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Abstract: In the field of machine tools, applicable solutions for monitoring process forces are becoming increasingly 
important. In addition to sensor-based approaches there are also methods which utilize the already available 
signals of the machine control. Usually, the motor currents and, when applicable, position values of the feed 
axes are considered. By applying reduced order models of the machine axes, non-process components are 
subtracted from the measured signals. However, these approaches are often utilizing simplified models or 
require additional a-priori knowledge, for example construction data or actual parameter values. The former 
in particular has a negative impact on the quality of the estimations. To overcome these disadvantages, this 
paper presents a novel observer structure based on the mechanical system transfer function of the feed axis. 
One main advantage is achieved by applying scalable and automatically generated models with focus on 
distinct frequency ranges. All necessary information is provided by a frequency response of the speed control 
plant, as it is typically obtained during the commissioning phase of electromechanical feed axes. By inverting 
the system transfer function and considering an additional disturbance transfer function, the quality of the 
estimation can be significantly improved compared to previous approaches. 

1 INTRODUCTION 

The measurement of the forces acting during 
manufacturing processes is subject of intensive 
research efforts. In industrial application, additional 
sensors are commonly utilized and placed close to the 
contact point between tool and workpiece. Due to its 
proximity to the process, these methods are 
characterized by a high sensitivity, but at the same 
time increase the complexity of the machine and lead 
to additional investment costs (Rizal et al., 2014). 

For this reason, there are in particular research-
based approaches which aim to reconstruct the 
prevailing process forces from the already available 
signals of the installed drive components. The 
majority of these approaches focusses on the pure 
evaluation of the motor currents of the feed axes 
(Stein & Shin, 1986; Altintas, 1992; Sato et al., 2013). 
An alternative is provided by so-called disturbance 
observers. These consist usually of an order-reduced 
model of the mechanical system of the axes and 
utilize additional speed and position values. An 

overview of the basic methods and its characteristics 
as well as a simulative comparison is presented in 
(Schöberlein et al., 2020). 

All these methods have in common that simplified 
models and deviations in the system parameters affect 
the accuracy of the estimation. However, the 
estimation quality can be improved for individual 
approaches. (Yamato et al., 2019) takes  the position 
dependency of certain system variables into account 
and (Yamada et al., 2016) separates individual 
vibration components, for example. On the other 
hand, these methods are often only applicable in 
certain frequency ranges and typically require 
detailed system knowledge. Within the scope of this 
paper, a novel approach will be presented, which is 
based solely on drive-internal measurement 
functions. As a consequence of the applied model 
generation method, no prior system knowledge is 
required.  

The paper has the following structure. Section 2 
describes the structure of a typical machine tool axis 
as well as approaches for modelling its mechanical  
 

Schöberlein, C., Schleinitz, A., Schlegel, H. and Putz, M.
Simulative Investigation of Transfer Function-based Disturbance Observer for Disturbance Estimation on Electromechanical Axes.
DOI: 10.5220/0009858606510658
In Proceedings of the 17th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2020), pages 651-658
ISBN: 978-989-758-442-8
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

651



 

Figure 1: Structure of the electromechanical axis and block diagram of the mechanical two-mass system. 

transfer behaviour. Moreover, a method is presented 
which generates scalable models of the mechanical 
system transfer function based on frequency response 
measurements of the speed control plant. 

In order to enhance the estimation accuracy for 
load-side disturbances, an additional disturbance 
transfer function is introduced. Section 3 is focussed 
on the actual observer structure of the novel transfer 
function disturbance observer (TFDOB). For this 
purpose, two concepts for inverting the previously 
determined transfer functions are presented. One 
approach is based on the extension of the transfer 
function by an additional P-controller. The other one 
focusses on the placement of additional high-
frequency poles. In Section 4, the TFDOB is 
implemented in a simulation model in Matlab® 
Simulink® and compared with a common observer 
structure. The paper closes with a summary and an 
outlook on upcoming research goals. 

2 AUTOMATIC MODELLING OF 
MECHANICAL TRANSFER 
FUNCTION 

The typical structure of an electromechanical feed 
axis is shown in Figure 1. Usually, it can be separated 
into an electrical part consisting of an NC control and 
a subordinated drive system as well as a mechanical 
part. In most applications, the mechanical system is 

realized in form of a ball screw drive. As illustrated 
in the Figure, process forces usually act on the load 
side of the mechanical part only. Position measuring 
systems are equipped on motor and load side, 
respectively. For reasons of simplification, a rotary 
system is assumed for the following investigations. 
Hence, the equilibrium of torques is calculated to: 

Tm=Im∙Kt=Ta+Tl (1)

Tm identifies the motor torque provided by the 
motor, which is calculated as product of motor current 
Im and torque constant Kt. The parameter Ta denotes 
the acceleration torque required for the movement of 
the axis and Tl summarizes all load torques acting on 
the motor: 

Tl ൌ Tp  Tf  Tg (2)

As shown in equation (2), besides friction (Tf) and 
potential weight torques (Tg) the process torques Tp 
are included in the load torque and therefore also 
affect the actual motor torque. 

2.1 Modelling of Electromechanical 
Axes 

Modelling strategies for electromechanical axes 
usually concentrate solely on the mechanical part. 
Typically, this part is represented in form of a multi-
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mass mechanism. Depending on the complexity and 
modelling accuracy, more or less complex models 
can be applied. A widely utilized model in control 
engineering is the two-mass system (Figure 1, lower 
part), which is selected for the following 
considerations. Such a system is typically divided 
into the following components: 

 motor-side moment of inertia Jm, 
 load-side moment of inertia Jl, 
 elastic coupling between Jm and Jl with the 

torsional rigidity c and damping constant d. 

Additional friction torques act on motor (Tf,m) and 
load side (Tf,l), respectively. Process forces usually 
act on the load side only. The total moment of inertia 
for a general multi-mass system is calculated as 
follows: 

Jtot= Ji

n

i=1

 (3)

With reference to formula (3), the following 
transfer function results for a two-mass system: 

GS,2MS(s)=
1

Jtot∙s
∙

Jl
d ∙s2+

d
c ∙s+1

JmJl
Jtotc

∙s2+
d
c ∙s+1

 (4)

In principle, higher-order models can also be 
described with physical parameters. On the other 
hand, for systems with model orders higher than three 
this is no longer feasible with reasonable effort 
(Münster et al., 2014). In addition to the 
representation with physical parameters shown in 
formula (4), the two-mass system can also be 
described with standardized parameters (Hipp et al, 
2017): 

GS,2MS(s)=
1

Jtot∙s
∙
ቀ

1
ωf
ቁ

2

∙s2+
2df
ωf

∙s+1

ቀ
1
ωr
ቁ

2

∙s2+
2dr
ωr

∙s+1
 (5)

Here ωr and ωf denote the resonance and 
antiresonance frequencies, dr and df the associated 
damping values. As shown in Figure 2, ωr and ωf can 
be taken directly from the frequency response of the 
mechanical system. The damping values can only be 
identified with great effort. Hence, they are often 
determined empirically or utilizing heuristic methods 
(Hipp et al., 2017). 

 

Figure 2: Magnitude response of a two-mass system. 

2.2 Automatic Model Generation based 
on Frequency Measurements 

In order to implement the novel TFDOB, the transfer 
function of the mechanical system is required. As 
illustrated in formula (5), it can be represented by 
standardized parameters. A method to generate these 
transfer functions automatically is proposed in 
(Münster et al., 2014) and (Hipp et al., 2017). This 
methodology can be applied to systems of arbitrary 
order. The starting point is a measured frequency 
response of the mechanical subsystem of the feed 
axis. Modern control and drive systems offer 
corresponding pre-installed functionalities. The 
frequency response is emulated by connecting 
individual partial oscillators in series. Each partial 
oscillator represents a characteristic part of the 
frequency response in the direct and indirect case 
(Figure 3). The resulting transfer function of such a 
 
 

 

Figure 3: Partial oscillator for indirect (a) and direct (b) controlled systems. 
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Figure 4: Block diagram of the transfer function inverter with proportional gain (a) and pole placement (b). 

partial oscillator is calculated as: 

GS,PO(s)=
a∙ ቀ

1
ωf
ቁ

2

∙s2+
2df
ωf

∙s+1

ቀ
1
ωr
ቁ

2

∙s2+
2dr
ωr

∙s+1
 (6)

Note that for indirect controlled systems the 
parameter a is assigned with 1 and for direct 
controlled systems a is 0. The general procedure for a 
measured frequency response according to 
(Hipp et al., 2017) is: 

1. determination of Jtot by calculating the 
gradient at lower frequencies, 

2. identification of the resonance and anti-
resonance frequencies, 

3. initialization of the damping parameters 
with default value of 0.01, 

4. empirical adaptation of the damping values. 

The fundamental suitability of the proposed method 
is demonstrated on an exemplary simulated frequency 
response model in Section 4. 

3 TRANSFER FUNCTION BASED 
DISTURBANCE OBSERVER 

The following Section presents a novel type of 
disturbance observer based on automatic generated 
transfer functions. One main advantage of this 
method is that a detailed and scalable model of the 
mechanical transfer behaviour is created even without 
complex reference measurements, like applied in 
(Rudolf, 2014). Since the process forces usually act 
on the load side of the feed axis, an additional 
disturbance transfer function is introduced. 
Therefore, no further measurements or system 
knowledge are required. 

3.1 Inversion of Mechanical System 
Transfer Function 

The fundamental idea of model-based approaches for 
estimating process forces on feed axes is based on the 

assumption that these forces are contained in the 
motor current signal. As a consequence, the process 
forces can be reconstructed by subtracting all non-
process influences (e.g. friction, acceleration). As a 
result of the knowledge of the mechanical transfer 
behaviour, the torque required for axis acceleration 
can be obtained. Due to the fact that the actual angular 
velocity is typically available in modern drive 
systems, this acceleration torque is calculated by 
inverting the mechanical transfer function Gs(s): 

GS(s)=
ωm(s)

Ta(s)
=

N(s)

D(s)
→ GS(s) -1=

D(s)

N(s)
 (7)

As a result of the inversion, the poles of the 
original system become the zeros of the inverted 
system and vice versa. If this inversion is carried out 
using the exemplary transfer function of the two-mass 
system from equation (5), the inverted system would 
have a differentiating character. This means that the 
order of the numerator N(s) is greater than the order 
of the denominator D(s). However, such a system 
cannot be implemented in reality for reasons of 
causality (Schröder, 2015). Hence, two alternative 
concepts for inverting the transfer function are 
considered (Buchholz, 2007), both illustrated as 
block diagram in Figure 4. In the left part of the 
illustration (a), the inversion is realized by inserting 
the original transfer function into the feedback path 
of a P-controller with high controller gain K. This 
leads to the following transfer function: 

GS(s) -1=
Ta(s)

ωm(s)
 =

D(s)

N(s)
=

K

1+K∙GS(s)
 (8)

GS(s) -1=
K

1+K∙
N(s)
D(s)

=
K∙D(s)

Dሺsሻ+K∙N(s)
 (9)

It becomes clear that the zeros of the inverted 
function, depending on the value of K, correspond to 
the poles of the original transfer function. The poles 
of the inverted function are equally dependent on K, 
whereby for large values of K: 

lim
K→∞

GS(s) -1 =
D(s)

N(s)
 (10)
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For continuous systems, this method delivers very 
good results depending on the value of the controller 
gain and an appropriate selection of the solver type 
(e.g. ode15s) in Matlab® Simulink®. For practical 
systems with discrete input signals, however, the 
necessary high gain factors lead to discontinuities and 
a truncation of the simulation. In consequence, this 
structure is unsuitable for the intended application in 
discrete controlled drive systems. Hence, a second 
concept is proposed, which is shown in Figure 4b. 
The fundamental idea here is to extend the inverted 
transfer function with a defined number of high-
frequency poles until the denominator order 
corresponds at least to the numerator order: 

GS(s) -1=
Ta(s)

ωm(s)
 =GS(s) -1∙

1

(1+Ts) n-m (11)

Main advantage of this inverter structure is its 
robustness regarding digital systems and signals. 
Hence, this approach will be utilized in the following 
and examined in detail in Section 4 for an exemplary 
simulated mechanical system. 

3.2 Load Disturbance Transfer 
Function 

As already explained, the process forces usually act 
on the load side of the feed axis. Depending on the 
type of the mechanical subsystem, the knowledge of 
the transfer behaviour between the surgical point of 
the disturbance torque Tp and the reaction torque Treac 
on the motor side may lead to further improvements 
of the estimation. The parameters of this transfer 
function can be obtained once more from the 
mechanical frequency response. In general case, the 
transfer function results to: 

Gdist(s)=
Treac

Tp
=ෑ

s2+
2df,i

ωf,i
∙s+1

൬
1

ωf,i
൰

2

∙s2+
2df,i

ωf,i
∙s+1

n

i=1

 (12)

Again, this transfer function is inverted according 
to the previously described strategy by adding high-
frequency poles. The combination of both systems 
leads to the observer structure shown in Figure 5. 
Note that due to the intended application on digital 
systems, the transfer functions are transformed into z-
domain. Furthermore, besides acceleration and 
disturbance torques an additional friction model is 
required. This paper does not provide a detailed 
description of possible friction models. For example, 
an approach consisting of four individual friction 
parts is discussed in (Schöberlein et al., 2020).  

4 SIMULATION RESULTS 

In this Section, the TFDOB is verified based on 
simulations in Matlab® Simulink®. Hence, a second-
order system with the parameters listed in table 1 is 
utilized as representative mechanical model and 
implemented as block simulation (see Figure 1). The 
cycle time of the observer and its input signals is set 
to a typical value of 100 µs. As described in 
(Schöberlein et al., 2020), the current control loop 
was approximated as a PT2 element. Furthermore, a 
current setpoint filter to attenuate the resonance 
frequency as well as a low-pass filter with a cut-off 
frequency of 1999 Hz were implemented. The speed 
controller was parameterized corresponding to the 
setting rule of the symmetrical optimum. All 
parameters are listed in table 2. 

4.1 Inversion of System Transfer 
Function 

First, the inverted transfer functions of the 
mechanical system for acceleration and disturbance 
torque are calculated. Hence, the measured frequency 
response is analyzed by utilizing the methodology 
described in Section 2.2. The results are illustrated in 
Figures 6 and 7. Figure 6a shows the result of the 
frequency response estimation in the Bode diagram. 
All identified parameters are listed in Table 1. 

 

Figure 5: Block diagram of the complete TFDOB. 
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Table 1: Parameters of the simulated two-mass system. 

System parameters Identified parameters 

Jtot (kg∙m2) 0.001354 Jtot (kg∙m2) 0.00137 

Jm (kg∙m2) 0.000869 ωf (Hz) 334.00 

Jl (kg∙m2) 0.000485 df 0.040 

cm,l ൬
Nm

rad
൰ 2150 ωr (Hz) 423.19 

dm,l ൬
Nms

rad
൰ 0.086 dr 0.055 

It can be stated that despite small deviations for the 
estimated value of Jtot, the approximated model 
emulates the block simulation very well. The adjusted 
damping values for the green colored model were 
determined empirically. Compared to the red colored 
model with default damping values, a significant 
improved approximation quality of the original model 
is achieved. Figure 7a shows the pole-zero map for the 
estimated discrete transfer function and its inversion 
for different values of the time constant T. Regardless 
of the time constant T, the pole and zero positions of 
the transfer function are reproduced very precisely. 
Furthermore, all poles of the inverted transfer function 
are placed within the unit circle around the origin of 
coordinates. This means that the inverted system is 
stable. The essential effect of smaller time constants is 
expressed in the position of the additional real poles, 
which influences the bandwidth of the estimation. 

4.2 Inversion of Load Disturbance 
Transfer Function 

In addition to the inverted transfer function of the 
mechanical subsystem, the TFDOB includes the 
 

Table 2: Speed controller settings. 

Speed controller 

Kp (
Nms

rad
) 0.0802 

Tn (s) 0.00842 

TSSPF (s) 0.002 

Current setpoint filter 

ωFCN ሺHzሻ 
418.18

ωFCD ሺHzሻ 
418.18

1999.00 1999.00

DFCN 
0.0

DFCD 
0.25

0.7 0.7

transfer behaviour for load-side disturbances defined 
in Section 3.2. Figure 6b shows the Bode diagram for 
the block simulation and the approximated transfer 
behaviour for default and adjusted damping values 
based on equation (11). Once again, there is good 
agreement between simulated and identified transfer 
behaviour especially for the adapted damping values. 
Considering the pole-zero map in Figure 7b for the 
inverted discrete disturbance transfer function for 
various time constants, the results of the mechanical 
transfer function can be confirmed. This inverted 
transfer function is stable, too. Furthermore, the 
additional real poles again are shifting in the negative 
direction for smaller time constants T. 

4.3 Approximation of Disturbance 
Torques 

After the functionality of the individual subsystems 
has been verified, the complete TFDOB is set up 
according to Figure 5. To evaluate its performance, 
the estimation behaviour in time and frequency 
 

 
Figure 6: Frequency response for simulated and identified system (a) and disturbance transfer function (b). 

a) b)
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Figure 7: Pole-zero-map for simulated and inverted system (a) and disturbance transfer function (b). 

 

Figure 8: Simulated step (a) and frequency (b) response for load side disturbance torque. 

domain is examined. Hence, a stepwise and 
broadband disturbance excitation is applied, 
respectively. The disturbance input is connected to 
the load side with a magnitude of 2 Nm. To avoid 
static friction effects, a speed offset of 50 min-1 was 
specified. The additional time constants of the 
inverted transfer functions of the TFDOB were 
gradually decreased from 0.1 s to 100 µs. For reasons 
of comparison, the conventional disturbance observer 
(DOB) is included in the simulation, too. This 
observer is also based on measurements of the motor 
current and speed. Its only free parameter is the total 
moment of inertia, which has been assigned with the 
estimated value (see Table 1). Furthermore, a pure 
evaluation of the motor current or rather the motor 
torque was taken into account. The simulated friction 
behaviour corresponds to the parameterization in 
(Schöberlein et al., 2020). For the stepwise 

disturbance input in time domain (Figure 8a), in 
contrast to the DOB, an excitation of the mechanical 
natural frequency is avoided for all parameterizations 
of the TFDOB. On the other hand, the dimension of 
the time constant significantly affects the dynamics of 
the estimation. It should be selected as small as 
possible, whereby modern drive systems with higher 
clock rates may grant further improvements. In 
contrast to a pure evaluation of the motor current, the 
estimation dynamics of the TFDOB and DOB are 
significantly increased.The results can also be 
confirmed for a broadband disturbance excitation in 
frequency domain, whereby the visible influence of 
the current setpoint filter is counteracted for smaller 
time constants of the TFDOB. Overall, the estimation 
behaviour compared to the DOB or a pure motor 
current evaluation is significantly improved over a 
wide frequency range. This effect should become 
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significant for more complex mechanical systems, for 
example with lower natural frequencies or further 
partial oscillators. Due to the scalability of the 
presented identification and modelling approach, an 
increased estimation quality is expected even for 
elastically coupled multi-mass systems. 

5 CONCLUSIONS 

In this paper, the performance of a novel type of 
disturbance observer for electromechanical axes was 
examined using a simulation model in Matlab® 
Simulink®. The main advantages in contrast to 
established structures are the automatic identification 
of the observer parameters and their scalability on 
systems of multiple order. The determination of the 
required transfer functions is based exclusively on 
frequency response measurements. By inverting the 
determined transfer functions via additional high-
frequency poles the estimation of load-side 
disturbances is enabled over a wide frequency range. 
The performance compared to an established 
structure was demonstrated utilizing an exemplary 
simulated electromechanical axis. 

Future work should initially analyze the 
robustness of the observer structure. For example, this 
includes currently not considered influencing factors, 
such as signal noise or changing mechanical 
parameters and controller settings. A more precise 
identification of the damping values of the transfer 
functions, for example with heuristic optimization 
methods, may lead to further improvements. Finally, 
the TFDOB must be subjected to practical 
measurements on a real machine tool under process 
conditions. Hence, it should be examined if the novel 
structure can be supplemented by including signals of 
a load-side measuring system. 
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