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Abstract: We develop a fault detection strategy for the output ammonium sensor present in wastewater treatment plants.
The only assumed measurements are the output ammonium concentration, the aeration of the reactor and the
incoming volumetric flow to the plant. The incoming ammonium concentration is not measured, resulting in
an important source of uncertainty. We use a IIR model based on Volterra series for predicting the ammonium
measurement and we design a fault detector based on a filter applied on the prediction error and a threshold
comparator to decide whether the sensor is faulty or not. The faults in the sensor are assumed to produce a
slowly decreasing gain due to dirtiness in its surface. The fault detector design is based on the trade-off be-
tween fault detection sensitivity and disturbance rejection (due to measurement noise and model uncertainty).
The design parameters are based in understandable fault indices: time needed to detect the fault, gain deviation
at the time of detection, and poured volume of ammonium until the fault is detected. We use the benchmark
BSM1 to validate the results as a common frame in the study of waste water treatment plants.

1 INTRODUCTION

As one of the results of human activity, wastewater
must be treated before it returns to the environment.
The aim of Wastewater Treatment Plants (WWTPs)
is treating and cleaning wastewater to achieve an ac-
ceptable healthy state before being returned, being,
therefore, crucial agents in an environment-friendly
society. One of the critical aspects in its operation is
the concentration of ammonium of the treated water.
For that purpose, several control strategies have been
developed.

One of the most important technologies that en-
able those control strategies are the ammonium sen-
sors, that allow a tight control of ammonium concen-
tration of the poured water. However, those sensors
are not as reliable as would be desirable due to the
difficult conditions in which they operate. Quite fre-
quently, wrong measurements provided by faulty am-
monium sensors lead to polluted water at the WWTP
output. Sudden faults are usually quite easy to de-
tect, as the measurement is suddenly zero or out of
range. The most difficult faults are those that pro-
duce a slow drift of the measurement due to, for ex-
ample, a progressive accumulation of dirt in the sen-
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sor membranes. The detection of this kind of slow
sensor faults is specially difficult because WWTPs
are complex non-linear dynamic systems subjected
to large disturbances and uncertainties; these systems
deal with wide variations of the inlet wastewater, and
the biochemical and physical processes that happen
in their inside feature limits and saturations. The
detection of sensor faults is an active research area
in WWTPs in different sensor technologies (Kazemi
et al., 2020) and in industrial networked environ-
ments (Pinto et al., 2016).

In (Dovzan et al., 2011), a fault detection algo-
rithm is presented for the ammonium sensor of a
WWTP, using a Fuzzy prediction model. Several vari-
ables are assumed to be measured, including the input
ammonium concentration and the dissolved oxygen in
the reactors. While the dissolved oxygen is a com-
mon measurement in WWTP, the input ammonium
concentration is difficult to be measured in practice,
because the input water is very dirty. A direct com-
parison of the prediction error (with no filtering) with
a threshold is proposed to detect the fault. This has
several drawbacks due to high uncertainties and pe-
riodical patterns in the inlet water behavior. Other
works as (Nagy-Kiss et al., 2012; Garcı́a et al., 2017;
Behzad et al., 2018; Jia et al., 2018) also use both
nonlinear models and nonlinear observers to address
the problem of fault detection.

In this work, trying to decouple the model iden-
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tification problem from the fault detection mecha-
nism design problem, we assume that we have a given
model from which we can obtain some characteristic
values to validate it. From that starting point, this pa-
per presents a fault detection strategy to detect slow
drift type faults of the ammonium sensor in a WWTP.
The plant is assumed to be controlled in closed loop
using the ammonium measurement, and using the aer-
ation as the control action, as in (Moliner-Heredia
et al., 2019). The input flow is also measured, but
not the input ammonium concentration since its mea-
surement is difficult due to the dirt of the input water.

In the literature, many papers about control of
WWTP, as (Zeng and Liu, 2015), (Revollar et al.,
2016; Revollar et al., 2015; Revollar et al., 2017), are
based on the model that the Benchmark Simulation
Model no1 offers (see(Alex et al., 2008)). In this pa-
per, the BSM1 model is used to simulate the behavior
of a WWTP and to test the developed fault detection
algorithm. Some other works try to make the control
tolerant to different faults (Nagy-Kiss et al., 2015).

The proposed fault detection strategy compares
the ammonium output concentration measurement
and a prediction of this variable. This prediction is
based on a relatively simple non-linear Volterra model
with two inputs: the aeration and the input flow. The
error (difference between measurement and predic-
tion) is low pass filtered to reject the fluctuations due
to the daily and weekly patterns of input ammonium
concentration and the input flow. The paper studies
the relation between the filter time constant, the time
needed to detect a fault and the deviation of the mea-
surements at the detection time, leading to the selec-
tion of the filter that minimizes the volume of poured
ammonium that is out of control.

The paper is structured as follows. First, the prob-
lem of ammonium sensor fault detection in WWTP is
described. Then the prediction model used is detailed.
The fault detection algorithm is then developed, fol-
lowed by extensive simulation results to test the va-
lidity of the approach. Finally, some conclusions are
summarized.

2 PROBLEM STATEMENT

This paper deals with the problem of detecting slow
drift type faults in the output ammonium concentra-
tion sensor in waste water treatment plants, in which
the output ammonium is controlled in closed loop us-
ing that ammonium sensor as output measurement,
and the aeration as control action. We have used a
realistic simulation model of the WWTP to test the
fault detection algorithm. This model is the widely

known Benchmark Simulation Model nº 1 (BSM1)
(Alex et al., 2008). This model describes the behavior
of a biological reactor with two non-aerated compart-
ments followed by three aerated compartments. The
equations that regulate this reactor come from the Ac-
tivated Sludge Model nº 1 (ASM1, see (Henze et al.,
1987)). The BSM1 also describes the behavior of the
secondary clarifier. An explanation of these equations
can be found in (Vilanova et al., 2017).

As it can be seen in Figure 1, inlet wastewater
(Qi) enters the bioreactor and crosses all the com-
partments. In the meanwhile, bacteria stored in the
reactor treat the wastewater, eliminating some com-
ponents and generating some others. In the last com-
partment, there is a bifurcation, where some of the
flow (Qint ) is recycled back to the first compartment,
and the other part flows to the secondary clarifier
(Q f ). Here, wastewater is subjected to a settling pro-
cess, and the flow is yet divided into the effluent (Qe),
which may be dumped directly into the river, and the
underflow (Qu), which is rich in particulate compo-
nents. This flow is partially purged to eliminate some
of these particles, which results in the generation of
sludge (Qw). The rest of the flow (Qr) is also recycled
back to the first compartment of the biological reac-
tor.

The differential equations that model the BSM1
use 13 different internal states for each compartment,
which correspond with 12 components and a measure
of alkalinity. In this paper, due to the recent improve-
ments in the field of ammonium sensors, we have cho-
sen the ammonium concentration in the effluent flow
(SNH,e) as the measured variable. In correspondence
with the BSM1 example, the oxygen transfer coeffi-
cient in the fifth compartment (kLa5) is the main con-
trollable input. A controller (denoted by C in Fig-
ure 2) is assumed to be operating in closed loop, mea-
suring the output ammonium, and modifying the aer-
ation (the oxygen transfer coefficient) in order to pour
the water with a given prescribed ammonium concen-
tration. The control algorithm is not relevant for this
paper, but we assume that the closed loop behavior is
stable.

The fault of the sensor to be detected is assumed
to be a slow negative ramp variation of the sensor gain
(K, being equal to 1 in normal conditions), which
presents progressively smaller measurements, lower
than the real output concentration, i.e., K < 1. This
kind of fault is more difficult to detect that a step like
fault, specially in this process since it has very com-
plex non-linear dynamics. There is also an important
uncertainty in the ammonium concentration of the in-
put flow, which is not measured (denoted as distur-
bance d in Figure 2). Note that the controller only
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Figure 1: BSM1 Model Adaptation.

knows the concentration given by the sensor, not its
real value. The fact that the sensor shows lower val-
ues than the real concentration makes the controller to
actuate in such a way that the real ammonium may be
over the desired constraints.

The proposed fault detection strategy is based on a
predictor that estimates the value of the output ammo-
nium, using as input data the input flow and the con-
trol action (the oxygen transfer coefficient). The error
(difference between measurement and prediction) is
evaluated to conclude if a fault occurs in the sensor.
In the following sections we explain in detail the pre-
diction model and the fault detection mechanism.

3 PREDICTION MODEL

We propose a simple infinite impulse response (IIR)
non-linear model based on Volterra series to com-
pute the prediction of the output ammonium concen-
tration, at 1 minute sampling period. The inputs of
the model are the input flow (Q) and the control ac-
tion (u, the oxygen transfer coefficient), and its output
is the WWTP output ammonium concentration (y).
The equation (1) shows the structure of the proposed
model:

ŷ[k] = y0 +
n

∑
i=1

aiŷ[k− i]+
m

∑
i=1

biu[k− i]+

+
m

∑
i=1

ciu[k− i]2 +
m

∑
i=1

diQ[k− i]+

+
m

∑
i=1

eiQ[k− i]2 +
m

∑
i=1

fiQ[k− i]u[k− i] (1)

The model is linear in the parameters (y0, ai, . . . , fi),
and they are obtained through least squares identifi-
cation from simulated data without sensor fault. The
simulations are run with the BSM1 model and the in-
cluded input flow data. Several models can be used

to predict the value of the sensor, as well as identi-
fication techniques. In this work, we focus on the
problem of detecting a fault on the sensor from a
given model (the one presented here or another one)
by means of filtering the estimation error and defin-
ing a threshold. This threshold is computed taking
into account that the predicted values have some error
due to both modelling errors and sensor noises, and
the filtered error takes into account its effect on the
ability to detect faults.

4 FAULT DETECTION
MECHANISM

The fault detection strategy consists of low pass fil-
tering the error between the measurement of ammo-
nium and the prediction given by equation (1) and
then compare it with a given threshold at each period
k. Figure 2 shows the complete detection diagram.

We propose to use a low pass filter because
there are modeling errors and important uncertainties
that have a quasi periodical shape, mainly daily and
weekly variations of the incoming water ammonium
concentration. This means that, in absence of sensor
faults, the error will have an important quasi periodic
variation that should be filtered to get a smoother sig-
nal. On the other hand, the modeling error produces
a bias in the error signal, i.e. the average is not zero.
Note that the identification of the parameters in (1)
with a least squares method does not guarantee a zero
mean estimation error.

The proposed filter is detailed in equation (2), in
which y[k] is the measurement at period k and ỹ f [k] is
the filtered error. Filter time constant τ is defined in
minutes.

ỹ f [k] = e−
1
τ ỹ f [k−1]+ (1− e−

1
τ )(y[k]− ŷ[k]) (2)
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Figure 2: Fault detection mechanism (yre f : ammonium reference, u: aeration, d: disturbances, Q: input flow, K: sensor gain,
y: measured ammonium, ŷ: estimated ammonium, ỹ f : filtered estimation error, ỹth: threshold).

The detection logic (3) is simply a comparison of this
filtered error with a threshold ỹth.{

if |ỹ f [k]|> ỹth : fault,
otherwise : no fault.

(3)

This threshold must be defined from fault free data to
avoid false alarms (or more precisely to reach a given
low rate of false alarms), filtering these data (i.e., es-
timation error) from a sufficient large time window
(the one needed to stabilize the behavior of the filtered
data for the chosen time constant) and computing its
maximum value, i.e.,

ỹth = max
k∈[1,N]

|msỹ f [k]|, (4)

where ms is a security margin (ms ≥ 1) to avoid false
alarms in the case that errors are different in other op-
eration points or control situations. Obviously, this
threshold is a function of the filter time constant (the
higher the time constant, the lower the threshold).
However, it does not converge to zero; it has a lower
bound because of the inherent bias in the error signal
due to modeling errors.

We define the detection time (td) as the time
elapsed since the gain of the sensor starts the descent
until our filtered prediction error reaches the thresh-
old. The time constant of the filter (τ) affects the value
of the threshold as well as the evolution of the filtered
signal, and, therefore, affects the achieved detection
time as well as the value of the fault (the gain in the
sensor due to dirty) at the instant of detection.

If we assume a slowly varying ramp like fault, a
very high value of τ will lead to a threshold close to
the lower bound determined by the error bias and the
filtered error will change very slowly because of the
high τ what, altogether, will cause a high detection
time. On the other hand, a very low value of τ will
also lead to a high detection time because of the high
value of the corresponding threshold.

Thus, we can find an intermediate value of τ that
minimizes the detection time or other interesting in-
dices that measure the performance of the fault de-
tector. As the ammonium sensor is used to control
the concentration of ammonium that is poured and it
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Figure 3: Measured ammonium and its estimation during
one week.

must be under control to avoid environmental or le-
gal problems, a good performance index can be the
amount of poured ammonium that is over the legally
allowed concentration, between the time of fault ap-
pearance and the instant of detection of the fault.

5 SIMULATION RESULTS

In this section we present the proposed algorithm re-
sults applied to data from the BSM1. First, we have
excited the system with the inlet flow included in the
BMS1 and several random operations on the control
action that keep the ammonium between a certain op-
eration range and excite sufficiently the plant to per-
form an identification. Then, we extract a data set to
apply least squares and to get the model parameters,
and another data set to validate the model predictions.
Figure 3 shows the measured ammonium and the es-
timated one during a particular week in the validation
set.

The estimation error (difference between mea-
sured and estimated ammonium) has some random
behavior and a significant periodical pattern due to
the daily and weekly variations of the inlet flow. Fig-
ure 4 shows the frequency spectrum of the estimation
error showing the important peaks that appear in the
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Figure 4: Frequency spectrum of the estimation error, show-
ing the high effect of periodical disturbances.
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Figure 5: Computed threshold with fault-free data with dif-
ferent time constants.

frequency related with one week and their harmonics,
and in the frequency related with one day and their
harmonics.

We have filtered the fault free estimation error
with several time constants, obtaining the thresh-
olds (4) with ms = 2. Figure 5 exhibits the relation
between the filter time constant τ and the threshold
obtained. There is a maximum threshold of 0.83 mg/l
for fast filtering and a minimum threshold of 0.047
mg/l for slow filtering (related with the mean estima-
tion error of the proposed model).

Then, we have simulated several ramp faults in the
BSM1 benchmark. For that, we have modified the
output ammonium concentration measurement multi-
plying it by a time varying gain that starts initially in
1 and then has a constant decay. Since that measure-
ment is used in the control algorithm, the fault implies
that real ammonium concentration does not track the
reference of the controller (it is higher than the am-
monium reference). We have simulated gains with
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Figure 6: Sensor gain evolution for the four simulated sce-
narios.

4 decay ratios: r1 = 0.7%, r2 = 2.8%, r3 = 7% and
r4 = 28% per week. Figure 6 shows the different time
varying gains simulated.

Then, we apply comparison (3) to the obtained
faulty signals for different time constants (τ) of the
filter. Figure 7 shows the filtered estimation error for
time constants of 0.02, 1, 10 and 120 days (0.02 days
≈ 30 min) under the fault with the lower gain decay
r1, and the corresponding computed threshold by fil-
tering fault free data with that time constant. We see
that for low values of the time constants (i.e., practi-
cally no filtering), the threshold is high and that im-
plies a large detection time. For high values of the
time constant, the absolute filtered error changes very
slowly and that also generates a large detection time.
For intermediate time constants we obtain lower de-
tection times.

Figure 8 shows the obtained detection times td for
the four simulated gain decays with time constants
from 10−3 days (i.e., 1.4 min) to 103 days. We see
that for time constants between 0.4 days to 10 days
we have a different minimum detection time for each
situation. Figure 9 shows the value of the simulated
sensor gain reduction at the time of detection for each
explored time constant.

In a real application we do not know a priori which
will be the real decay for the faulty sensor, so we
cannot directly decide an optimum value for the time
constant from the analysis of detection time and the
value of the gain at that instant. In order to decide
a filtering time constant that gives good results in all
cases, we analyze now the poured volume of ammo-
nium that is out of the control specifications in each
situation; this can be computed as the integral of the
product between real ammonium concentration and
the flow during the time from fault appearance until
fault detection. That value is proportional to the prod-
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Figure 7: Filtered error and threshold for different time constants in the experiment with lower gain decay rate (r1). Fault
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Figure 8: Achieved detection time for different experiments
and time constants.

uct between detection time and simulated sensor gain
reduction at the time of detection (figures 8 and 9).

Figure 10 shows that value, evincing that the min-
imum values for each of the simulated sensor gain de-
cays are closer (in terms of τ) than the ones for the de-
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Figure 9: Sensor gain deviation at the time of detection with
different time constants.

tection time. We have also included in the figure the
average of the poured ammonium for the four simu-
lated scenarios. The conclusion is that time constants
in the range [1,10] days are a good choice to minimize
the estimated poured volume.
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Figure 10: Estimated ammonium mass that is out of speci-
fication until the detection of the fault.

6 CONCLUSIONS

A fault detection strategy has been proposed to detect
faults in the output ammonium sensor of waste water
treatment plants. The plant is assumed to be oper-
ated in closed loop by a controller that measures the
ammonium, and changes the aeration of the reactor.
The faults are assumed to be a slow drift of the mea-
surement. The only signals that are assumed to be
measured are the ammonium sensor, the aeration and
the incoming volumetric water flow. The input am-
monium concentration is not measured. The BSM1
model is used to simulate the behavior of the plant
and validate the proposal.

The fault detection scheme is based on a predic-
tion model that predicts the output ammonium, and
the comparison of the filtered prediction error with a
threshold. The predictor is based on a Volterra se-
ries based IIR model, whose parameters are obtained
through least squares identification.

Despite the modeling errors that produce a bias
in the prediction error, plus the important uncertainty
in the input ammonium concentration, that follows a
quasi periodic daily and weekly pattern, the proposed
fault detector detects the slow varying fault. The pa-
per shows that the detection time depends on the time
constant of the filter, and concludes that there is an
optimum value that minimizes the fault detection time
for a given sensor drift. This optimum value depends
on the magnitude of the fault, so we have proposed
to use the constant time that minimizes the estimated
poured volume of ammonium out of control specifica-
tions for the range of proposed faults. Future research
lines come from studying the behavior of our proposal
in other scenarios as rainy days or storms.
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