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Abstract: Algorithmic trading has dominated the area of quantitative finance for already over a decade. The decisions
are made without human intervention using the data provided by brokerage firms and exchanges. An emerging
intermediate layer of financial players that are placed in between a broker and algorithmic traders has recently
been introduced. The role of this layer is to aggregate market decisions from the algorithmic traders and send
a final market order to a broker. In return, the quantitative analysts receive incentives proportional to the cor-
rectness of their predictions. In such a setup, the intermediate player — an aggregator — does not provide the
market data in plaintext but encrypts it. Encrypting market data prevents quantitative analysts from trading on
their own, as well as keeps valuable financial data private. This paper proposes an implementation of a popular
trend-following indicator with two different homomorphic encryption libraries — SEAL and HEAAN — and
compares it to the trading indicator implemented for plaintext. Then, an attempt to implement a trading strat-
egy is presented and analysed. The trading indicator implemented with SEAL and HEAAN is almost identical
to that implemented on the plaintext, with the percentage error of 0.14916% and 0.00020% respectively. De-
spite many limitations that homomorphic encryption imposes on this algorithm’s implementation, quantitative
finance has a potential of benefiting from the methods of homomorphic encryption.

1 INTRODUCTION

The most prominent approach that provides the means
for data analysis and also keeps the data private is
based on homomorphic encryption (HE). The idea of
HE that allows computation on encrypted data was
firstly proposed in the 1970s. However, no practi-
cal implementation existed until Craig Gentry pro-
posed one in his PhD thesis in 2009 (Gentry and
Boneh, 2009). Modern cryptosystems are capable of
performing arbitrary computation on encrypted data
- ciphertexts, facilitating the implementation of var-
ious data analysis tools (Aslett et al., 2015). As an
active area of research, there is a multitude of HE
schemes that have been proposed and implemented
as open-source libraries. CKKS (Cheon et al., 2017)
and BFV (Brakerski and Vaikuntanathan, 2014) are
among the most popular HE schemes. Simple En-
crypted Arithmetic Library (SEAL) developed by Mi-
crosoft Cryptography Research (SEAL, 2019) imple-
ments both BFV and CKKS scheme. Homomorphic
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Encryption for Arithmetic of Approximate Numbers
(HEAAN) is the original name of CKKS scheme de-
veloped by the Seoul National University CryptoLab
which only supports CKKS scheme. A particular area
of HE that has not receive well-deserved attention
is the privacy-preserving analysis of time-dependent
data. Such topic attracts financial industry’s attention
where time-series analysis is widely applied.

The financial industry is known to be extremely
cautious about privacy aspects of storing, analysing
and distributing data. The solutions for secure data
storage have been available for decades and are al-
ready provided by numerous cloud services. Secure
data distribution is nowadays an integral part of the
Internet, thanks to Secure Sockets Layer (SSL). How-
ever, data analysis that preserves privacy is still in its
infancy, even though, as mentioned, it has been ac-
tively developed, and adopted by the financial indus-
try.

Numer.ai is a hedge fund powered by thousands
of independent quantitative analysts striving to out-
perform the market (Numer.ai, 2019). The quantita-
tive analysts compete with each other, and those with
accurate predictions are rewarded. Numer.ai does not
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provide the market data in plaintext but transforms it
in a form that makes it impossible to know what fi-
nancial asset a particular time series represents. This,
in turn, prevents quantitative analysts from trading on
their own and keeps valuable financial data private.
To the best of our knowledge, Numer.ai relies on pro-
prietary obfuscation methods.

In our scenario, we distinguish three independent
players: a broker, a decision aggregator and algo-
rithmic traders. A broker provides access to the ex-
changes that is a mediator between sellers and buyers.
In particular, it provides such market data as order
books, recent trades and price quotes, so the market
participants are able to draw a trading decision. The
decision aggregator (analogous to Numer.ai) receives
market data M in plaintext and returns market orders
O. The data received by the aggregator is encrypted
as ck = E1{mk} and is sent to an algorithmic trader
Tk. Algorithmic traders operate over the encrypted
data ck and the decision o∗k drawn by the traders are
also encrypted and unknown to the traders (fig. 1).
These decisions are then decrypted by the aggrega-
tor ok = Da1{o∗k} and transmitted to the broker in the
form of market orders.

In this paper, we focus on making a very first step
in the direction of applying HE in developing an algo-
rithm that operates on encrypted time-dependent data.
On the example of a popular trend following trading
strategy based on Moving Average Convergence Di-
vergence (MACD) indicator, we demonstrate how an
algorithmic trader could employ methods of homo-
morphic encryption to make trading decisions. 1

2 BACKGROUND

2.1 Moving Average Convergence
Divergence

MACD is a momentum indicator which uses the dif-
ference between fast and slow moving averages to
indicate market trend (Appel, 1979). MACD was a
valuable tool for traders during the 1980s. In this pa-
per, we implement a modified MACD algorithm that
operates on encrypted stock price.

2.2 Homomorphic Encryption

In the past decade, several homomorphic encryption
schemes have been introduced. One of the most pop-
ular schemes is CKKS that implements approximate
arithmetic of complex numbers. The scheme supports

1https://github.com/woonhulktin/HETSA

addition, subtraction and multiplication (Cheon et al.,
2017).

Every operation in CKKS, especially multiplica-
tion, adds a certain amount of noise, which limits the
number of operations allowed before the accumulated
noise grows to the point making the final result in-
accurate. Levelled schemes limit the maximal quan-
tity of sequential homomorphic multiplications before
the noise becomes intolerable (Brakerski and Vaikun-
tanathan, 2014).

To fight the noise, it introduces rescaling as well as
bootstrapping. The rescaling is a scale-invariant tech-
nique that scales down the size of ciphertext modulus
to reduce the noise and preserve the precision (Cheon
et al., 2017). The bootstrapping operation in theory
eliminates the noise accumulated throughout homo-
morphic computations by refreshing the noise in a ci-
phertext. The significant disadvantages of the boot-
strapping method are the dramatic increase in com-
putational time and significant memory consumption
(Cheon et al., 2018).

3 RELATED WORK

Previous studies have shown the practicality of
privacy-preserving analysis of time-series data. An
additive homomorphic encryption scheme was pro-
posed to aggregate time-series data without sacrific-
ing privacy (Shi et al., 2011). The ciphertexts are en-
crypted under different users’ secret keys respectively
to achieve secure multi-party computation. Addition-
ally, Paillier encryption scheme as a partial homo-
morphic encryption was applied to privacy-preserving
similarity evaluation of time-series data (Zhu et al.,
2014). Pallier scheme is adequate for computing
the square of Euclidean distance as it supports ho-
momorphic addition of ciphertexts and homomor-
phic multiplication to plaintexts. Another partially
homomorphic-encryption-based access control con-
struction (HEAC) was introduced to support both ac-
cess control and aggregation-based computations on
encrypted data (Burkhalter et al., 2020). However,
these studies rely on additive homomorphic encryp-
tion schemes and thus the types of computations al-
lowed are limited. Our approach focuses on financial
time-series data and applies both homomorphic addi-
tion and homomorphic multiplication of ciphertexts
to generate the trading decisions.
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Figure 1: An intermediate layer collects encrypted decision, decrypts them and makes a final decision on whether to buy or
to sell.

4 METHODS

4.1 Data Encoding

Both SEAL and HEAAN libraries process data in
batches. This, in turn, speeds up the processing since
all components of the vector are processed simultane-
ously (Chen et al., 2017). However, in our scenario,
the server sends encrypted price one at a time, and the
remaining components are padded with zeros. This
process repeats every time a new price quote is avail-
able. Therefore, only the first slot of the plaintext
vector is used to store the asset price. This results in
higher memory requirement and slows computation.

Once receiving the latest encrypted price quote,
the algorithm appends it to the vector of previously
received ciphertexts, and a MACD signal value is pro-
duced, that is either used to generate a trading deci-
sion or returned on its own.

As the share prices are rational numbers and BFV
is slower than CKKS when performing multiplication
followed by rescaling (Chen et al., 2019), the frac-
tional encoder is chosen over the integer one.

To test our algorithm on encrypted data, we se-

lected Apple’s daily stock price (NASDAQ: AAPL)
on the interval from 06/01/2015 to 21/10/2015.

4.2 Weighted Moving Average

A moving average filter is a low pass filter with a lin-
ear phase shift. In the context of financial time-series,
it is used to determine a trend of an asset price and
is the foundation of the MACD indicator and corre-
sponding trading strategy. The emphasis is put on
recent price quotes by assigning different weighting
factors to the asset prices. The original MACD indica-
tor employs the exponential moving average (EMA),
and as a first-order autoregressive filter, it requires re-
cursion. Both SEAL and HEAAN libraries are lim-
ited by the noise that accumulates with every arith-
metic operation. Without an efficient bootstrapping
method, EMA is infeasible as it requires a significant
number of multiplicative depths (in theory infinitely
many). One solution is to replace the EMA by a non-
recursive filter. One such filter is the weighted mov-
ing average (WMA). The WMA has a finite impulse
response and does not require infinite multiplications.
Instead, it limits the multiplicative depth by the or-
der n that defines the number of multiplications and is

SECRYPT 2020 - 17th International Conference on Security and Cryptography

604



equal to the window size. The weighting coefficients
of the WMA are chosen as follows:

www[i] =
2(i+1)
n(n+1)

(1)

for i ∈ [0,n), where www[i] is the weight and n is the
window size.

Algorithm 1: Weighted Moving Average (WMA).

Input: a vector of ciphertexts ccc, window size n
Output: a vector of encrypted weighted moving av-

erages aaa

www = zeros(n)
for i in range [0, n) do

www[i] = FHE.encode(2(i+1)/(n(n+1)))
end for
aaa = zeros(ccc.size−n)
for i in range [0, ccc.size−n) do

aaa[i] = FHE.encrypt(0)
for j in range [0, n) do

r = FHE.multiplyConstant(ccci:i+n[ j], www[ j])
aaa[i] = FHE.add(aaa[i], r)

end for
end for
return aaa

4.3 Moving Average Convergence
Divergence

One of the popular indicators for detecting a market
turning point is the MACD indicator (Appel, 2003).
The original MACD indicator computes two mov-
ing averages: the 12-period EMA and the 26-period
EMA. Both EMAs are replaced by the WMAs for the
reasons explained above.

The trading signals are triggered by the MACD
signal line crossing the x-axis. First, a 12-period
WMA ααα and a 26-period WMA βββ are computed.
Then, the differences between βββ and ααα are calculated.
Finally, a 9-period WMA γγγ is applied to the differ-
ences to produce the MACD signal line mmm. Algorithm
2 illustrates a library-independent MACD implemen-
tation using homomorphic encryption method.

When the MACD signal line crosses the x-axis
from below, it indicates a buy signal and when the
signal line crosses the x-axis from above, it triggers a
sell signal.

4.4 Trading Decision

Unfortunately due to the theoretical limitations of
CKKS as well as other popular HE schemes, only ba-
sic arithmetic operations are provided. None of

Algorithm 2 : Moving Average Convergence Divergence
Function (MACD).

Input: a vector of ciphertexts of asset prices ddd
Output: a vector of ciphertexts of MACD signals mmm

ααα = wma(ddd, 12)
βββ = wma(ddd, 26)
θθθ = zeros(βββ.size)
for i in range[0, βββ.size) do

θθθ[i] = FHE.sub(ααα14:ααα.size[i], βββ[i])
end for
γγγ = wma(θθθ, 9)
mmm = zeros(γγγ.size)
for i in range[0, γγγ.size) do

mmm[i] = FHE.sub(θθθ9:θθθ.size[i], γγγ[i])
end for
return mmm

widespread used HE libraries is equipped with logic
and relational operators on numbers (Acar et al.,
2018). Hence, there is no direct method to compare
two values and deduce where the MACD signal line
is greater than, less than, or equal to zero which in
turn determines the time of buying, selling or doing
nothing. Nevertheless, the decision of sell, hold, or
buy could be associated with a decision function o
that produces either -1, 0 or 1 that correspond to a
sell, hold or buy order. To define a decision function
o, we first define a sign function that return the sign
of a number. Then we define a vector of differences
of adjacent MACD values δδδ as δδδ[i] = mmm[i− 1]−mmm[i]
with δδδ[0] = 0, and the product of consecutive MACD
values πππ as πππ[i] = mmm[i−1]mmm[i] for i ∈ [1,mmm.size) with
πππ[0] = 0. Then the trading decision is defined as:

o1(mmm, i) =
1
2

sign(δδδ[i]) · (sign(πππ[i])−1) (2)

where i ∈ [0,mmm.size).

The range of the function above is {−1,0,1}. The
downside of the function is its dependence on the sign
function that is not implementable using available HE
operations. The first sign function determines the
trend change and the second is the moment of cross-
ing x-axis.

4.5 Polynomial Approximation of the
ReLU Function

Given that HE schemes are limited to arithmetic op-
erations, only polynomial functions can be imple-
mented homomorphically. Additionally, due to the
noise accumulation discussed earlier, there is a lim-
itation on the order of a polynomial function. From
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this perspective, due to discontinuity of the sign func-
tion, polynomials of a lower order do not approximate
it well. A better function in terms of polynomial ap-
proximation is the ReLU function that is defined as
follows:

r(x) =

{
x x > 0
0 x≤ 0

(3)

Then an equivalent to o1 decision function could
be implemented using ReLU as follows:

o2(mmm, i) =−sign(δδδ[i] · r(−πππ[i])) (4)

where i ∈ [0,mmm.size).

We employed polynomial regression to approxi-
mate the ReLU function to estimate the polynomial
coefficients:

r̂(x) =−0.0001x9−0.0003x8 +0.0025x7

+0.009x6−0.0253x5−0.0984x4 +0.0882x3

+0.5173x2 +0.4475x+0.0753 (5)

Then using the r̂ we define an approximation of
the decision function as follows:

ô2(mmm, i) =−δδδ[i] · r̂(−πππ[i]) (6)

where i ∈ [0,mmm.size).

We apply both o2 and ô2 on plaintext MACD sig-
nals and employ only ô2 on encrypted MACD sig-
nals. The percentage errors between plaintext and
ciphertext implementations of ô2 are then compared
and presented in Section 4.

4.6 Multiplicative Depth

Multiplicative depth is the maximal number of se-
quential homomorphic multiplications allowed, while
the multiplication level represents the number of se-
quential multiplications performed on the ciphertext
(Brakerski and Vaikuntanathan, 2014). Namely, a
polynomial’s multiplicative depth depends on its de-
gree. Multiplicative depth is defined by the param-
eters of the HE library. Every time a multiplication
operation is performed on a ciphertext, its multiplica-
tion level goes one level deeper. The number of se-
quential multiplications on the ciphertext are limited
by the multiplicative depth. The most substantial part
of the trading strategy in terms of multiplicative depth
is the implementation of r̂ function. A multiplicative
depth of 3 is required to generate mmm but 7 more lev-
els are needed to produce δδδ. Currently, r̂ is of degree
8 and consumes 4 multiplication levels. The trading
decision ô2 is of degree 9. Therefore the maximum
multiplication level of our approach is 9.

4.7 Confidentiality

CKKS scheme is an asymmetric cryptosystem with a
public and a private keys. The public key is shared
with both the decision aggregator and algorithmic
traders while the private key is shared with the de-
cision aggregator. Without knowing the private key,
algorithmic traders as well as the attackers who hi-
jack the communication are not able to decrypt the ci-
phertexts. Therefore the confidentiality of our method
is well maintained by CKKS scheme. Moreover, ev-
ery trader is equipped with a unique public key, that
serves as a digital sign and prevents traders from im-
personating each other.

5 RESULTS

To compare the errors between the WMA-based ci-
phertext and plaintext implementations, we employ
the mean absolute percentage error defined as:

e(xxx,yyy) =
N

∑
i=1

|xxx[i]− yyy[i]|
yyy[i]

× 100% (7)

where i ∈ [0,xxx.size) and N = xxx.size = yyy.size. xxx is ei-
ther decrypted WMA, MACD signals or the trading
decisions and yyy is the vector of corresponding plain-
text WMA, MACD signals or trading decisions.

Table 2 presents the comparison results. As the er-
rors of WMA and MACD signals between encrypted
and plaintext analysis are insignificant, the WMA and
MACD signals generated with SEAL and HEAAN
are almost identical to those in plaintext. In terms of
trading decisions, we compare trading decision func-
tions over encrypted data with SEAL and plaintext
data. The peaks of the approximated trading deci-
sions generally correspond to the exact trading deci-
sions, but there are errors around the peaks. Addi-
tionally, the error increases as the multiplication level
gets deeper, and hence the percentage error of a trad-
ing decision function is larger than the that of MACD
and much larger than that of WMA. The reason for
the increasing error is the noise added by every arith-
metic operation.

Table 1: Errors between ciphertext and plaintext analysis.

Result Percentage Error
WMA-SEAL 0.00918%

WMA-HEAAN 0.00019%
MACD-SEAL 0.14916%

MACD-HEAAN 0.00020%
Decision-SEAL 3.19030%

Decision-HEAAN 0.03794%
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The computation was conducted on the Intel(R)
Core(R) CPU i7-7820HQ @ 2.9GHz with 16GB
RAM. The task consisted of the following steps: (1)
200 AAPL share prices were encrypted, (2) MACD
analysis was performed, (3) encrypted trading deci-
sions were generated and (4) the decisions were de-
crypted. The time required to produce the MACD
signal as well as the trading decision for a single day
were measured and summarised in table 3. The trad-
ing indicator implemented with SEAL can also run on
1-second candles and HEAAN implementation can be
applied to 15-seconds candles. The total time con-
sumed per data unit is 0.99 and 12.34 seconds for
SEAL and HEAAN implementations respectively.

Table 2: Performance of MACD and decision analysis.

Method Computation Time
MACD-SEAL 0.73 sec

MACD-HEAAN 7.085 sec
Decision-SEAL 0.26 sec

Decision-HEAAN 5.255 sec
Total-SEAL 0.99 sec

Total-HEAAN 12.34 sec

At this point, there are two significant limitations
in our implementation. Firstly, the lack of recursion
reduces the decision accuracy as the multiplicative
depth is constrained by the HE parameters. Although,
HEAAN supports bootstrapping, it introduces sub-
stantial noise and is also computationally intensive
(Acar et al., 2018). Therefore, we did not implement
bootstrapping in our approach. Secondly, operation
of bootstrapping is slow, due to the absence of logi-
cal and relational operators in the state-of-the-art HE
libraries. Only approximate decisions can be imple-
mented. However, the presented algorithm accurately
implements the MACD indicator and could be applied
in the real world applications.

6 CONCLUSIONS

We have implemented the MACD indicator on a stock
price time-series. To the best of our knowledge, this
is the first time HE methods are applied to finan-
cial time-series analysis. The algorithm implemented
with SEAL is able to produce the trading indicator in
less than a second and could be applied to 1-second
candle data as well as to lower resolution data. For
the future work we plan to implement linear systems
and corresponding recessive AR and MA based fil-
ters, including exponential moving average.
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