
Detecting Model View Controller Architectural Layers
using Clustering in Mobile Codebases

Dragoş Dobrean a and Laura Dioşan b

Faculty of Mathematics and Computer Science, Babeş Bolyai University, Cluj-Napoca, Romania

Keywords: Mobile Applications Software Architecture Analyser, Automatic Analysis of Software Architectures,
Structural and Lexical Information, Software Clustering.

Abstract: Mobile applications are one of the most common software projects written nowadays. The software architec-
tures used for building those type of products heavily impacts their lifecycle as the architectural issues affect
the internal quality of a software system hindering its maintainability and extensibility. We are presenting a
novel approach, Clustering ARchitecture Layers (CARL), for detecting architectural layers using an automatic
method that could represent the first step in the identification and elimination of various architectural smells.
Unlike supervised Machine Learning approaches, the involved clustering method does not require any initial
training data or modelling phase to set up the detecting system. As a further key of novelty, the method works
by considering as codebase’s hybrid features the information inferred from both module dependency graph and
the mobile SDKs. Our approach considers and fuses various types of structural as well as lexical dependencies
extracted from the codebase, it analyses the types of the components, their methods signatures as well as their
properties. Our method is a generic one and can be applied to any presentational applications that use SDKs
for building their user interfaces. We assess the effectiveness of our proposed layer detection approach over
three public and private codebases of various dimensions and complexities. External and internal clustering
metrics were used to evaluate the detection quality, obtaining an Average Accuracy of 77,95%. Moreover,
the Precision measure was computed for each layer of the investigated codebase architectures and the average
of this metric (over all layers and codebases) is 79,32% while the average Recall on all layers obtained is
75,93%.

1 INTRODUCTION AND
CONTEXT

Mobile applications and presentational software prod-
ucts represent an important part of the realm of soft-
ware development. We are furthering our work to-
wards creating a system for improving the archi-
tectural correctness of those types of projects. By
respecting an architectural pattern the codebase be-
comes more testable and more extensible in the areas
which are important for the business. In addition to
this, having a well-defined architecture in place helps
the new or inexperienced developers write new code
more easily by having clear architectural guidelines
in place.

In this paper we present Clustering ARchitecture
Layers (CARL), an unsupervised approach for solving

a https://orcid.org/0000-0001-7521-7552
b https://orcid.org/0000-0002-6339-1622

the same problem using clustering. In order to pave
the way for analyzing more specialized architectures
for which a heuristic approach might not yield best
results as the components are hard to be split into lay-
ers by using various rules and sometimes those rules
cannot be easily inferred as all the codebases have
their own particularities we are focusing on automat-
ing this process by using AI algorithms, most specifi-
cally clustering.

Clustering (Russell and Norvig, 2016) is one of
the most popular unsupervised Machine Learning ap-
proaches for finding groups (clusters) in a set of data
that exhibit similarities. When talking about software
architectures, the elements composing the architec-
tural layers should have similarities since they fulfill
the same role. For instance in the case of Model View
Controller (MVC), data manipulation for the Model
layer, control of the data flow for the Controller layer
and handling the input and output in the View layer.

In this study, we search for the right information

196
Dobrean, D. and Dioşan, L.
Detecting Model View Controller Architectural Layers using Clustering in Mobile Codebases.
DOI: 10.5220/0009884601960203
In Proceedings of the 15th International Conference on Software Technologies (ICSOFT 2020), pages 196-203
ISBN: 978-989-758-443-5
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

to be passed to the clustering algorithms in order to be
able to separate the elements of the codebase in archi-
tectural layers. Some of the practical applications of
such approach include: education – where developers
and students could learn easily to develop better code,
professional software development – where systems
like mobile CARL can be used for providing insightful
information to the management and to the developers
regarding the architectural health of a codebase.

The following section presents previous work in
the domain of architecture reconstruction using Ma-
chine Learning (ML) and Artificial Intelligence (AI)
methods as well as details regarding the chosen ar-
chitectural pattern (MVC). Section 3 talks about our
approach CARL. The evaluation process and the con-
ducted experiments together with the results of the
conducted experiments are presented in 4. Section 5
shows the threats to validity of our proposal, while the
last part (Section 6) states our conclusions and some
ideas for further work.

2 BACKGROUND

In this paper, we are continuing our work in the area
of mobile software architectures examination and we
are proposing a novel, AI-based, automatic way of de-
tecting the components of each architectural layer in
a mobile codebase. The MVC architecture is used as
the base architectural pattern for our study as it’s one
of the most used and well known presentational archi-
tectural patterns (Daoudi et al., 2019).

2.1 Model View Controller

The MVC is one of the most widespread presenta-
tional architectural patterns. It is used extensively
in all sorts of client applications, web, desktop and
mobile. It provides a simple separation of concerns
between the components of a codebase in 3 layers:
Model – responsible for business logic, View – re-
sponsible for the user’s input and the output of the
application and Controller – keeps the state of the ap-
plication, acts as a mediator between the Model and
the View layer. There are many flavors of MVC in
which the data-flow is different but they all share the
same model of separation. MVC is also the precursor
of more specialized presentational architectural pat-
terns such as Model View View Model (MVVM) or
Model View Presenter (MVP) (Daoudi et al., 2019).

2.2 Related Work

Architecture reconstruction methods are two-folded:
identification of architectural modules (by cluster-
ing) and identification of architectural rules among
modules. Several approaches were proposed to sup-
port the architecture reconstruction process based on
static analysis. A part of these approaches exploit
the structural information extracted from the code-
base ((Mancoridis et al., 1999), (Mitchell and Man-
coridis, 2008)), another part exploit the lexical in-
formation ((Anquetil and Lethbridge, 1999), (Kuhn
et al., 2007)), while some recent approaches exploit
both of them ((Garcia et al., 2013), (Tzerpos and Holt,
2000), (Le et al., 2015), (Saeidi et al., 2015)). Fur-
thermore, few of them consider the architectural style
of the system under analysis. Because our empirical
validation is performed in the context of three iOS ap-
plications and Apple’s flavour of MVC which can be
viewed as a linear layered architectural pattern, we
describe in what follows several approaches that take
into account the particularities of the layered-based
architecture.

Similar to the general systems case, the ap-
proaches developed for analysing the layer-style
projects take into account either the structural fea-
tures of the codebase ((Müller et al., 1993), (San-
gal et al., 2005), (Sarkar et al., 2009), (Constantinou
et al., 2011)) or the hybrid (structural and lexical) fea-
tures ((Scanniello et al., 2010), (Belle et al., 2013),
(Belle et al., 2014), (?)).

Muller (Müller et al., 1993) identified various
building blocks (e.g., variables, procedures, modules,
and subsystems) by using composition operations that
respect two principles: low coupling and high cohe-
sion. Lattix tool (Sangal et al., 2005) extracted the
inter-module dependencies among the code modules
by conventional static analysis. Sarkar (Sarkar et al.,
2009) proposed a human-assisted approach (in fact a
semi-automatic approach) to identify the intended or-
ganization of the modules into layers by analyzing the
source code. The approach combines the structural as
well as non-structural domain-specific information to
assign a module to a layer. The k-means clustering
is involved in their approach; there are also proposed
three layering principles that are related to the com-
mon violations of the layered architectures as well as
a set of metrics that measure the violation of these
principles. Constantinou (Constantinou et al., 2011)
investigated how to design metrics that can reveal ar-
chitectural information about a software system and
more specifically, how architectural layers are corre-
lated to design metrics. In such an approach, the de-
sign metrics do not reflect the structural information

Detecting Model View Controller Architectural Layers using Clustering in Mobile Codebases

197

about a codebase.
Scanniello (Scanniello et al., 2010) used the link

analysis algorithm for identifying the layers, and for
each layer, they run a k-means clustering for group-
ing the modules from that layer; a lexical similarity
of two modules is computed by considering the com-
ments and the text associated to the module’s code.
No constraints regarding the layered-style architec-
ture are actually involved in their approach. Belle
(Belle et al., 2013) started by an approach based only
on structural dependencies. Belle improved this ap-
proach by taking into account some lexical informa-
tion (the namespace of a package) (Belle et al., 2014).

3 CLUSTERING
ARCHITECTURE LAYERS

Clients – presentational software applications — are
usually self-contained and they commonly use mono-
lithic architectures. Generally, their codebase is split
into layers that contain components that serve a com-
mon well-defined purpose. Each of those layers
achieves a macro purpose.

An architectural layer represents the macro pur-
pose of a set of components in the codebase; indi-
vidual components within the layer fulfill other mi-
cro purposes in order to make the macro one possi-
ble. For instance, the macro purpose would be the
separation between the UI interaction logic from the
database handling operations. As micro purposes, we
could have for example a component from the Model
layer which notifies other components regarding a
state change – its micro purpose being to notify.

In this study, we are interested in identifying the
architectural layers of the codebase by detecting the
purpose they serve based on the information available
in the codebase. Our analysis is a static one and uses
only the information in the interfaces (API contracts,
public and private method and properties definition,
inheritance information) of the investigated compo-
nents, without looking at their implementation (the
body of the functions). In addition to this, we do not
analyze the logic of the components or the way the
dependencies are being used.

We start this study with the idea that elements
within the same architectural layer should have simi-
larities like: the same purpose, a similar code or inter-
face, a similar contribution to the system’s flow and in
order to detect those we plan to use an automatic ap-
proach which is characterized by two important prop-
erties: unsupervised and autonomous.

Unsupervised belongs to the Machine Learning’s
perspective and means that the algorithm needs no

prior knowledge of the data it is about to process, not
requiring any ground truth. In the case of software
identification, by ground truth, we refer to the labels
manually associated with the components by one or
more human experts in the field. This ground truth
information is not involved in the learning process of
identification; it is considered only in the validation
phase of the proposed approach, for computing the
performance metrics. To the best of our knowledge,
there is no benchmark dataset of labeled applications
in the mobile domain. The same validation procedure
was followed in a recent study about the identifica-
tion of architectural patterns in Android applications
by using particular and language-dependent heuristics
(Daoudi et al., 2019).

Autonomous implies that there is no developer in-
volvement in the process; by contrast, there are tech-
niques in which the algorithm is directed to the so-
lution by means of developer intervention (those ap-
proaches based on UML (Sangal et al., 2005), for in-
stance). The autonomy of the proposed solution can
be evaluated also in terms of dependencies to partic-
ular libraries, APIs, languages. Even we will exem-
plify and validate our solution in the iOS ecosystem,
the proposed approach is a generic one; it can easily
be implemented on other platforms that deal with pre-
sentational architectures and a framework for building
the user interfaces.

In terms of Machine Learning, the performed
analysis is considered a clusterization problem:
grouping components into clusters without knowl-
edge of the category they belong to. The clustering
process follows three important steps: extract relevant
information (features) from the raw data (known as
instances); use all the features or just some of them
to analyze the similarities among components and to
build a clustering model; the output generated in this
step is, in fact, a division of the data; validate the ob-
tained clusters by using evaluation standards.

We name our approach Clustering ARchitecture
Layers (CARL) and in what follows we will detail all
these steps, emphasizing the particularities of mobile
software clustering.

For evaluating the performance of our approach,
several clustering performance metrics can be used
(Pfitzner et al., 2009). Those are based on a pre-
defined classification of the items to be grouped that
reflects prior information on the data, which is used as
standard and called ground truth (Mutual information,
Rand index, Precision, Recall, F-measure, etc.).

ICSOFT 2020 - 15th International Conference on Software Technologies

198

4 NUMERICAL EXPERIMENTS

MVC was studied and analyzed by practitioners and
academia (Daoudi et al., 2019). Moreover, by using
MVC for validating our approach we open the way
for other studies which might analyze more sophisti-
cated architectural patterns, especially those descend-
ing from MVC.

Our analysis was focused on the iOS platform;
however, the same process can be applied to any other
platform which uses MVC and SDKs for building UI
interfaces. In order to validate our idea we answered
the following research questions.
RQ1: What features from the codebase can be used
in a clustering algorithm?
RQ2: How effective is the proposed categorization
method compared to manual inspections?
RQ3: What are the downsides of clustering a mobile
codebase for detecting architectural layers?

4.1 Analysed Codebases

In order to validate our approach, we have conducted
experiments on three different codebases, both open-
source and private, of different sizes: Wikipedia -
public information application (Wikimedia, 2018),
Trust - public cryptocurrency wallet (Trust, 2018), E-
Commerce - a private application.

Table 1: Short description of investigated applications.

Application Blank Comment Code Components
Wikipedia 6933 1473 35640 253
Trust 4772 3809 23919 403
E-Commerce 7861 3169 20525 433

Table 1 presents the characteristics of the code-
bases: blank – refers to empty lines, comment – rep-
resents comments in the code, code states the number
of code lines, while components represent the total
number of components in the codebase.

4.2 Evaluation Metrics

For evaluating our approach we asked 2 senior iOS
developers (with over 5 years experience) to manu-
ally label all the components from all the codebases
and we have used the manual inspection as ground-
truth. Having these annotations, accuracy, precision
and recall metrics can be computed (Fawcett, 2006):

• accuracy: Acc =
NAllLayers

DetectedCorrectly
NallComponents

• precision for the layer X : PX =
NX

DetectedCorrectly
NX

TotalDetected

• recall for the layer X : RX =
NX

DetectedCorrectly
NX

GroundTruth
,

where: NX
DetectedCorrectly is the number of components

detected by the system which belong to the X layer
and are found in the ground truth for that layer;
NX

TotalDetected is the number of components detected
by the system as belonging to the X layer; NX

GroundTruth
is the number of the components which belong to the
X layer in the ground truth.

In (Garcia et al., 2013) the authors defined the
cluster-to-cluster (c2c) metric which is equal to the
Precision metric PX . Precision is the term used in ma-
chine learning, while c2c is commonly used in soft-
ware engineering approaches; however for the current
study they mean the same thing.

4.3 Methodology

We design two stages for our study: a preliminary
stage and a complex stage. In the preliminary phase,
we have considered only a mobile application and we
tried to cluster its components in the corresponding
layers by an incremental process in terms of selected
components’ features as follows:

• Number of Dependencies (F1): how many de-
pendencies a component has with each of the
other codebase’s components; we use F1(ci), for
all components ci (i∈ {1,2, . . . ,n}) of a codebase;

• Presence of Dependencies (F2): the type of de-
pendencies that it has with each of the other code-
base’s components;

• Name Distance (F3): how many dependencies it
has with each of the other codebase’s components
and the distances between the name of the current
component and the names of the other codebase’s
components;

• Keywords Presence (F4): the features F3 are en-
riched by the keyword-based features;

For all these feature subsets, the same clustering algo-
rithm and validation step are applied (see the details
in Section 4.4).

The best subset of features identified in the pre-
liminary study is used in a second more complex one,
where three applications are investigated (see the de-
tails in Section 4.5). Finally, the findings are analyzed
and possible improvements are suggested.

For the rest of the study, we are focusing only on
the iOS platform and we are analyzing Swift code-
bases. However, our proposed approach can be eas-
ily extrapolated to other platforms that use SDKs for
building user interfaces and are presentational soft-
ware products.

Since we have analyzed Swift codebases all the
methods defined in extensions of classes defined in
the codebase were added to the extended class and

Detecting Model View Controller Architectural Layers using Clustering in Mobile Codebases

199

the extensions were not taken into consideration when
constructed the features since they represent the same
component. Moreover, all the protocols were also ig-
nored because they only provided blueprints for the
behavior of a component. If the component imple-
ments a protocol then the methods and the behavior
will also be present in the implementing component.

4.4 Preliminary Evaluation

In order to test different approaches and to see which
information from the codebase or what combination
yields the best results, we have chosen a medium-
sized iOS application (20525 lines of code) that uses
the MVC architecture and which was used as a bench-
mark when applying different clustering approaches.
The application used as a benchmark in the approach
section is the E-Commerce one. We have asked an
expert to manually label all the components in the
benchmark application. These labels were used to
calculate the precision and the recall for all the lay-
ers as well as the accuracy in order to compare dif-
ferent approaches. Based on the information used by
the clustering algorithm we describe all three differ-
ent attempts at classifying the components of a code-
base. In all our approaches the features are encoded
into n×|F(c)| matrices. The number of lines (n) cor-
responds to the number of the components in the ana-
lyzed codebase and is constant in all scenarios, while
the number of columns (|F(c)|) varies and is equal to
the number of features considered.
Features based on the Number of Dependencies.
Our first attempt was to group the components by tak-
ing into account the dependencies between them. The
features associated with a component of the codebase
correspond to the number of dependencies between
that component and all the other components of the
investigated application. In fact, these features of a
component A are stored as vectors of length equal to
the total number of components from the codebase
(n). The ith element in this vector can be either 0
(when no dependency between A and the ith compo-
nent was found) or a positive integer value that repre-
sents the number of dependencies between A and the
ith component of the codebase. A dependency rep-
resents a link between two components and takes the
form of associations or inheritance relations. The de-
pendencies were extracted by analyzing the method
signatures and properties of the components. For in-
stance, if component A has a property of type B, then
we have a dependency between A and B. It is im-
portant to mention that the matrix of elements is not
symmetric: if component A has a link to a component
B, that does not mean that the component B also has a

dependency on the A component. We call this version
of our approach CARL-F1. The accuracy obtained was
24.82%, the best recall was for the View layer, while
the precision was maxim for the Controller (see Ta-
ble 2). The approach did not yield good results as
we had many components which have the same num-
ber of dependencies (similar features), but they were
not similar in term of concerns and roles that they im-
plement. E.g. we have components from the View
layer which had only one other dependency and, in
the same time, we have items in the Model layer with
only one dependency.

Features based on the Type of Dependencies. In
order to improve the performance of the first cluster-
ing attempt we have restricted the dependency-based
features to only two values: 0 if no dependency be-
tween the elements was found or 1 otherwise. This
approach yields better results than the previous one,
as in this approach the direction of the dependencies
matters more than their number. However, we have
chosen not to pursue this path as when we enhanced
the data provided to the clustering algorithms, the re-
sults were not different than using the first approach
– features based on the number of dependencies in
combination with the new data. In addition to this, to
provide more data to the clustering algorithm while
using this approach, we would have doubled the width
of the matrices and then we would run into a feature
selection issue. We call this version of our approach
CARL-F2. The accuracy obtained in this scenario was
almost doubled compared to the first approach – Ac-
curacy is 46.60% in Table 2.

Hybrid Features based on Dependencies and on
the Component’s Name. To further improve the
clustering of the components more information had
to be provided regarding the application’s elements.
After manually analyzing several mobile codebases,
we have seen that there is a correlation between the
names of the components and the layers in which they
would reside. Usually components from the same
layer have similar names (SellerViewController, Buy-
erViewController – for the Controller layer or Sell-
erItemView, BuyerItemView for the View layer) In or-
der to score the similarity between the names of two
components, the Levenshtein distance (Levenshtein,
1966) was computed. For every component A in the
codebase, we have fused, by addition, the number of
dependencies between A and another component B
and the string distance between the A’s and B’s names.
In this manner, for each component a set of hybrid
(structural and lexical) n features is obtained. This
version is called CARL-F3. With the new information
regarding the distance between the components, the
accuracy was improved to 52.46%– see Table 2.

ICSOFT 2020 - 15th International Conference on Software Technologies

200

Hybrid Features based on Dependencies, on the
Component’s Name and on Keywords. Another im-
portant aspect we have discovered while manually an-
alyzing mobile codebases was the fact that the com-
ponents had certain keywords in their names based on
the layer in which they reside. We have noticed that
for the Controller layer, the controller keyword was
present in a large majority of its components, this is
also true for the View layer with the view keyword.
We have enhanced the feature set from the CARL-
F3 approach by considering for each component two
new elements: one for the controller keyword and one
for the view. A component is actually represented by
n + 2 features. If the name of the component con-
tained the view keyword, a value of 500 was consid-
ered, otherwise the feature was set to 0 (W (ci,

′ view′)
is 500 or 0). In the case of the controller, if the name
of the component contained the keyword, a value of
10.000 was used, otherwise, the feature entry was 0
((Kw(ci,

′ controller′) is 10.000 or 0). The large num-
bers were chosen in order for this information to be
viewed as stronger (in opposition to the distance be-
tween the names) by the clustering algorithm. The
values of 500 and 10.000 were also chosen because
the elements from the Controller layer, most specifi-
cally ViewController elements that account for a large
majority of all the components in this layer, contained
both keywords. Thus, their chances of being correctly
clustered increased. We call this version of our ap-
proach CARL-F4. The accuracy was improved by us-
ing the above-mentioned information in the clustering
process with over 20% reaching 78.45% (see Table 2)
on the benchmark application.

Hybrid Features based on Dependencies, on the
Component’s Name, on Keywords and on SDK In-
heritance. In the last scenario, we have enhanced
the CARL-F4 method by taking into account informa-
tion regarding the type of the components, also. In
the mobile SDKs, we have components from which
the developers inherit in order to implement certain
parts of the application. In a typical application, all
the elements presented on the screen inherit from an
SDK defined View element. This is also true for a
large number of Controller elements – which handle
both the input received from the user and the state
of the application. We have constructed lists of all
the View and Controller SDK defined elements and
we have provided the clustering algorithm informa-
tion about whether or not a component inherits from
one of those. In addition to the features involves in
CARL-F4 approach, we have added two new values:
one for indicating whether or not the component in-
herits from an SDK defined View element and one
for the Controller case. For the View element, value

750 was used if the component inherited from the
View component defined in the SDK and 0 otherwise
(InhSDK(ci,View) was 750 or 0). The second value,
for the Controller element, was 2.000 if there was an
inheritance and 0 otherwise (InhSDK(ci,Controller)
was 2.000 or 0). We call this version of our approach
CARL-F5. The new information further improved the
performance of our clustering algorithm by over 12%,
reaching an accuracy 85.25% (see Table 2) on the
benchmark. The View layer seems to be entirely and
correctly detected, but some components that should
belong to the Controller layer are associated with the
Model layer. This result could be a consequence of
the usage of keywords and SDK’s inheritance rela-
tions dedicated to View and Controller clusters, only.
A clusterization improvement is possible to be ob-
tained by extending the set of keywords (by looking
at the coding conventions and standards used in the
code – manually or through an automated process).

Table 2 presents our findings on the benchmark
application in the five feature selection scenarios.

4.5 Empirical Evaluation

After the experiments were run we analyzed the data
and answered the research questions based on the re-
sults obtained. This subsection presents our findings.
RQ1 - What features from the codebase can be
used in a clustering algorithm? In section 4.4 we
have seen five different CARL approaches that gradu-
ally used more features extracted from the codebase.

We were interested in detecting the architectural
layers of the codebase. Therefore, firstly we looked at
the dependencies between the components as struc-
tural features that can be extracted from the codebase.
Based on the number of dependencies we had two ap-
proaches, one where we used the exact number of de-
pendencies between the components and one where
we applied a binary encoding, highlighting the depen-
dency’s presence only.

Another information, a lexical one this time, we
used was the name of the files and we have discov-
ered similar components have similar names. We
measured the similarity using the Levenshtein dis-
tance. In addition, some keywords were also used
for the View and Controller layer where we have ob-
served that developers follow a naming convention.
Furthermore, the SDK inheritance information pro-
vided to the clustering algorithm further improved
the accuracy. These last characteristics enrich the
dependency-based structural features extracted from
the codebase by semantic information and emphasize
the relationship of a component with the used SDK.

To sum it up, we have used the next information:

Detecting Model View Controller Architectural Layers using Clustering in Mobile Codebases

201

Table 2: Analysis of all the five versions of CARL on the benchmark application.

Model View Controller Accu-
Precision Recall Precision Recall Precision Recall racy

CARL-F1 0.50 0.01 0.22 1,00 1,00 0.10 0.24
CARL-F2 0.49 0.93 0.17 0.09 1,00 0.08 0.46
CARL-F3 0.62 0.75 0.33 0.53 0.65 0.22 0.52
CARL-F4 0.70 0.93 0.84 0.83 0.99 0.56 0.78
CARL-F5 0.76 0.99 1,00 1,00 0.99 0.57 0.85

• dependencies between components – the actual
number and a binary version;

• distance between the names of the files – for iden-
tifying groups of elements that share similarities
between names;

• keywords – whether or not the name of the com-
ponent contained certain keywords;

• SDK inheritance – whether or not the component
inherits from an SDK defined one.

RQ2 - How effective is the proposed categorization
method compared to manual inspections? Using
CARL-F5 approach we have obtained an average ac-
curacy of 77,95%, an average precision of 79,32%
and an average recall of 75,93% on all the analyzed
codebases (see Table 3 that presents the results ob-
tained by applying CARL-F5 on all the analysed code-
bases). We have observed that on one of the most
complex and largest projects — Wikipedia — we
have obtained an accuracy of 82,40%. In the case
of the worst-performing codebases analyzed with our
method we have found out that the elements did not
have a consistent naming convention. They did not
contain many elements that had similarities between
names or contained one of the used keywords. Our
method works better in cases where the codebase
is consistent with respect to naming conventions for
each architectural layer and is greatly impacted by the
coding standards and the consistencies of the project.
RQ3 - What are the downsides of applying clus-
tering to a mobile codebase for detecting architec-
tural layers? One of the most important downsides
is the fact that by using the proposed approach the
elements are clustered based on their dependencies
which means that a component can be wrongly de-
tected if it was not implemented properly and has for-
bidden or wrong dependencies.

Moreover our method also used the naming con-
ventions and assumes the presence of certain key-
words. While the keywords can be adapted based on
the specification of the project, this process will be-
come a more complex and less automated one. In ad-
dition to this, if the codebase does not respect certain
naming conventions the proposed approach will also
not yield good results.

Another downside of the proposed approach is the
fact that the clusters have to be manually inspected for

deciding what type of layer do they represent at least
in the case of more specialised architectures with mul-
tiple layers. In the case of our study we have labelled
the clusters based on the type of the majority of the
elements, but in case of large projects with more ar-
chitectural layers this process might not be automated
and manual intervention might be needed.

5 THREATS TO VALIDITY

After the analysis we have found out that CARL
presents the following threats of validity:

• Internal – we used the Levenshtein distance to
compute the string distance metrics. We have
discovered from trial and error experiments the
predefined scores for the Keywords presence and
SDK inheritance methods. In addition, the choice
of clustering algorithm was made purely based
on trial and error experiments; there might be
other approaches that use different mechanisms
that work better.

• External – the experiments were run on the iOS
platform and on the Swift language, there might
be other SDKs and languages which have partic-
ularities which we have not addressed in this pa-
per. Moreover, we have focused this preliminary
research only on the MVC pattern without taking
much into consideration more complex architec-
tural patterns and their particularities.

• Conclusion – from a results point of view, the
ground truth was constructed by a human experts
which might introduce biased based on their ex-
perience. Furthermore, the analyzed codebases
might also be responsible for some bias and more
experiments should be run.

6 CONCLUSION & FURTHER
WORK

With our study, we have proven that there is potential
in using AI techniques in the domain of software ar-
chitectures on mobile devices. The proposed CARL

ICSOFT 2020 - 15th International Conference on Software Technologies

202

Table 3: CARL-F5 results in term of detection quality.

Codebase Model View Controller Accu-
Precision Recall Precision Recall Precision Recall racy

Wikipedia 0.78 0.83 1.00 0.54 0.83 0.98 0.82
Trust 0.79 0.69 0.38 0.66 0.62 0.57 0.66
E-comm 0.76 0.99 1.00 1.00 0.99 0.57 0.85

method works well given the fact that is an unsuper-
vised method that needs to cluster components for
which is hard to define numerical metrics that feed
the clustering algorithm.

This method can not be used as a standalone tech-
nique for identifying architectural issues as it does not
take into consideration the constraints of the code-
base, as it is able to split the codebase based on the
various information obtained from its components but
it cannot decide whether a component should actually
be in a certain layer or not.

With the previous idea in mind, we are planning to
develop a hybrid system in which we’ll use a heuristic
approach combined with the clustering for trying to
further improve the system and to be able to detect
more precisely the components of the codebase.

The proposed approach has a large variety of prac-
tical applications, it can be used for improving the ar-
chitectural qualities of codebases or for educational
purposes where beginners could learn to better struc-
ture their code by enforcing them to follow a certain
architectural pattern.

REFERENCES

Anquetil, N. and Lethbridge, T. C. (1999). Recovering soft.
architecture from the names of source files. Jour-
nal of Soft. Maintenance: Research and Practice,
11(3):201–221.

Belle, A. B., El-Boussaidi, G., Desrosiers, C., and Mili, H.
(2013). The layered architecture revisited: Is it an
optimization problem? SEKE, pages 344–349.

Belle, A. B., El Boussaidi, G., and Mili, H. (2014). Recov-
ering soft. layers from object oriented systems. 2014
9th Int. Conf. on Evaluation of Novel Approaches to
Soft. Engineering (ENASE), pages 1–12.

Constantinou, E., Kakarontzas, G., and Stamelos, I. (2011).
Towards open source soft. system architecture recov-
ery using design metrics. 2011 15th Panhellenic Conf.
on Informatics, pages 166–170.

Daoudi, A., ElBoussaidi, G., Moha, N., and Kpodjedo,
S. (2019). An exploratory study of MVC-based ar-
chitectural patterns in android apps. Proc. of the
34th ACM/SIGAPP Symposium on Applied Comput-
ing, pages 1711–1720.

Fawcett, T. (2006). An introduction to roc analysis. Pattern
recognition letters, 27(8):861–874.

Garcia, J., Ivkovic, I., and Medvidovic, N. (2013). A com-
parative analysis of soft. architecture recovery tech-

niques. Proc. of the 28th IEEE/ACM Int. Conf. on
Automated Soft. Engineering, pages 486–496.

Kuhn, A., Ducasse, S., and Gı́rba, T. (2007). Semantic clus-
tering: Identifying topics in source code. Information
and Soft. Technology, 49(3):230–243.

Le, D. M., Behnamghader, P., Garcia, J., Link, D., Shah-
bazian, A., and Medvidovic, N. (2015). An empirical
study of architectural change in open-source soft. sys-
tems. MSR, 2015 IEEE/ACM 12th Working Conf. on,
pages 235–245.

Levenshtein, V. I. (1966). Binary codes capable of correct-
ing deletions, insertions, and reversals. Soviet physics
doklady, 10(8):707–710.

Mancoridis, S., Mitchell, B. S., Chen, Y., and Gansner,
E. R. (1999). Bunch: A clustering tool for the
recovery and maintenance of soft. system struc-
tures. Proc. IEEE Int. Conf. on Soft. Maintenance-
1999 (ICSM’99).’Soft. Maintenance for Business
Change’(Cat. No. 99CB36360), pages 50–59.

Mitchell, B. S. and Mancoridis, S. (2008). On the evalu-
ation of the bunch search-based soft. modularization
algorithm. Soft Computing, 12(1):77–93.

Müller, H. A., Orgun, M. A., Tilley, S. R., and Uhl, J. S.
(1993). A reverse-engineering approach to subsystem
structure identification. Journal of Soft. Maintenance:
Research and Practice, 5(4):181–204.

Pfitzner, D., Leibbrandt, R., and Powers, D. (2009). Char-
acterization and evaluation of similarity measures for
pairs of clusterings. Knowledge and Information Sys-
tems, 19(3):361.

Russell, S. J. and Norvig, P. (2016). Artificial intelligence: a
modern approach. Malaysia; Pearson Education Lim-
ited,.

Saeidi, A. M., Hage, J., Khadka, R., and Jansen, S. (2015).
A search-based approach to multi-view clustering of
soft. systems. 2015 IEEE 22nd Int. Conf. on Soft.
Analysis, Evolution, and Reengineering (SANER),
pages 429–438.

Sangal, N., Jordan, E., Sinha, V., and Jackson, D. (2005).
Using dependency models to manage complex soft.
architecture. ACM Sigplan Notices, 40(10):167–176.

Sarkar, S., Maskeri, G., and Ramachandran, S. (2009). Dis-
covery of architectural layers and measurement of lay-
ering violations in source code. Journal of Systems
and Soft., 82(11):1891–1905.

Scanniello, G., D’Amico, A., D’Amico, C., and D’Amico,
T. (2010). Using the kleinberg algorithm and vector
space model for soft. system clustering. 2010 IEEE
18th Int. Conf. on Program Comprehension, pages
180–189.

Trust (2018). Trust wallet iOS application. link.
Tzerpos, V. and Holt, R. C. (2000). ACCD: an algorithm for

comprehension-driven clustering. Proc. 7th Working
Conf. on Reverse Engineering, pages 258–267.

Wikimedia (2018). Wikipedia ios application. link.

Detecting Model View Controller Architectural Layers using Clustering in Mobile Codebases

203

