
A Fine-grained Access Control Model for Knowledge Graphs

Marco Valzelli a, Andrea Maurino b and Matteo Palmonari c

Department of Computer Science, Systems and Communication (DISCo), University of Milano-Bicocca,
Viale Sarca 336, Milan, Italy

Keywords: Access Control, Property Graph, Knowledge Graph, NoSQL, Security.

Abstract: Nowadays Knowledge Graphs are a common way to integrate and manage all the information that an organi-
zation owns. This involve also sensitive domains like security, so the management of access control on these
graphs became crucial. Due to their dimension, Knowledge graphs are often stored using NoSQL solutions,
that have very poor support to access control. In this paper a distributed and secure Knowledge graph man-
agement system is presented. The system supports both open and closed access control and its architecture
guarantees the management of very large knowledge graph.

1 INTRODUCTION

In 2012 Google introduced the Knowledge Graph
(KG in the follow) as a new technology to improve
its famous search engine. Basically, it is a graph that
contains all the main named-entity of the world and
the relations between them, so that the search engine
is able to identify the subject of the query and suggest
all object or features related to it. Since their intro-
duction, KGs have been largely used by a lot of big
and small companies (e.g. Amazon, Facebook and so
on), but they are also used in several research domains
as a way to describe in a common and shared way the
knowledge of a given field. Several companies are
now aggregating the knowledge stored in both struc-
tured and unstructured sources into a unique, compre-
hensive KG, for a better data management. It is worth
noting that a KG can be considered as an evolution
of the traditional data integration approach, and as a
consequence the size of KG is bigger than previous
solutions.

As the uses case of KG increase, they start to in-
clude also very sensitive data like for cybersecurity
purposes (Piplai et al., 2019), in the military sec-
tor (Liao et al., 2019) the law enforcement sector
(Szekely et al., 2015), but also civilian cases like the
medical one (Rotmensch et al., 2017; Shi et al., 2017).
For example in this last case, the KG includes all in-
formation related to doctors, patients, diseases and so

a https://orcid.org/0000-0002-4028-3063
b https://orcid.org/0000-0001-9803-3668
c https://orcid.org/0000-0002-1801-5118

on. Some people may access the KG in order to ana-
lyze correlation among clients but they cannot access
to personal details of patients, while another person
e.g. a doctor can access his patients’ information but
s/he cannot see information about others doctors. The
explosion of KG raises new issues wrt. the preserva-
tion of relevant information from unauthorized access
and their growing request for scalability at a higher
level.

Currently, there is no common opinion about how
to represent a KG. Among others, RDF is one of the
most adopted description languages, SPARQL is the
query language for RDF model and many systems for
managing RDF data (also called triple store) are avail-
able. However there are proposals to implement an
access control mechanism in RDF (Kagal et al., 2003;
Abel et al., 2007; Kirrane, 2015), but they are not
scalable nor flexible and, most important not imple-
mented in commercial triple store. Recently, others
graph models like the Labelled Property Graph model
(LPG from now on) has been used to represent knowl-
edge graphs.

In this short paper, we propose a solution for en-
abling access control of large KG in a scalable way.
The scalability issue is solved by means of Janus-
graph1 a distributed and scalable property graph. We
provide a systematic translation of RDF concepts in
terms of property graph model. Then we define a
access control method based on logical description
of KG and users in terms of property graph model;
our solution support a subset of SPARQL query lan-

1janusgraph.org

Valzelli, M., Maurino, A. and Palmonari, M.
A Fine-grained Access Control Model for Knowledge Graphs.
DOI: 10.5220/0009833505950601
In Proceedings of the 17th International Joint Conference on e-Business and Telecommunications (ICETE 2020) - SECRYPT, pages 595-601
ISBN: 978-989-758-446-6
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

595

guages by optimizing Gremlinator (Thakkar et al.,
2018) a software layer able to translate a SPARQL
query into a property graph query.

The paper is organized as follows: in section 2
we report the most important contribution of literature
and industrial solution for the access control problem
applied to graphs, while in section 3 we provide a
more formal description of the problem. In section
4 presents the proposed access control method and in
section 5 the implementation of the model is shown.
Finally in section 6 we draw conclusion and discuss
future works.

2 RELATED WORK

The great success of graphs as data model is very re-
cent, but in the past we can find that trees, a particu-
lar type of graph, have been used as a data structure
on which apply access control. This happened in the
2000 with XML, a format widely used to exchange
information across the web. With the need to store
data comes along the need to provide an access con-
trol framework (Damiani et al., 2002).

In this access control model users are identified
with their IP address, an ID and a symbolic name.
Those identifiers can be grouped in hierarchies and
all this information is stored in XML too. Also users
can be grouped, and for each group or user are as-
signed access rights. In turn, access rights give per-
missions on documents or document portions using
XPATH specifications on the DTD. Finally, the rules
are evaluated with defined precedence and propaga-
tion specifications between instance level and DTD
level. Nowadays XML is also used as a serialization
format for graphs(Brandes et al., 2013).

Starting from 2001 with the birth of the seman-
tic web (Berners-Lee et al., 2001), the RDF semantic
graph framework provided an efficient way to store
big amounts of data in a graph format. RDF datasets
usually are meant to be shared across the web, so no
access control models have been provided. Since the
users of RDF endpoints are often anonymous, the lit-
erature offers many proposals of context-based access
control frameworks. One of these (Stojanov et al.,
2017) also suggests an interesting mechanism for the
creation of view on the graph based on the composi-
tion of allow/deny rules. The researches in this area
also proposes to define policies through ontologies
and to apply these policies using ontological reason-
ing. Research in this area also tried to address partic-
ular aspects of this technology like distribution (Ka-
gal et al., 2003; Hollenbach et al., 2009), federation
(Goncalves et al., 2019) inference of new information

(Jain and Farkas, 2006) and possible solutions to the
scalability problem (Abel et al., 2007). Also more
traditional access control models like DAC have been
implemented (Kirrane, 2015). Although you can find
significant literature for access control in RDF Graphs
(Kirrane et al., 2017), these approaches cannot be di-
rectly applied in other graph contexts as they focus on
different aspects or heavily rely on ontological rea-
soning.

In recent years new storage models, called
NoSQL, have come alongside the relational model.
Unlike this one, that was made to strictly provide
ACID properties, these models were developed to
handle different use cases and huge amount of data
following the BASE philosophy. However, these
models were not designed with security and privacy
criterion and still lack in this aspect (Sahafizadeh and
Nematbakhsh, 2015; Alotaibi et al.,). We found that
just a small part of these solutions support RBAC.
Also notable is the case of Accumulo2 where is pro-
vided access control at cells level.

The NoSQL wave also brought new interest on
the graph model, due to its semi-structured nature
that allows more flexibility and better performances
in many use cases. The graph model supported by
NoSQL products is very different from RDF. While it
is based on triples, the property graph model is bases
on nodes and edges on which you can specify particu-
lar attributes. We can find two kinds of property graph
databases: the native ones, where data is physically
stored in terms of nodes and edges, and the hybrid
ones, that provides a property graph model but rely
on a different storage model like the wide-column.

Neo4J is the most common native graph database
and it implements the LPG model. It still has only
basic security and access control features: it allows to
define user role and their privileges3, but not at a fine-
grained level. Some initial step has been taken in this
direction4, but it still needs improvements to be able
to cover the cases of open and closed policies.

The only significant work in the property graph
context (Morgado et al., 2018) has designed an access
control model defining how users or groups of users
can access and manipulate data. However, it has some
drawbacks like lack of flexibility and redundancy. In
fact, you can only describe positive permissions and
you have to define them for every node, so it’s not
clear how the model can be applied with inheritance
and conflicts. Furthermore, this work and the neo4j

2https://accumulo.apache.org/
3neo4j.com/blog/role-based-access.-control-neo4j-

enterprise/
4neo4j.com/blog/access-control-lists.-the-graph-

database-way/

SECRYPT 2020 - 17th International Conference on Security and Cryptography

596

Figure 1: A practical use case of a source of general knowledge like DBpedia is extended with entities of the terrorism domain.

proposal has both the characteristic that they requires
quite complex algorithm to be evaluated, so their scal-
ability is in doubt. A different approach has been pro-
posed in the Tinkerpop community5 where the evalu-
ation mechanism of the authorizations has been inte-
grated in the GDMBS but it checks for access control
metadata in every edge and node, so it needs a certain
redundancy both in the stored data and in the interro-
gation, impacting on the performance of the system.
In conclusion, the literature and the graph community
proposed some suitable model, but it still has to be
found a good trade-off between expressiveness, data
overhead and evaluation time.

3 CONSIDERED USE CASES

In the past years the literature on access control,
thanks to a great adoption in commercial DBMS,
has defined a variety of policies one can imple-
ment.(Sandhu and Samarati, 1994). We focus on three
main approaches for access control:

• DAC: Discretionary access control provides for a
direct rights specification between users or groups

5archive.fosdem.org/2019/schedule/event/
graph access control tinkerpop

of users and resources. This approach allows a
great expressiveness, but at the same time lack
in maintainability. For example, if you want to
know every resource a specific user can access
you would have to do a full scan query. In ad-
dition, you can adopt also open policy that allows
specifying both denials and permissions. It is usu-
ally implemented with access control lists.

• MAC: Mandatory access control comes from the
military context and provides access to the re-
sources based on the clearance level of the user,
following the need-to-know principle (closed pol-
icy): a subject should only be given access rights
that are required to carry out the subject’s duties.

• RBAC: Role-based access control is a more re-
cent approach. It allows assigning rights to users
based on their roles. When the user needs differ-
ent rights, you only need to assign him to a new
role without changing access properties to every
resource he cannot access anymore.

These access control policies were designed to be
mutually exclusive, but instead we want to combine
and use them at the same time. Some effort has al-
ready been done in this direction (Jajodia et al., 2001).
We extend it by adding more abstraction also over re-
sources, borrowing the notion of classes from RDF

A Fine-grained Access Control Model for Knowledge Graphs

597

Figure 2: Graph pattern for the access control framework. ”Can” and ”Cannot” edges cannot be present simultaneously.

ontologies. In fact, groups of users and roles are
ways to assign the same rights to more users at the
same time, saving memory and maintainability time.
We pursue the same objective over resources by giv-
ing the possibility to define access rights over en-
tity classes and then propagate them using inheritance
mechanisms.

For example, let’s consider the case of a national
security agency fighting terrorism, as described in im-
age 1. For building the knowledge graph one has to
start from a backbone of general knowledge. In this
case, we use DBpedia 6, from which we use general
classes like Person, Organization and Work. These
classes can be used to classify and integrate sensitive
information about terrorists and information about
them. We call this extended graph the Domain Graph.
It should be noted that we can use relations between
classes as a way to extend access rights between in-
stances. In fact, if a user has access to a criminal
profile, probably she will have access also to his re-
lated documents (except for clearance). It is possible
to represent as a graph also users, that can be grouped
by departments of the agency or their roles. We call
this part of the graph the User’s graph. In this domain,
we want to specify only what a user can view, with
a need-to-know principle. That can be done on the
base of both her role and groups, like with an RBAC
policy. because probably different departments of the
organization investigate different areas of the world,
so they have to be able to view only a small portion
of the graph. In addition, we may want to cover also
particular cases (like temporary operation) that allows
access to specific documents, like with a DAC. Plus,

6wiki.dbpedia.org/

all those rules have to match a user’s clearance level
(MAC). With our work, we propose an access control
model that cover all these cases.

4 ACCESS CONTROL MODEL

First of all, we have to point that the security of a
computer system is composed of several ideal parts,
that are an authentication service, an authorization
database, an audit system, a security administrator
and the access control model. In this paper we focus
on this last part with the authorization database, as-
suming that the others are already present in the des-
tination system. In access control systems a distinc-
tion is generally made between policies and mecha-
nisms. Policies are high-level guidelines that deter-
mine how accesses are controlled and access deci-
sions determined. Mechanisms are low-level software
and hardware functions that can be configured to im-
plement a policy. With our access control model, we
pursue the goal to design a security mechanism that is
reusable for many different policies, especially both
the cases of open and closed policies. Our approach
is focused on giving or not access to resource. More
specific rights like own, delete, modify can be built on
the top of our model.

The idea behind our model is to exploit all the
flexibility of the LPG model so we do not give a rigid
data structure, but only some graph patterns to follow,
as can be seen in figure 2. We can identify three main
parts in our model: the user’s subgraph, the resource’s
subgraph and the authorization’s edges between them.

In the user’s subgraph users are represented by

SECRYPT 2020 - 17th International Conference on Security and Cryptography

598

nodes with properties containing username, password
and clearance level. They can be grouped in groups by
linking them to users’ group nodes. This mean they
will inherit the access rights of the group. In the same
way users can be grouped by roles’ node. Potentially
these types of nodes can coexist, but this will lead to
a more complex rights administration.

As we mentioned before, we use relation between
classes as a way to extends rights between instances.
In fact, it is a common situation that some objects
are semantically dependents to another object, that
we call resource category. Our intuition is to use this
kind of relation between classes to automatically in-
sert specific ”extends rights” edges between their in-
stances.

Finally, we can specify access rights between
users or user’s groups and resource’s classes with au-
thorization edges. In our model we want to allow both
open and closed policies, so these edges can have op-
posite meanings. With closed policies access’ rights
are usually assigned with the ”need to know” prin-
ciple, which is that a user has to be given access to
the resources strictly necessary to carry out his duties,
and everything else is forbidden. On the contrary, us-
ing open policies are specified resources where a user
has not access and all that is not specified is allowed.

So the authorization edges must be used in dif-
ferent ways depending on the context: in the case of
closed policies they must specify what an user can
access, while in the case of open policies they specify
what a user cannot access.

In addition our model provides for particular pol-
icy specification using exception edges, that are au-
thorization edges between user and resource in con-
trast to those between users’ groups and resources’
categories. Imposing this constrain we ensure to al-
low expressiveness without leading to too much com-
plexity.

So, after applying a closed policy, if you want to
obtain all the nodes a user can access you need to nav-
igate the graph up to the ”part-of edges”, search for
”can” edges and then retrieve all the nodes belonging
to that categories, then remove all the nodes linked by
a ”cannot” edge to the user.

In the same way to apply an open policy you know
that a user can potentially access all nodes except
those belonging to a category that is linked by a ”can-
not” edge to a group the user is part of. At the end
you only have to re-add the nodes linked by excep-
tion edge ”can” to the user. In both open and closed
policies the nodes can also be filtered by the user’s
clearance level.

Determining which node a user can access with a
traversal has many advantage:

• Graph model has great readability and also inher-
itance mechanism are easy to understand

• You can specify a great variety of policies with a
few edges and attributes

• Full-scan are not needed as you can just use edges
to reach resources you are or not allowed to access

• Maintainability is also simplified. For example,
if a user wants to know which users have access
to an object, she can exploit the reverse path used
during the resource’s access mentioned before

Now we try to clarify our model with a practical
example, based on the previously presented Domain
Graph of terrorism. It has been extended in 3 with the
user’s graph, where agents are grouped by nodes rep-
resenting their roles and groups. The user’s graph is
linked to the Domain Graph with specific edges, and
it is also integrated by AC edges itself. Let’s clarify
their meanings:

• Green edges represent the positive ”can view”
permission.

• Red edges represent the negative ”cannot view”
permission.

• Blue edges represent the extend rights relation.

This last relation can be manually specified between
specific classes of the Domain Graph Ontology. For
example, we specify that the relation ”mentioned in”
extends the access rights from entity of type ”Per-
son” to entity of type ”Work”. Then we can use au-
tomatic procedure to add the access control attribute
”extends rights” to all the edges ”mentioned in” be-
tween entities of the classes defined before. From this
specification we can deduce that:

• The department ”Africa NSA” is allowed to view
all Boko Haram organisation, but:

– The object ”Intercept 003765” cannot be seen
from agent Paul and agent Patricia due to too
low clearence level

– The object ”Satellite image 05/02” cannot be
seen from agent Paul due to a ”cannot” edge.

• The department ”Middle East NSA” is allowed to
view all Daesh organisation

• Agent Rick and agent Patricia are Director of their
department, and this allows them to have full ac-
cess to both organisation

In addition to this we can imagine that NSA or-
ganisation found a link between Daesh and the drug
dealer Ben Ziane Berhily, who supplies daesh soldier
with amphetamine. So agent Linda is allowed to view
Ben Ziane data with an exception specified with the
”can” edge.

A Fine-grained Access Control Model for Knowledge Graphs

599

Figure 3: The before mentioned terrorism graph integrated with the users’ Graph and the authorization edges.

5 IMPLEMENTATION

For the implementation of our access control model,
we rely on Tinkerpop 7, which is an Apache project
that provides several services and is compatible with
fairly all the most common graph products. The most
useful feature of this framework for our purposes is
the SubGraphStrategy, which is a traversal strategy
that allows to create a virtual subgraph based on given
constraints. What this method really does is to pro-
vide an automatic mechanism that, given a user query,
verify at every step if the initial constraints are satis-
fied.Since we use a pattern-based approach integrated
with exceptions, we cannot use constraints based on
attributes.

Our solution is to split the process into a two step.
First, we retrieve all the IDs of the resource a user
can access, then we use this list as a constraint for
the traversal strategy. This prevents us to check for
many different conditions at every step using a more
immediate check like equality between IDs.

We now present a practical use example, based
on the graph presented in section 3 and 4. If the ac-
cess control strategy is not active, a general user can
have full access to data. For example, if she asks for
the names of criminals, the system will return all the

7tinkerpop.apache.org/

nodes with class ”Criminal” present in their ”closure”
attribute.

g.V().has(’closure’,’criminal’).values(’name’)
>
>[Abubakar Shekau, A-Barnawi, Al-Qurashi,
> Al-Baghdadi, Ben Ziane Berhili]

But if a specific user logs in to the system, agent Linda
for example, our tool is able to build a personalized
view. This is done in two steps. First, we make
a query to identify the subset of nodes she has the
rights to see, considering the specific user, her clear-
ance level, and the before mentioned graph pattern
(the whole query is omitted for space reasons):

allowedVertices = g.V().has(’username’,’Linda’)
.outE().has(’level’,P.lte(clearance))
.id().toList()

Then, a personalized view is generated giving as input
the before extracted node ids:

sg=graph.traversal()
.withStrategies(SubgraphStrategy.build()
.vertices(__.hasId(P.within(allowed_vertices)))
.create())

Finally, the view is used to permit a transparent access
to resources:

sg.V().has(’closure’,’criminal’).values(’name’)
>
>[Al-Qurashi, Al-Baghdadi, Ben Ziane Berhili]

SECRYPT 2020 - 17th International Conference on Security and Cryptography

600

This way the access control uses the great amount
of computational overhead at startup time, building
the personalized views for all the users. However,
these views has only to be generated once and then
stored in-memory, leading to a very short response
time when the user submits his query. At the same
time, the user is not aware of the access control mech-
anism, making the process totally transparent. To pre-
vent possible security issues, we have to protect script
execution on Tinkerpop, or an expert user could easily
bypass the SubGraphStrategy otherwise.

6 CONCLUSIONS AND FUTURE
WORK

We find out that in the state of the art there are not
efficient, flexible and general-purpose access control
models for property graphs. We propose an approach
based on graph traversal over specific patterns and on
the creation of a subgraph using a Tinkerpop feature
to address this issue. This is a preliminary model on
the top of which it has to be build a more complete
access control policy that includes write, delete and
own rights. We left as a future work also an extensive
test of the scalability of the model.

REFERENCES

Abel, F., De Coi, J. L., Henze, N., Koesling, A. W., Krause,
D., and Olmedilla, D. (2007). Enabling advanced and
context-dependent access control in rdf stores. In The
Semantic Web, pages 1–14. Springer.

Alotaibi, A. A., Alotaibi, R. M., and Hamza, N. Access
control models in nosql databases: An overview.

Berners-Lee, T., Hendler, J., Lassila, O., et al. (2001). The
semantic web. Scientific american, 284(5):28–37.

Brandes, U., Eiglsperger, M., Lerner, J., and Pich, C.
(2013). Graph markup language (GraphML).

Damiani, E., De Capitani di Vimercati, S., Paraboschi, S.,
and Samarati, P. (2002). A fine-grained access con-
trol system for xml documents. ACM Transactions on
Information and System Security (TISSEC), 5(2):169–
202.

Goncalves, M., Vidal, M.-E., and Endris, K. M. (2019).
Pure: A privacy aware rule-based framework over
knowledge graphs. In International Conference on
Database and Expert Systems Applications, pages
205–214. Springer.

Hollenbach, J., Presbrey, J., and Berners-Lee, T. (2009). Us-
ing rdf metadata to enable access control on the social
semantic web. In Proceedings of the Workshop on
Collaborative Construction, Management and Link-
ing of Structured Knowledge (CK2009), volume 514,
page 167.

Jain, A. and Farkas, C. (2006). Secure resource descrip-
tion framework: an access control model. In Proceed-
ings of the eleventh ACM symposium on Access con-
trol models and technologies, pages 121–129. ACM.

Jajodia, S., Samarati, P., Sapino, M., and Subrahmanian,
V. S. (2001). Flexible support for multiple access con-
trol policies. ACM Transactions on Database Systems
(TODS), 26(2):214–260.

Kagal, L., Finin, T., and Joshi, A. (2003). A policy based
approach to security for the semantic web. In In-
ternational semantic web conference, pages 402–418.
Springer.

Kirrane, S. (2015). Linked data with access control. In
Workshop on. pp, volume 14, page 23.

Kirrane, S., Mileo, A., and Decker, S. (2017). Access con-
trol and the resource description framework: A survey.
Semantic Web, 8(2):311–352.

Liao, F., Ma, L., and Yang, D. (2019). Research on con-
struction method of knowledge graph of us military
equipment based on bilstm model. In 2019 Inter-
national Conference on High Performance Big Data
and Intelligent Systems (HPBD&IS), pages 146–150.
IEEE.

Morgado, C., Baioco, G. B., Basso, T., and Moraes, R.
(2018). A security model for access control in graph-
oriented databases. In 2018 IEEE International Con-
ference on Software Quality, Reliability and Security
(QRS), pages 135–142. IEEE.

Piplai, A., Mittal, S., Joshi, A., Finin, T., Holt, J., Zak,
R., et al. (2019). Creating cybersecurity knowledge
graphs from malware after action reports.

Rotmensch, M., Halpern, Y., Tlimat, A., Horng, S., and
Sontag, D. (2017). Learning a health knowledge graph
from electronic medical records. Scientific reports,
7(1):1–11.

Sahafizadeh, E. and Nematbakhsh, M. A. (2015). A sur-
vey on security issues in big data and nosql. Ad-
vances in Computer Science: an International Jour-
nal, 4(4):68–72.

Sandhu, R. S. and Samarati, P. (1994). Access control: prin-
ciple and practice. IEEE communications magazine,
32(9):40–48.

Shi, L., Li, S., Yang, X., Qi, J., Pan, G., and Zhou, B.
(2017). Semantic health knowledge graph: Semantic
integration of heterogeneous medical knowledge and
services. BioMed research international, 2017.

Stojanov, R., Gramatikov, S., Mishkovski, I., and Trajanov,
D. (2017). Linked data authorization platform. IEEE
Access, 6:1189–1213.

Szekely, P., Knoblock, C. A., Slepicka, J., Philpot, A.,
Singh, A., Yin, C., Kapoor, D., Natarajan, P., Marcu,
D., Knight, K., et al. (2015). Building and using a
knowledge graph to combat human trafficking. In
International Semantic Web Conference, pages 205–
221. Springer.

Thakkar, H., Punjani, D., Lehmann, J., and Auer, S. (2018).
Two for one: Querying property graph databases us-
ing sparql via gremlinator. In Proceedings of the
1st ACM SIGMOD Joint International Workshop on
Graph Data Management Experiences & Systems
(GRADES) and Network Data Analytics (NDA), pages
1–5.

A Fine-grained Access Control Model for Knowledge Graphs

601

