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Abstract: Regression analysis is the method of quantifying the effects of a set of independent variables on a dependent
variable. In regression clustering problems, the data points with similar regression estimates are grouped into
the same cluster either due to a business need or to increase the statistical significance of the resulting regres-
sion estimates. In this paper, we consider an extension of this problem where data points belonging to the same
level of another partitioning categorical variable should belong to the same partition. Due to the combinatorial
nature of this problem, an exact solution is computationally prohibitive. We provide an integer programming
formulation and offer gradient descent based heuristic to solve this problem. Through simulated datasets, we
analyze the performance of our heuristic across a variety of different settings. In our computational study, we
find that our heuristic provides remarkably better solutions than the benchmark method within a reasonable
time. Albeit the slight decrease in the performance as the number of levels increase, our heuristic provides
good solutions when each of the true underlying partition has a similar number of levels.

1 INTRODUCTION

In many business applications, one is interested in the
effect of a set of independent variables over a partic-
ular response variable. Traditional statistical meth-
ods (e.g., ordinary least squares (OLS) regression),
and other advanced regression models, can provide
answers to this question. However, it may be mis-
leading to estimate a single regression equation for the
whole dataset and instead, it may be more meaningful
to identify the effect over smaller subsets of the data.
For example, finding the effect of price on the sales
volume over a set of products that show similar price
elasticity is very valuable for a decision-maker while
setting individual product prices, instead of measur-
ing price elasticity across all the products.

Clusterwise regression is a technique that clusters
data into groups with the same regression line (i.e.,
hyperplane). Charles (1977) introduced the problem
to the literature as ”régression typologique.” It has ap-
plications in a wide range of areas such as marketing
(e.g., Wedel and Kistemaker, 1989 and Brusco et al.
2003), environmental systems (e.g., He et al. 2008),
rainfall prediction (e.g., Bagirov et al. 2017), agri-
culture (e.g., Costanigro et al. 2009), transportation
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(e.g., Luo and Yin 2008), and medicine (e.g., McClel-
land and Kronmal, 2002). Späth (1979) provides an
exchange algorithm to find hard cluster memberships
for each data point that minimizes the sum of squares
error (SSE). As an alternative to this hard clustering
method, Desarbo (1988) suggested a soft clustering
method in which they find the probability of each data
point is in any one of the clusters in order to maximize
the log-likelihood function assuming the regression
errors come from a multinomial normal distribution.

Given a known number of clusters, finding the
optimal cluster memberships is a challenging prob-
lem due to its combinatorial nature. Lau et al.
(1999) provides a nonlinear mixed-integer program-
ming model to find the optimal soft clustering of the
dataset into two clusters and uses expectation maxi-
mization heuristic to solve this model. Carbonneaou
et al. (2011) suggests to solve the problem using
a mixed logical-quadratic programming formulation,
instead of a traditional big-M formulation and finds
that the proposed formulation leads to numerically
stable and exact global optimal solutions in the ex-
perimental datasets. Carbonneaou et al. (2012) ex-
tends the previous work with an application of repet-
itive branch and bound algorithm to solve the mixed-
integer nature of the problem. Bagirov et al. (2013)
proposes an incremental algorithm to solve the clus-
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terwise regression problem which constructs initial
solutions at each iteration using results obtained at the
previous iteration. Based on tests on multiple regres-
sion datasets, they find that the proposed algorithm
is very efficient even in large datasets that are dense
and do not contain outliers. Joki et al. (2020) pro-
vides a support vector machine based formulation to
approximate the clusterwise regression problem with
an L1 accuracy measure that is naturally more robust
to outliers. Part et al. (2017) uses a mixed-integer
quadratic programming formulation and designs and
compares the performance of several metaheuristic-
based algorithms (e.g., genetic algorithm, column
generation, two-stage approach) with synthetic data
and real-world retail sales data. Procedures to deter-
mine the optimal number of clusters, when this num-
ber is not known a priori, have also been suggested in
the literature (e.g., Shao and Wu 2005).

In this paper, we study an extension of the regres-
sion clustering problem. In our problem, data points
belong to some predefined subgroups and thus data
points from the subgroup are constrained to be in the
same cluster after the regression clustering procedure
is applied. The optimality criteria is the minimiza-
tion of the total sum of squares error (SSE) in these
two subsets after two independent OLS regressions
are applied to them. Due to a large number of pos-
sible partitions, a complete enumeration approach is
computationally prohibitive. Instead, we provide gra-
dient descent based heuristics to solve this problem.

We propose to cycle through the partition vari-
ables at each iteration and consider all possible binary
splits based on each variable. The candidate split de-
pends on the type of the independent variable. For an
ordered or a continuous variable, we sort the distinct
values of the variable and place “cuts” between any
two adjacent values to form partitions. Hence for an
ordered variable with L distinct values, there are L−1
possible splits, which can be huge for a continuous
variable in large-scale data. Thus we specify a thresh-
old Lcont (say 500, for instance), and only consider
splits at the Lcont equally spaced quantiles of the vari-
able if the number of distinct values exceeds Lcont+1.
An alternative way of speeding up the calculation is to
use an updating algorithm that “updates” the regres-
sion coefficients as we change the split point, which
is computationally more efficient than having to re-
calculate the regression every time. Here, we adopt
the former approach for its algorithmic simplicity.

Splitting on an unordered categorical variable is
quite challenging, especially when there are many
categories. Setting up a different OLS equation for
each level may lead to statistically insignificant re-
sults, especially if the number of observations for a

particular level is small. Instead, we would like to
find a collection of these levels that have the same
regression equation. For a categorical variable with
L levels, the number of possible nonempty partitions
is equal to 2L−1− 1. When L > 20 levels, the num-
ber of feasible partitions is more than one million. In
this paper, we focus on this case due to its combina-
torially challenging nature. Since it is not possible to
search through all these solutions, we propose an in-
teger problem formulation to solve this problem. We
devise gradient descent based heuristic as an alterna-
tive.

The rest of the paper is organized as follows. Sec-
tion 2 presents the formulation of the problem and no-
tation used throughout the paper. We provide a list
of heuristics to solve the particular problem in Sec-
tion 3 and compare the performance of these heuris-
tics via simulated datasets in Section 4. Section 5
concludes the paper with a discussion on future work
that addresses limitations of the current method and
generated datasets and potential avenues for future re-
search.

2 PROBLEM FORMULATION

Consider the problem of splitting a node based on a
single categorical variable s ∈ R with L unique val-
ues which we will define as levels or categories. Let
y ∈ R be the response variable and x ∈ Rp denote the
vector of linear predictors. The linear regression rela-
tionship between y and x varies under different values
of s. For the sake of our argument, we assume there to
be a single varying-coefficient variable. The proposed
algorithm can be extended to cases with multiple par-
tition variables by either forming factors through the
combination of original factors or searching for opti-
mal partition variable-wise.

Let (x′i,yi,si) denote the measurements on subject
i, where i = 1, · · · ,n and si ∈ {1,2, · · · ,L} denotes a
categorical variable with L levels. The partitioned re-
gression model is:

yi =
M

∑
m=1

x′iβmwm(si)+ εi, (1)

where wm(si) ∈ {0,1} denotes whether the i-th obser-
vation belongs to the m-th group or not. We require
that ∑

M
m=1 wm(s) = 1 for any s ∈ {1,2, · · · ,L}.

In this paper, we consider binary partitions,
namely M = 2, but multi-way partitions can be ex-
tended in a straightforward fashion. To simplify our
notation in binary partitioning, let wi := w1(si) ∈
{0,1}, which is a mapping from {1,2 · · · ,L} to
{0,1}. Further, define atomic weights for each level
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as {τ1, · · · ,τL} ∈ {0,1}L, where τl = 1 indicates the
l-th level is in group “1”, otherwise in group “0”.
Then, we can write the observation-level weights as
wi = ∑

L
l=1 τlI(si=l).

Let the level association vector τττ = (τ1, · · · ,τL)
′,

W = diag{wi} and I −W = diag{1− wi}, the re-
sponse vector y = (y1, · · · ,yn)

′, and the design matrix
X = (x1,x2, · · · ,xn)

′. The standard linear regression
theory would then imply that, the total sum of squared
error (SSE) of the two splitted datasets can be stated
as follows:

Q(τττ) := SSE1 +SSE2

:= ‖y−X(X ′WX)−1X ′Wy‖2 (2)

+ ‖y−X{X ′(I−W )X}−1X ′(I−W )y‖2

:= Q1(τττ)+Q2(τττ), (3)

where the vector of atomic weights τττ is defined on
the integer space {0,1}L. The objective is to find the
vector τττ that minimizes Q(τττ).

The combinatorial optimization problem defined
above is a special case of the regression clustering
problem described in the Introduction section. In
the original problem, each data point can belong to
any particular partition. However, our formulation re-
quires each data point with the same level to belong to
the same partition. As there are no explicit solutions
for the original problem, our formulation is clearly
more challenging to solve.

2.1 Integer Programming Formulation

It is possible to rewrite the combinatorial optimization
problem defined in the previous subsection as an inte-
ger programming formulation. For expositional sim-
plicity, we assume in this subsection that x ∈ R. For
each datapoint i, we need to decide whether it should
belong the left group, i.e., ti = 1, or the right group,
i.e., ti = 0. Hence the problem one needs to solve can
be formulated as:

min
{t1,t2,...,tn}

n

∑
i=1

[
ti(yi−αL−βLxi)

2

+(1− ti)(yi−αR−βRxi)
2

]
(4)

s.t.

αL =
∑

n
i=1[yi−βL(~t)xi]ti

∑
n
i=1 ti

(5)

βL =
∑

n
i=1

[
xi− ∑

n
i=1 tixi

∑
n
i=1 ti

]
yiti

∑
n
i=1

[
xi− ∑

n
i=1 tixi

∑
n
i=1 ti

]2 (6)

αR =
∑

n
i=1[yi−βR(~t)xi](1− ti)

∑
n
i=1(1− ti)

(7)

βR =
∑

n
i=1

[
xi− ∑

n
i=1(1−ti)xi

∑
n
i=1(1−ti)

]
yi(1− ti)

∑
n
i=1

[
xi− ∑

n
i=1(1−ti)xi

∑
n
i=1(1−ti)

]2 (8)

ti− t j ≤M(si− s j) ∀i, j ∈ {1,2, ...,n} (9)
t j− ti ≤M(s j− si) ∀i, j ∈ {1,2, ...,n} (10)

1≤
n

∑
i=1

ti ≤ n−1 (11)

ti ∈ {0,1} ∀i ∈ {1,2, ...,n} (12)

In this formulation, the objective function in (4) is
the total SSE as defined in 3. Constraints (5)-(8) sim-
ply handles the simple linear regression coefficient
equations for the left and right partitions. Constraints
(9) and (10) ensure that if two data points have the
same level (i.e., si = s j), then they should belong to
the same partition (i.e., ti = t j). In these constraints,
M is a large positive number, though one could set
M = 1 as ti is a binary variable. Constraint (11) guar-
antees that each partition is nonempty. Lastly, binary
variables are stated by constraint (12).

The resulting integer programming formulation
has nonlinear parts in the objective function as well
as the constraints. When the number of data points, n,
is realistically large, it is computationally prohibitive
to solve this problem. Hence we resort to gradient
descent based heuristics which we describe next.

3 HEURISTICS

As the exact solution to the problem is not feasible,
we resort to heuristics to solve the problem. The sim-
plest heuristic to consider, which would provide an
exact solution, is an exhaustive search where one con-
siders all possible partitions of the factor levels into
two disjoint sets. For a categorical variable with L
levels, an exhaustive procedure will attempt 2L−1−1
possible splits. Even though it is possible to run this
heuristic when L is very small, this approach becomes
computationally prohibitive when L is moderate or
large, which is the case in most real-life applications.
For example, a dataset with 21 categories requires a
search of 1,048,575 possible splits, which is compu-
tationally infeasible.

We consider a gradient descent based algorithm as
a heuristics to find a solution to our problem. The al-
gorithm borrows the idea of gradient descent on an in-
teger space. In this algorithm, we start with a random
partition of the L levels into two nonempty and non-
overlapping groups, then cycle through all the levels
and sequentially flip the group membership of each
level. The L group assignments resulting from flip-
ping each individual category are compared in terms
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of the SSE criterion Q(τττ) defined in (3). We then
choose the grouping that minimizes Q(τττ) as the cur-
rent assignment and iterate until the algorithm con-
verges. This algorithm performs a gradient descent
on the space of possible assignments, where any two
assignments are considered adjacent or reachable if
they differ only by one level. The gradient descent al-
gorithm is guaranteed to converge to a local optimum,
thus we can choose multiple random starting points in
the hope of reaching the global optimal. If the crite-
rion is locally convex near the initial assignment, then
this search algorithm has polynomial complexity in
the number of levels.

4 COMPUTATIONAL RESULTS

In order to assess the quality of the solutions gener-
ated by our gradient descent algorithm, we conduct
a computational study with simulated datasets. We
are interested in how the quality changes as the num-
ber of levels, number of data points, the magnitude of
the residuals vary. Whenever the optimal partitioning
is not known, we compare our heuristic to a random
search. The random search method simply generates
random partitions and returns the one with the small-
est total SSE as defined in 3.

In our numerical study, we run the gradient search
algorithm 5 times, each time with a different ran-
domly generated initial solution, and report the best
solution out of 5 replications. In an alternative im-
plementation, which is called the descent search with
a fixed initial method, we assign all the levels into a
single partition as the initial solution. The compari-
son between the results of these two versions enables
us to investigate whether varying the initial solution
and using multiple starting points change the solution
quality. The random search method searches through
max4000,2L−1−1 unique random partitions with 5
replications. We again report the best solution out
of these 5 replications. When L ∈ 8,12, the random
search method gives the optimal partitioning with a
single replication. However, as the number of levels
increases the performance of this method should dete-
riorate quite rapidly as the search space is increasing
exponentially fast.

4.1 Dataset Generation

The simulated datasets have the following character-
istics. We assume that there is a single predictor, p,
and consider three different settings. In the first two
settings, we model the case in which the optimal par-
tition is binary. In the first partition, the underlying re-

gression equations are taken as yi = 10000−8∗ pi+εi
for the first partition and yi = 5000− pi + εi for the
second one. In the first setting, we let even-numbered
levels to be in the first partition and the old numbered
partitions to be in the second partition. In the second
setting, we let only two levels to be in the first parti-
tion and the rest to be in the second partition. Varia-
tions between the results of these two settings help us
analyze the performance with respect to the unequal
number of elements in the optimal partitions. The
third setting is used to analyze cases in which multi-
way partition is optimal. We consider 8 partitions and
in each partition the underlying regression equation is
taken as yi = 10000− (si mod 8)− ((si mod 8)+1)∗
pi +εi. In this last setting, the optimal number of par-
titions is 8, but since we are only interested in binary
partitions, the optimal binary partition depends on the
underlying dataset, hence it is not known unless one
could find the exact solution to our problem. In all set-
tings, we randomly generated pi uniformly from the
interval [500,1000] and εi from a normal distribution
with mean zero and variance σ2.

We generated 396 datasets in total. In each
dataset, we vary one of the following parameters: The
number of levels varied from 8 to 48 in increments
of 4. For each number of level L, we consider three
variations with respect to the number of data points:
30L,60L,90L. We let σ2 to vary from 100 to 400 in
increments of 100. Thus we have a full factorial de-
sign with 11*3*4*3=396 different datasets. All com-
putations are carried out on a machine with Intel Core
i7-8565U CPU @ 1.80 GHz processor and 16 GB
RAM.

4.2 Numerical Analysis

In order to assess the quality of different methods, we
calculate the percentage gap between the total SSE of
the solution generated by the method at hand and that
of the best solution out of the three methods: descent
search, descent search with fixed initial, and random
search. Table 1 presents the summary statistics of the
percentage gaps of the three methods across all the
generated datasets. Overall, the descent search gives
the best result with an average of 0.49% percentage
gap. However, notice that the percentage gap could be
as large as 39.81%. This shows that when the descent
search method gets stuck in a local minimum, there
could be a significant performance loss. Our sec-
ond method, which is a variant of the descent search
method and uses the same initial solution, has a some-
what lower performance. Finally, the performance of
the random search is expectedly the worst by far in
all the summary statistics. It is possible to achieve
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0% percentage gap with this method when L ≤ 12
in which case the random search method becomes
an exhaustive search. However, this method easily
leads to significantly low performances for some of
the datasets.

Table 1: Summary statistics about the percentage gaps of
the three methods across 396 datasets.

Descent
Search

Descent Search
(Fixed Initial)

Random
Search

Average 0.49% 4.85% 38.67%
Min 0.00% 0.00% 0.00%
5th Perc. 0.00% 0.00% 0.00%
25th Perc. 0.00% 0.00% 5.57%
Median 0.00% 0.00% 42.37%
75th Perc. 0.00% 7.48% 59.35%
95th Perc. 0.00% 25.51% 83.61%
Max 39.81% 50.70% 89.37%

Figure 1 shows the gaps of three methods as the
number of levels varies. Notice that the performance
of the random search method decays quite fast as the
number of levels increases beyond 12. The perfor-
mance of the decent search method is more robust:
the decay in the solution quality is moderate with in-
creasing L. However, the initial solution has a signif-
icant effect on the performance especially if the num-
ber of levels is small: In these cases, the search space
is smaller, thus using different initial solutions is ef-
fective in overcoming the stacking to a local minimum
problem. Moreover, the comparative performance is
also worse for cases with L mod 8 = 0 due to our de-
sign of the computational experiments: In these cases,
there is an equal number of elements in each partition
which increases the comparative performance of de-
scent search with multiple initial solutions to increase.
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Figure 1: The average percentage gaps of the three methods.

In the first two settings of our computational ex-
periments where there are two underlying regression
equations, the optimal partition is binary and known

given the level. For these experiments, we compute
the number of misclassified levels in each method.
Table 2 present the maximum number of misclassi-
fied levels for each method across varying numbers
of levels. In line with our findings in Figure 1, the
descent search method has the lowest number of mis-
classifications, which tends to increase with the num-
ber of levels. However, in both implementations of
the descent search method, the maximum number of
misclassifications is only 1. With the random search
method, the number of misclassifications increases
rapidly with the number of levels. Notice that the
fraction of levels that is misclassified is also increas-
ing, which explains the underlying reason for the poor
performance if this method.

Table 2: The maximum number of misclassified levels for
the three methods.

L Descent
Search

Descent Search
(Fixed Initial)

Random
Search

8 0 1 0
12 0 1 0
16 0 1 2
20 1 1 2
24 0 1 4
28 1 1 5
32 1 1 7
36 1 1 11
40 1 1 12
44 1 1 13
48 0 1 17

How does the underlying regression setting affect
the performance of our solution methods? Table 3
shows the average percentage gaps of each method
across three underlying regression settings. In the first
setting with an equal number of levels in each parti-
tion, the descent search method performs the best ex-
cept two datasets for which descent search with the
fixed initial solution gives the best solution. In the
second setting, which represents the case with an un-
even number of levels in each partition (i.e., 2 vs.
L− 2), the descent search with the fixed initial so-
lution has the best solution. Since most of the levels
actually belong to the same group, starting with the
initial solution of assigning all the levels into a single
partition is very close to the optimal solution. In this
case, the descent search method could find the optimal
solution after two iterations. As another support of
this claim, we observe that the computational times of
the descent search method with the fixed initial solu-
tion for these cases are significantly smaller. Finally,
the descent search method performs significantly bet-
ter than the other two methods under the setting with
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8 underlying partitions. Neither starting with all lev-
els in the same partition nor a random search seems
like a good idea.

Table 3: The average percentage gaps of the three methods
across different regression settings.

Regression
Setting

Descent
Search

Descent Search
(Fixed Initial)

Random
Search

1 0.14% 7.96% 34.63%
2 1.31% 0.00% 53.16%
3 0.00% 6.81% 27.06%

All 0.48% 4.92% 38.28%

The effect of the number of data points (n) on the
performance of the three heuristics is quite small as
shown in Table 4. There is a slight decrease in the
performance of the descent search heuristic.

Table 4: The average percentage gaps of the three methods
across different number of data points.

Number of
Data Points

Descent
Search

Descent Search
(Fixed Initial)

Random
Search

30∗L 0.09% 4.84% 38.23%
60∗L 0.72% 3.92% 38.18%
90∗L 0.64% 6.01% 38.44%

Table 5 displays the average percentage gaps of
each heuristic as the standard deviation of the residu-
als (σ) varies. We find that the magnitude of the resid-
uals does not have a significant effect on the perfor-
mance of our heuristics.

Table 5: The average percentage gaps of the three methods
across varying residual error standard deviation.

σ
Descent
Search

Descent Search
(Fixed Initial)

Random
Search

100 0.28% 5.28% 39.20%
200 0.52% 5.16% 37.39%
300 0.82% 4.38% 38.33%

Average computation times (in seconds) are pre-
sented in Table 6 across a varying number of levels.
As expected, the descent search with the fixed ini-
tial method is the fastest one and the descent search
method comes second. However, remember that the
descent search method runs with 5 different initial so-
lutions, yet the computation times are more than five-
fold as compared to using the fixed initial solution
as the number of levels increases. This observation
suggests that the convergence rate with random ini-
tial points decreases with the number of levels. Also,
notice that the computation times with the random
search method is quite high. When L ≤ 12, with a
single replication it is possible to search the whole

feasible region hence the comparatively small com-
putational times. When L > 12, however, the random
search method evaluates the same number of solu-
tions, hence the slight increase in computational times
is due to increased data points.

Table 6: Average computational times (seconds) of the three
methods.

L Descent
Search

Descent Search
(Fixed Initial)

Random
Search

8 0.20 0.04 0.16
12 0.52 0.09 2.97
16 0.79 0.13 26.43
20 1.35 0.22 27.80
24 1.95 0.31 28.67
28 3.12 0.48 32.82
32 3.67 0.55 29.94
36 4.76 0.72 30.49
40 6.32 0.93 32.89
44 7.49 1.13 31.95
48 9.21 1.38 32.93
All 3.58 0.54 25.19

5 CONCLUSIONS

We study an extension of the regression clustering
problem with the additional constraint that observa-
tions with the same value on a partitioning variable
should have the same regression fit. This is a chal-
lenging problem to solve due to its combinatorial na-
ture. We provide an integer programming formulation
to solve this problem, which is unfortunately compu-
tationally prohibitive to solve. Alternatively, we of-
fer a gradient descent based heuristic which iterates
through solutions in order to find the best binary parti-
tion to minimize the total SSE. In our numerical study
with 396 simulated datasets, we find that the perfor-
mance of our heuristic is very good as compared to
the benchmark method (the random search), albeit a
slight decrease as the number of levels increases. The
performance is best when each of the true underlying
partitions has a similar number of levels.

There are a number of avenues for future research
to further investigate this research problem. First, de-
composition techniques such as Bender’s decompo-
sition could be developed to find the exact solution
of the integer programming formulation provided in
the paper. It is also fruitful to develop and compare
other meta-heuristics to solve this problem. Finally,
an evaluation using real-life datasets would increase
our understanding of the problem and our solution
methodology.
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