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Abstract: NAND flash-based embedded storage may spend a long time on responding to a host storage system. Most of
the flash translation layers (FTLs) of the embedded flash storage utilize a granular page-mapping level. How-
ever, they did not pay heed to page mapping management that causes the internal overhead of the page-level
FTL. This overhead might damage the response time, especially after the random writes to the embedded flash
storage. In this paper, we propose a novel method to reduce the internal overhead related to the page mapping
write. This method exploits a virtually-shrunk segment exclusively to the page mapping table, which is im-
plemented by our mapping-segmented flash translation layer (MSFTL). One mapping segment is intrinsically
composed of consecutive page mappings smaller in size than a logical page of the host system. As a result,
MSFTL drastically reduces the amount of page mapping data written and therefore improves both the average
and worst response time compared with the fine-granularity page-level FTLs.

1 INTRODUCTION

Over the past decade, an embedded flash storage de-
vice (e.g., UFS (Standard, 2018) or eMMC (Whitaker,
2015b)) has been able to adopt NAND flash memory
by leveraging many mapping schemes (Ban, 1995;
Gupta et al., 2009; Kim et al., 2002; Lee et al., 2006;
Lee et al., 2007). Among the mapping schemes, a
flash translation layer (FTL) of the embedded flash
storage arguably considers a page mapping as the
best mapping scheme, which serves storage space in
smartphones, autonomous vehicles, and Internet-of-
Things (IoT) devices. Because the page mapping is
a granular component, the page-level FTL can eas-
ily combine the other techniques improving the per-
formance and lifetime of NAND flash-based storage.
However, the granular page details give birth to a
large page mapping table.

To manage the large page mapping table contain-
ing all the page mappings, the page-level FTL uses
both volatile and non-volatile memory in the embed-
ded flash storage. When preparing for translating the
page mapping locations, the page-level FTL should
first locate the page mappings in the volatile memory.
And, if the page mappings are for the user data written
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by the host system, the page-level FTL should record
the corresponding page mappings into the volatile
memory. Besides, to keep the consistency (Moon
et al., 2010) of those up-to-date page mappings, the
page-level FTL has to store the page mappings into
the non-volatile memory, such as NAND flash mem-
ory.

The data amount of the page mappings to be writ-
ten may rise in the embedded flash storage as one of
the internal overheads. When storing the page map-
pings into NAND flash memory, the page-level FTL
should use NAND page programming soliciting data
as much as a NAND page (Grupp et al., 2009). In
this constraint, the page-level FTL needs to maximize
the throughput of storing the page mappings updated
into one NAND page. However, even when storing a
few page mappings updated, the page-level FTL saves
them by filling the insufficient amount with data, such
as other page mappings unchanged. Furthermore,
since the NAND page size has increased (Kim et al.,
2015b; Takeuchi, 2009) continually by NAND fab-
rication evolution, the NAND page enlarged might
exacerbate the insufficient amount to store the page
mappings and degrade the performance of the embed-
ded flash storage.

Many researchers have studied several tech-
niques (Lee et al., 2017; Lee et al., 2013; Ma et al.,
2011; Park and Kim, 2011) based on the page-level
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FTL to reduce the internal overhead. They have in-
spected the behavior of the data, such as the data lo-
cality and I/O request size, and tried to improve the
garbage collection overhead of the page-level FTL.
However, as well as conducting the garbage collec-
tion, the page-level FTL should govern the page map-
pings and preserve them in NAND flash memory. To
improve the internal overhead of the page mapping
writes, the page-level FTL could set the granularity
to the smaller mini-page size (Lv et al., 2018). How-
ever, if the granularity decreases by half, even twice
the resources (e.g., volatile and non-volatile memory)
should be needed for the page mapping table. As
another technique, the page-level FTL might employ
the sub-page programming (Kim et al., 2015a) storing
data with a smaller size than one NAND page. But,
this technique decreases the NAND page size physi-
cally and focuses on improving the lifetime of NAND
flash memory.

In this paper, we state a new mapping segmenta-
tion method that is to exploit a virtually-shrunk seg-
ment. Exposing this small segment exclusively to the
page mapping table makes a higher resolution. There-
fore, the page-level FTL can adjust the page map-
pings more precisely without being more granular
to its page-mapping level. Our mapping-segmented
flash translation layer (MSFTL) integrates this novel
method into the page-level FTL. Because the data
amount of the segment is less than the NAND page,
MSFTL collects it as much as the necessary data
amount for the NAND page programming. The evalu-
ation results show that MSFTL drastically reduces the
data amount of page mappings written and therefore
improves both the average and worst response time
compared with the fine-granularity page-level FTLs.

2 BACKGROUND AND
MOTIVATION

Because of the advantage of the small page granular-
ity, the page-level FTL conducts the data transactions
lightly. This flexibility also gives many chances to im-
prove the performance and lifetime of NAND flash-
based storage (Gupta et al., 2009; Kim et al., 2002;
Lee et al., 2017; Lee et al., 2013; Lee et al., 2006;
Lee et al., 2007; Lv et al., 2018; Ma et al., 2011; Park
and Kim, 2011). By referring to the host system, such
as an operating or a file system, the page-level FTL
defines the page mapping granularity as the 4-KiB
size nowadays. However, this small page granular-
ity gives birth to a large page mapping table in NAND
flash-based storage. For example, 1-TiB NAND flash-
based storage needs the 1-GiB space if an entry of

the page mapping table is four bytes. Consequently,
the page-level FTL manages this entire page mapping
table to operate the page mapping-level scheme cor-
rectly.

The embedded flash storage, as one of the NAND
flash-based storages, employs both volatile and non-
volatile memory to keep the page mappings consis-
tently. The volatile memory works as the mapping
cache and holds only a fraction of the entire page
mapping table. When the host system or the inter-
nal operation, such as a garbage collection (GC) of
the page-level FTL, writes its data to NAND flash
memory of the embedded flash storage, the page-level
FTL updates the corresponding page mappings into
the mapping cache first. After that, to prevent the data
loss of the page mappings from the event of a power
cycle, the page-level FTL intentionally stores the page
mappings into the non-volatile NAND flash memory.
We define this writing activity for the page mappings
as a mapping flush. The mapping flush is typically
related to the booting time (Whitaker, 2015a; Zhang
et al., 2014) of the embedded flash storage. Besides,
because of the small amount of the volatile memory in
the embedded flash storage, the page-level FTL usu-
ally writes the page mappings when they are evicted
from the mapping cache by the cache policy.

When conducting the mapping flush, the page-
level FTL writes the page mappings by using the
NAND page programming of NAND flash memory.
Because NAND flash memory operates with its pe-
culiarities (Grupp et al., 2009), such as erase-before-
program constraint, unbalanced operation latency,
and different fixed unit sizes of operations, the page-
level FTL ensures these characteristics of NAND
flash memory. For these reasons, when performing
the NAND page programming, the page-level FTL
fills the necessary minimum amount with the page
mappings, which is commonly called a translation
page since the demand-based flash translation layer
(DFTL) (Gupta et al., 2009). The translation page
consists of continuous page mappings of the page
mapping table (PMT) similar to the simple linear ad-
dressing organization (Wei et al., 2015). Based on the
NAND page size, the page-level FTL determines the
number of the page mappings in the translation page.
For instance, Figure 1 depicts PMT0 that starts from
a logical page number 0 (LPN0) and ends up in each
last LPN (i.e., LPN4095, LPN2047, or LPN1023).

Utilizing the latest three-dimensional (3D) NAND
flash memory with the 16-KiB NAND page size, we
have implemented the baseline page-level FTL, which
is called Base-DFTL. Base-DFTL manages the entire
page mapping table with the translation pages written
in the translation blocks. The mapping flush of Base-
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Figure 1: A page mapping write used in typical page-level
FTLs with translation pages.

DFTL starts from (1) and ends to (4) described in Fig-
ure 1. Because LPN0 and LPN1 belong to PMT0
are updated in the mapping cache, the PMT0 as the
source for the NAND page programming is read from
the translation block first (1). Base-DFTL refers to
the global translation directory table (GTD) to look up
the PMT0 location in the translation blocks. After the
read of the PMT0 source, since two LPNs were up-
dated, Base-DFTL transfers two physical page num-
bers (PPNs) of the LPNs into the NAND page buffer
(2), which is called a batch update. Lastly, Base-
DFTL creates the new translation page of PMT0 by
using the NAND page programming (3-4). Because
Base-DFTL copied the PMT0 source, we can notice
that almost every page mapping of the new translation
page is the same as the one of the PMT0 source. How-
ever, this process satisfies the minimum data amount
with the page mappings of PMT0 to complete the
NAND page programming. Actually, during the map-
ping flush, Base-DFTL may have many page map-
pings updated among the different PMTs. Therefore,
the page mappings updated merely from the one PMT
source might increase the internal overhead.

To analyze the data amount of the page mappings
updated in the new translation page, we have evalu-
ated the Base-DFTL with 31 application I/O traces of
the smartphone. Section 4 explains the detail parame-
ters of this experiment. As a result of the experiment
shown in Figure 2, the ratio of the page mappings up-
dated in the 16-KiB NAND page programming av-
erages a 5.8% ratio. Because this updated ratio was
meager, we realized that the larger size of the transla-
tion page did not benefit from the mapping flush. As
another experiment, we replaced the 16-KiB NAND
page with either the small 8-KiB or 4-KiB NAND
page and re-evaluated it with the same parameters.
These results still show that the updated average ra-
tios are 7.7% and 10.1%, however. This reason has
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Figure 2: Update ratios measured by the smartphone I/O
traces on various NAND page sizes.

motivated us to reduce this internal overhead caused
by storing the page mappings into NAND flash mem-
ory.

3 MSFTL ARCHITECTURE

3.1 Virtually-shrunk Mapping Segment

MSFTL is based initially on Base-DFTL to manage
the same page mapping table. However, to mitigate
the data amount relevant to one PMT source, MS-
FTL exploits a virtually-shrunk segment exclusively
to the PMT. Because this segment is smaller in size
than a logical page (i.e., 4 KiB), MSFTL lowers the
data amount of the page mappings written by us-
ing this segment, which is called a mapping segment.
Through the small mapping segment, MSFTL makes
a higher resolution expanding the range of choice in
the page mapping table. In our experiments, the map-
ping segment has virtually shrunk as several multiples
of 1 KiB (i.e., 1 KiB and 2 KiB). Note that the 1-KiB
is a minimum data size protected by the error correc-
tion code (ECC) of the internal hardware controller
on the embedded flash storage.

Figure 3 compares the PMT to a mapping segment
table (MST) separated by the virtually-shrunk seg-
ment. As we know it, there was no segment (NS) in
the Base-DFTL. However, the two-segment (2S) case
by MSFTL cuts a NAND page into halves holding
the mapping segment each. Likewise, the 16-segment
(16S) case separates the NAND page into sixteen re-
gions. By being more granular with the segment,
MSFTL can detail the MST grasping the page map-
pings. By the way, whenever MSFTL stores the MST
into NAND flash memory, there is a situation to fill
the minimum data amount for conducting the NAND
page programming. The following section describes
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Figure 3: Virtual-Shrunk segmentation and the collection of
the mapping segments for the page mapping write.

how to gather the small mapping segments in detail.

3.2 Mapping Flush for Mapping
Segments

MSFTL aims to store all the MSTs containing any
page mappings updated. During the mapping flush,
whenever the condition of the minimum data amount
accepts, MSFTL conducts the NAND page program-
ming. Because this collection technique merges the
different MSTs into one NAND page, the number of
the page mappings updated increases naturally on the
NAND page programming. Therefore, MSFTL takes
advantage of the collection technique to improve the
updated ratio commented in Section 2.

We depict the collection of the MSTs in Figure 3.
Instead of using one PMT source of Base-DFTL, MS-
FTL gathers several MST sources for one NAND
page programming. First, MSFTL fetches the cor-
responding MST sources by looking up the mapping
segment directory table (MSD). Then, all the page
mappings belong to the MSTs are updated from the
mapping cache. If one NAND page buffer is full of
the MSTs, the NAND page programming executes.
This collection of the MSTs increases the number of
the updated page mappings on one NAND page pro-
gramming. We also describe this processing sequence
from (1) of Figure 3 to (4).

When gathering several MSTs, MSFTL could
raise the additional overhead not happened in Base-
DFTL. During the batch update of one PMT source,
Base-DFTL spends one NAND page read timing on
loading the translation page from NAND flash mem-
ory. However, MSFTL should collect the differ-
ent MSTs until one NAND page buffer is full. If
the MSTs have spread to several different NAND
pages, MSFTL consumes more NAND page read tim-

ing than Base-DFTL. By the way, in addition to the
NAND page read timing, the mapping flush contains
other remaining processes to be done. In Table 1, we
can notice that a NAND page programming timing is
ten times longer than the NAND page read. Because
MSFTL reduces the number of the NAND page pro-
grammings as many as the number of the MSTs col-
lected, MSFTL lowers the entire operation time of the
mapping flush.

3.3 Mapping Segment Directory Table

MSFTL uses the mapping segment directory (MSD)
table to direct the locations of the MSTs written in
NAND flash memory. Because the number of the
MSTs is more than that of the PMTs, the MSD ta-
ble size increases, and it correlates to one MST size.
As the MST size becomes small, the MSD table size
increases linearly. And the higher storage capacity
enlarges the MSD table size as well. If we apply
a 128-GiB storage capacity, NS uses 32-KiB space
and, 16S needs (i.e., 1-KiB MST) 512-KiB space six-
teen times of NS. However, this space is worth bring a
higher resolution to the page mapping table. So then,
MSFTL caches the entire MSD table to the volatile
memory. Similar to this approach, we can consider
the fine-granularity FTL, such as the mini-page level
FTL (Lv et al., 2018). However, this smaller page-
mapping granularity needs 512-MiB space to adopt
the same 1-KiB level.

To keep the MSD table consistency after a power
cycle, MSFTL stores the MSD table to the translation
block along with the MST. After writing the MSTs
to the translation block, MSFTL records the locations
of the MSTs in the MSD table of the volatile mem-
ory first. Whenever this MSD table changes, MSFTL
does not store the MSD table immediately into the
translation block, however. Because MSFTL can re-
cover the MST locations by scanning the translation
block, MSFTL stores the entire MSD table sparsely
before conducting the GC of the translation blocks.

3.4 Garbage Collection for Translation
Blocks

MSFTL utilizes the update block scheme to store the
MST and MSD table. If there is no free space in the
translation update block, MSFTL conducts the GC of
the translation blocks with the traditional greedy pol-
icy (Rosenblum and Ousterhout, 1992). As the victim
block for the GC, MSFTL chooses one of the transla-
tion blocks. To retain the free space maximum after
conducting the GC, MSFTL considers the number of
up-to-date MSTs held in the translation block. There-
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fore, among all the translation blocks, the number of
up-to-date MSTs in the victim block is the smallest.

We realize that the number of MSTs increases by
shortening the PMT. In the 16S case, the total num-
ber of MSTs is sixteen times as large as that of NS.
During the GC of the translation block, MSFTL relo-
cates all the up-to-date MSTs of the victim block into
a free block. However, the up-to-date MSTs could
exceed the free page limit, such as the number of free
pages in a free block.

To resolve this problem, MSFTL assembles the
up-to-date MSTs of the victim block during the GC
of the translation block. This process is similar to the
MST collection of the MSFTL mapping flush. The
more granular MSFTL raises the number of MSTs.
However, MSFTL minimizes the internal overhead by
employing this kind of MST collection method.

4 EXPERIMENTS

4.1 Evaluation Methodology

To investigate the detail of the page mapping writes
in the page-level FTLs, we have implemented a trace-
driven FTL simulator that processes block-level traces
of the host system. The first page-level FTL is
the baseline Base-DFTL that ordinarily allocates one
NAND page for the translation page, which is iden-
tical to the DFTL scheme (Gupta et al., 2009). The
second one is the mini-page FTL (Lv et al., 2018)
using the logical small page-level granularity as the
translation page (i.e., 4 KiB). Lastly, we evaluate MS-
FTL exploiting two types of the segment, such as
2 KiB and 1 KiB. They are called as MSFTL-2KiB
and MSFTL-1KiB, respectively. To conduct the map-
ping flush along with the user writes, we nominate
9 MiB that accounts for the data amount written to the
embedded flash storage as much as one NAND block
size. And, the logical page-mapping granularity is the
same as 4 KiB in all the FTLs.

We have simulated 128-GiB NAND flash-based
storage by using four 3D NAND flash chips (Sam-
sung, 2014). Table 1 describes the features of the
NAND flash chip. Because the response time of the
embedded flash storage is highly relevant to the per-
formance of NAND flash memory, we calculate the
FTL operation time, lastly, with the NAND perfor-
mance parameters such as the NAND access time of
Table 1. Note that the over-provisioning space (Smith,
2012) is about 5.0% of the entire capacity made from
four NAND flash chips. The block layout of the
over-provisioning space is composed of the transla-
tion update block, the user update block, the trans-

Table 1: Characteristics of 256-Gb TLC 3D NAND flash.

NAND Structure Page Size 16 KiB
Block Size 9 MiB

Block Count 3776
NAND Access Time Page Read 49 µs

Page Program 0.6 ms
Block Erase 4.0 ms

Byte Transfer 1.25 ns

lation blocks, and the free blocks. The remaining
blocks become the user data space visible as the em-
bedded flash storage capacity to the host system.

First, we evaluate two kinds of synthesized data
patterns to analyze the aspect of page mappings writ-
ten by the three different page-level FTLs. These syn-
thesized patterns are composed of sequential and ran-
dom address patterns. And then, in the end, we exper-
iment with the data patterns of the real-device smart-
phone. Because the smartphone workloads logged
from various kinds of applications (Zhou et al., 2015),
the data patterns of the smartphone show us mixed
address patterns with sequential and random data pat-
terns. Using these data patterns, we measure the data
amount of page mappings written, which reflects the
update ratio mentioned in Section 2.

4.2 Analysis with Synthesized Data
Pattern

We measure the data amount of page mappings writ-
ten by using the sequential data pattern. The trace-
driven FTL simulator writes 126.14-GiB with a 16-
KiB chunk consecutively to the FTL, which starts
from the clean-slate state. In our evaluation, the
clean-slate state means that the FTL has never writ-
ten the data after the FTL simulator initialized.

In the result of the sequential pattern, Base-DFTL
stored 339.9-MiB page mappings to NAND flash
memory. This data amount is only 0.3% of the en-
tire data written, however. Because the batch up-
date by the sequential patterns has updated almost ev-
ery page mapping in the translation page, this data
amount of the page mappings written should be small
in quantity. Though, both the mini-page FTL and
MSFTL reduced that amount. Since they have col-
lected the page mappings spread between two adja-
cent PMTs, the data amounts of the page mappings
written reduced to 224.3 MiB. Therefore, the mini-
page FTL and MSFTL drop the page mappings writ-
ten by 33.3% of Base-DFTL. As we expected, the data
amount of the directory and the MSD table written has
increased slightly. Consequently, the mini-page FTL
lowers them totally by 32.6% of Base-DFTL. Because
of the enlarged MSD table, MSFTL reduces them by
either 32.2% or 28.1%.
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To start over with the random address pattern, we
access data with several degrees of the spatial local-
ity. The degree of the spatial locality is different in
the size of the user space and the data amount writ-
ten to that space. For example, a high spatial locality
(i.e., 9:1) represents that many user data write to the
small user data space. And, a uniform spatial locality
(i.e., 5:5) means that we write data evenly to the entire
user data space. Similar to the sequential data pattern,
the data write operates with the 16-KiB chunk. And,
the total amount of data written is 126.14 GiB as the
whole user data space.

Figure 4 shows every data amount written, which
consists of the user and page mapping data. Contrary
to the sequential results, the data amount of page map-
pings written to NAND flash memory is considerable.
Because the batch update by the random patterns has
only updated a few page mappings in the translation
page, the mapping flush should write the page map-
pings updated in many different translation pages by
using NAND page programming. Especially in the
result of Base-DFTL, the data amount of page map-
pings written reached to 97.6% of the amount of user
data written. Thanks to the small translation page, the
mini-page FTL dropped the page mappings written by
48.5% of Base-DFTL.

Differently, MSFTL adopts the virtually-shrunk
segment without extending resources for the page
mapping table, such as the mini-page FTL scheme.
The smaller segment of MSFTL has more advantage
of raising the resolution to the specific page map-
ping area. Therefore, MSFTL-1KiB reduced the data
amount of page mappings written by up to 92.1% in
the random patterns. The data amounts of the GTD
and MSD table written were quite small, by the way.
Their averages were less than 1.0% of the total page
mapping data written. After this section, the data
amount of page mappings written includes the GTD
and MSD table data.

4.3 Analysis with Real-device
Workloads

Finally, we evaluate three different page-level FTLs
by using the smartphone workloads of embedded
flash storage. These workloads consist of 31 block-
level I/O traces logged from 18 typical applica-
tions (e.g., Email and Twitter) of a Nexus-5 smart-
phone (Zhou et al., 2015). The I/O traces in (Zhou
et al., 2015) show a mixed pattern with the sequential
and random address. However, most of the data pat-
terns are close to the randomness, and the amounts of
data are not sufficient to provoke the GC in the clean-
slate state. So, the FTL simulator writes a certain
amount of data with the synthesized random pattern
in advance. Through this precondition, the FTL can
conduct the GC when the FTL simulator injects the
smartphone workloads into the FTL. The amount of
data written is a quarter, half, or full of the entire user
storage space. The x-axis of Figure 5 differentiates
the precondition. Lastly, we evaluate the FTLs with
the smartphone workloads in these preconditions.

In the results of the smartphone workloads shown
by Figure 5, three different FTLs show the same
amount of user data written by the smartphone work-
loads. However, the precondition escalates the data
amount of the GC data written. This GC worsens the
data amount of page mappings written along with the
random patterns of the I/O traces. Consequently, it
reaches up to 177.9% of the user data written, espe-
cially in Base-DFTL.

By utilizing the small logical page granularity of
the host system to the translation page, the mini-
page FTL reduces the data amounts of the page map-
pings written. However, MSFTL brings more en-
hanced results than the mini-page FTL by adopting
the virtually-shrunk segment that details the granu-
larity, especially for the page mappings. Figure 5
compares the results evaluated by Base-DFTL, the
mini-page FTL, and MSFTL. MSFTL-1KiB drops
the entire amount of data written by 31.4%, 48.2%,
and 58.8% of Base-DFTL in the quarter, half, and
full case, respectively. Moreover, MSFTL-1KiB im-
proves by up to 8.5%, 16.0%, and 23.0% of the mini-
page FTL.

To clarify the performance gain occurred by low-
ering the data amount of page mappings written, we
judge the operation time with the performance pa-
rameters of NAND flash memory, such as the NAND
access time of Table 1. And we assume the data
I/O transaction sharing the dual-channel NAND flash
controller (SiliconMotion, 2019). Because the em-
bedded flash storage spends most of the time in the
data I/O transaction to NAND flash memory, we ex-
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Figure 5: Total data amounts of page mappings written by
the mapping flush.

amine every response time of a request, which is
about 270K requests from all the I/O traces.

Figure 6 presents the cumulative distribution re-
sult for the response time. Both the mini-page FTL
and MSFTL reduce all the response times of the
smartphone workloads. The mini-page FTL improves
the average response times by up to 28.9%, 37.1%,
and 44.3% of Base-DFTL in the quarter, half, and
full cases, respectively. However, MSFTL-1KiB im-
proves them by up to 36.3%, 43.4%, and 56.1% by
exploiting the virtually-shrunk segment. Also, MS-
FTL benefits from a higher resolution to decrease the
worst response time. MSFTL-1KiB drops them by up
to 85.3%, 71.6%, and 65.1% of Base-DFTL. As a re-
sult, MSFTL-1KiB improves by up to 41.9%, 26.8%,
and 27.7% of the mini-page FTL.

5 RELATED WORK

There have been many studies improving the perfor-
mance and lifetime of NAND flash-based storage by
using the page-level FTL. These studies (Gupta et al.,
2009; Kim et al., 2002; Lee et al., 2017; Lee et al.,
2013; Lee et al., 2006; Lee et al., 2007; Lv et al.,
2018; Ma et al., 2011; Park and Kim, 2011) utilized
the user data behaviors, such as the temporal data
locality, the data preemption, the data compression,
and the data caching. For example, DFTL (Gupta
et al., 2009) exploits the significant temporal local-
ity and finally reduces the amount of the GC data
written. A semi-preemptible GC (PGC) scheme (Lee
et al., 2013) allows the GC preemption to hide the
GC cost. And, the new NVM cache technique (Lee
et al., 2017) mitigates the GC overhead. For a data re-
duction, zFTL (Park and Kim, 2011) utilized the data
compression with the prediction scheme that differen-
tiates incompressible data in advance. However, these
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Figure 6: Cumulative distribution result for the response
times spent by NAND flash memory.

kinds of proposals focused on the user data but did not
pay attention to the page mappings that they should
manage.

As the aspect of the page mapping-level granu-
larity, the sub-page programming (Kim et al., 2015a)
used a fraction of the NAND page to improve the life-
time of NAND flash memory. Since this method has
limited the amount of data written, at least two NAND
page programmings should be needed to write the
data as much as one NAND page. To overcome the
enlarged physical NAND page, the new PM-FTL (Lv
et al., 2018) was developed by utilizing the smaller
mini-page granularity. However, this kind of smaller
mapping scheme needs vast amounts of resources to
handle the entire page mapping table.

ICSOFT 2020 - 15th International Conference on Software Technologies

476



6 CONCLUSION

To enhance the response time of the embedded flash
storage, we exploit a virtually-shrunk segment exclu-
sively to the page mapping table. Our novel mapping-
segmented flash translation layer (MSFTL) imple-
ments the page-level FTL combined with the new
mapping segmentation method. The mapping seg-
ment of MSFTL is composed of consecutive page
mappings with a smaller size than the logical page of
the host system. When storing the mapping segments,
MSFTL gathers every mapping segment that has any
updated page mappings. As a result, MSFTL reduces
the data amount of page mappings written by up to
58.8% compared with the fine-granularity page-level
FTLs. Finally, MSFTL improves both the average and
worst response time by up to 56.1% and 85.3% in the
real-device smartphone workloads.

REFERENCES
Ban, A. (1995). Flash file system. Patent No. 5,404,485,

Filed Mar. 8th., 1993, Issued Apr. 4th., 1995.
Grupp, L. M., Caulfield, A. M., Coburn, J., Swanson, S.,

Yaakobi, E., Siegel, P. H., and Wolf, J. K. (2009).
Characterizing flash memory: anomalies, observa-
tions, and applications. In Proceedings of the 42nd
Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO-42), pages 24–33. IEEE.

Gupta, A., Kim, Y., and Urgaonkar, B. (2009). Dftl: A
flash translation layer employing demand-based selec-
tive caching of page-level address mappings. In Pro-
ceedings of the International Conference on Architec-
tural Support for Programming Languages and Oper-
ating Systems (ASPLOS’09).

Kim, J., Kim, J. M., Noh, S. H., Min, S. L., and Cho, Y.
(2002). A space-efficient flash translation layer for
compactflash systems. IEEE Transactions on Con-
sumer Electronics, 48(2):366–375.

Kim, J.-H., Kim, S.-H., and Kim, J.-S. (2015a). Subpage
programming for extending the lifetime of nand flash
memory. In 2015 Design, Automation & Test in Eu-
rope Conference & Exhibition (DATE), pages 555–
560. IEEE.

Kim, J.-Y., Park, S.-H., Seo, H., Song, K.-W., Yoon, S.,
and Chung, E.-Y. (2015b). Nand flash memory with
multiple page sizes for high-performance storage de-
vices. IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, 24(2):764–768.

Lee, E., Kim, J., Bahn, H., Lee, S., and Noh, S. H. (2017).
Reducing write amplification of flash storage through
cooperative data management with nvm. ACM Trans-
actions on Storage (TOS), 13(2):1–13.

Lee, J., Kim, Y., Shipman, G. M., Oral, S., and Kim, J.
(2013). Preemptible i/o scheduling of garbage col-
lection for solid state drives. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, 32(2):247–260.

Lee, S.-W., Choi, W.-K., and Park, D.-J. (2006). Fast: An
efficient flash translation layer for flash memory. In
International Conference on Embedded and Ubiqui-
tous Computing, pages 879–887. Springer.

Lee, S.-W., Park, D.-J., Chung, T.-S., Lee, D.-H., Park, S.,
and Song, H.-J. (2007). A log buffer-based flash trans-
lation layer using fully-associative sector translation.
ACM Transactions on Embedded Computing Systems
(TECS), 6(3):18.

Lv, H., Zhou, Y., Wu, F., Xiao, W., He, X., Lu, Z., and
Xie, C. (2018). Exploiting minipage-level mapping to
improve write efficiency of nand flash. In 2018 IEEE
International Conference on Networking, Architecture
and Storage (NAS), pages 1–10. IEEE.

Ma, D., Feng, J., and Li, G. (2011). Lazyftl: a page-level
flash translation layer optimized for nand flash mem-
ory. In Proceedings of the 2011 ACM SIGMOD Inter-
national Conference on Management of data, pages
1–12. ACM.

Moon, S., Lim, S.-P., Park, D.-J., and Lee, S.-W. (2010).
Crash recovery in fast ftl. In IFIP International
Workshop on Software Technolgies for Embedded and
Ubiquitous Systems, pages 13–22. Springer.

Park, Y. and Kim, J.-S. (2011). zftl: Power-efficient data
compression support for nand flash-based consumer
electronics devices. IEEE Transactions on Consumer
Electronics, 57(3):1148–1156.

Rosenblum, M. and Ousterhout, J. K. (1992). The design
and implementation of a log-structured file system.
ACM Transactions on Computer Systems (TOCS),
10(1):26–52.

Samsung (2014). Samsung V-NAND technology.
SiliconMotion (2019). Ufs and emmc controllers.
Smith, K. (2012). Understanding ssd over-provisioning.

Flash Memory Summit.
Standard, J. (2018). Univeral flash storage (ufs) card exten-

sion starndard.
Takeuchi, K. (2009). Novel co-design of nand flash mem-

ory and nand flash controller circuits for sub-30 nm
low-power high-speed solid-state drives (ssd). IEEE
Journal of Solid-State Circuits, 44(4):1227–1234.

Wei, B., Cheok, S. T., Chng, Y., and Toh, C. (2015). Logical
block address mapping. Patent No. 9,146,683, Filed
Apr. 20th., 2011, Issued Sep. 29th., 2015.

Whitaker, K. (2015a). A comparative study of flash storage
technologies for embedded devices.

Whitaker, K. (2015b). Embedded multimediacard (eMMC)
eMMC/card product standard, high capacity, includ-
ing reliable write, boot, and sleep modes.

Zhang, C., Wang, Y., Wang, T., Chen, R., Liu, D., and Shao,
Z. (2014). Deterministic crash recovery for nand flash
based storage systems. In Proceedings of the 51st An-
nual Design Automation Conference, DAC’14, pages
1–6, New York, NY, USA. ACM.

Zhou, D., Pan, W., Wang, W., and Xie, T. (2015). I/o char-
acteristics of smartphone applications and their impli-
cations for eMMC design. In 2015 IEEE International
Symposium on Workload Characterization (IISWC),
pages 12–21. IEEE.

Exploiting Exclusive Higher Resolution to Enhance Response Time of Embedded Flash Storage

477


