tool named predihood for letting
researchers implement and test their classification al-
gorithms on our dataset.
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