
Toward a Correct Implementation of LwM2M Client with Event-B

Ines Mouakher1, Fatma Dhaou1 and J. Christian Attiogbé2

1University of Tunis El Manar, Tunis, Tunisia
2University of Nantes, Nantes, France

Keywords: IoT, Device Management, OMA LwM2M, Formal Verification, Event-B.

Abstract: Within the Internet of Things (IoT), billions of connected devices can collaborate anytime, anywhere and in
any form in various domains of applications. These devices with minimal storage and computational power
are based on standards and lightweight protocols. Due to the critical nature of application domains of the IoT
systems, the verification of various properties is crucial. To this end, the benefits of using formal methods are
widely recognized.
In this paper, we present an approach that integrates modelling and verification techniques, required for the
specification of IoT systems, by exploiting the OMA Lightweight M2M (LwM2M) enabler. We propose a
formal model of the LwM2M client, which is located in an LwM2M device, by building several mathematical
models of discrete transition systems using Event-B. Indeed, we opt for a systematic and refinement-based
approach that helps us to model and to verify gradually the specification. The Rodin tool is used to specify
and verify the Event-B models. The generated Event-B models allow us to analyze and verify the behavior of
LwM2M client that supports the latest LwM2M 1.1 version. Furthermore, it is a first step towards providing
formally proven LwM2M client implementations.

1 INTRODUCTION

The IoT finds applications in various areas such as au-
tomotive, home automation, smart cities, energy ef-
ficiency, industry, agriculture, health, education and
others. The IoT extends the internet connection to
a diverse range of devices, and everyday things that
are equipped with embedded technology, including
sensors, actuators, RFID1 tags, etc. With advanc-
ing technologies, these devices have communication
and computing capabilities, and they can be remotely
monitored and controlled.

Remote device management is a critical issue
since the connected devices are diverse and their num-
ber is growing rapidly over time. Hence, it is essential
to efficiently manage this huge amount of devices, as
well as to equip the IoT with open standards to en-
sure its durability. This calls for abstraction of device
management functions that have to hide the complex-
ity, and to be independent of the technology. Such an
abstraction can be provided by the OMA2.

The OMA LwM2M enabler (Open Mobile Al-

1RFID = Radio-Frequency IDentification.
2OMA = Open Mobile Alliance, https://www.

omaspecworks.org

liance, 2018a) is based on a client/server architec-
ture. The device acts as the LwM2M clients, and
the platform or the application acts as the LwM2M
server. The LwM2M enabler defines the application
layer communication protocol between an LwM2M
server and an LwM2M client. We investigate only the
client side (device). The target devices for this enabler
are essentially resource-constrained devices; there-
fore, this enabler makes use of a light and compact
protocol as well as an efficient resource data model.
The LwM2M enabler includes the specification of ap-
plication protocol for device management, and ser-
vice enablement for LwM2M devices. There are sev-
eral IoT platforms based on this standard, which ex-
plains the various implementations of the LwM2M
specification. Some of them implement either the
server side or the client side. Others implement both
of them (client and server). These implementations
support most of the features of the LwM2M protocol.

Our final objective is the correct implementation
of the LwM2M client; but we proceed incrementally.
Indeed, in this article, we deal with the preliminary
steps of modelling and analysing the LwM2M speci-
fication. We use formal methods to help in ensuring
correctness, consistency, and clarity of the LwM2M
specification. Since a well-defined and verified pro-

172
Mouakher, I., Dhaou, F. and Attiogbé, J.
Toward a Correct Implementation of LwM2M Client with Event-B.
DOI: 10.5220/0009832601720179
In Proceedings of the 15th International Conference on Software Technologies (ICSOFT 2020), pages 172-179
ISBN: 978-989-758-443-5
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

tocol specification can reduce the cost for its imple-
mentation and maintenance. Modelling and analysis
are important steps of the protocol development life
cycle from the viewpoint of protocol engineering.

Event-B (Abrial, 2010) is a state-based formal
method, hence we can easily describe resources data
model associated with client. The Event-B method is
dedicated to describe event-driven reactive systems;
it allows us to describe interactions between LwM2M
clients and servers. We take advantage of the Event-
B method refinement, which permits us to represent
the LwM2M client at different abstraction levels, and
it allow us to generate correct-by-construction code
from Event-B models.

In this work, we propose to model the behavior
of the LwM2M client as a discrete transition system
by building its mathematical models with Event-B.
Our models are compliant with the enabler technical
specification for LwM2M 1.1. The generated Event-
B models allow us to analyze and verify the behavior
of the LwM2M client. The Event-B method and its
tools support are used to specify, validate and simu-
late our models. We choose an approach that grad-
ually models a complex behavior of the client using
layered refinement, such that in each refinement we
focus on modelling and verifying a subset of the en-
abler specification. The proposed approach is based
on the systematic rules to generate the Event-B mod-
els. To better describe our models, we use State
Machine Diagrams (SMD) to specify protocols in-
volved in the interactions between LwM2M client and
servers. These diagrams allow us to summarize the
specification in a graphical way, and to better explain
some Event-B models, since they are presented as a
translation of SMD. Furthermore, we define the rules
to translate interaction patterns into Event-B such as
request/response and subscribe/notify.

This paper is structured as follows: Sec. 2 is ded-
icated to a brief presentation of LwM2M enabler and
some background notions of the Event-B method, In
Sec. 3, we explain our approach of the formal mod-
elling of the LwM2M client. In Sec. 4, we summarize
the Event-B development of the LwM2M client.In
Sec. 5, we discuss some related work. Finally, Sec. 6
presents our conclusions and future work.

2 BACKGROUND

2.1 Brief Introduction to LwM2M

With LwM2M enabler (Open Mobile Alliance,
2018a; Open Mobile Alliance, 2018b), OMA has re-
sponded to the market demand for a common standard

to the managing lightweight and low power devices
on a variety of networks that is necessary to achieve
the potential of the IoT.

A client-server architecture (Fig. 1) is introduced
for the LwM2M enabler, where the LwM2M device
acts as an LwM2M client and, platform or application
acts as the LwM2M server. The LwM2M enabler has
two components: an LwM2M server and an LwM2M
client.

LwM2M Server
LwM2M

Bootstrap-Server

Interfaces

Client Registration

Device Management &
Service Enablement

Interfaces

Information Reporting

Bootstrap

DEVICE

LwM2M Client

Objects

Figure 1: The overall architecture of the LwM2M en-
abler (Open Mobile Alliance, 2018a).

Four interfaces are specified between the LwM2M
client and the LwM2M servers: Bootstrap Inter-
face (I1), Registration Interface (I2) Device Manage-
ment and Service Enable Interface (I3), and Infor-
mation Reporting Interface (I4). The operations for
the four interfaces can be classified into uplink or
downlink operations. The LwM2M operations for
each interface are mapped to CoAP Methods. The
CoAP protocol provides a request/response interac-
tion model. The LwM2M client must ignore the
LwM2M server operations on the I3 interface and on
the I4 interface during a server initiated bootstrap and
until it received its registration acknowledgement.

The LwM2M objects are identified with an Ob-
ject ID (i.e. Security object ID:0, Server object ID:1,
Access Control object ID:2, Device object ID:3, Con-
nectivity Monitoring object ID:4, Firmware Update
ID:5, Location object ID:6 and Connectivity Statistics
object ID:7). The resource data model is extensible,
thus any companies can define additional LwM2M
objects.

2.2 Brief Introduction to Event-B

Event-B (Abrial, 2010) is a formal method, which is
used in numerous industry projects. It is dedicated to
the modelling of critical systems. The basis for the
mathematical language in Event-B is first logic and a
typed set theory. Set-theoretical notation of Event-B

Toward a Correct Implementation of LwM2M Client with Event-B

173

defines different types of relations and functions3 en-
hanced by different properties. The Event-B method
is supported by the Rodin toolkit which comprises ed-
itors, theorem provers, animators and model checkers.
Two basic constructs compose Event-B models: con-
texts and machines. The static part of models is de-
fined in a context. The behavior of a system is mod-
elled as a transition system. A machine specification
usually defines variables that specify the states of a
system and guarded events that specify the system’s
transitions.

3 FORMAL MODELLING OF
THE LwM2M CLIENT

The behavior of the LwM2M client is given mainly
by the interactions with the servers through four in-
terfaces. It can also have some internal processes.
The supported operations are based on different com-
munication models: a request/response interaction
model, synchronous or asynchronous model and sub-
scribe/notify model, we define how we model each of
them in Event-B (Sec. 3.1).

In addition, the performance of these operations
depends on the state of the client and on the protocol
required by the interfaces. For example, the LwM2M
client must ignore LwM2M server operations on the
I3 interface during a server initiated bootstrap and un-
til it received its registration acknowledgment. For
this purpose, we use state transition diagram that al-
lows us, on the one hand, to summarize the descrip-
tion of the client, and on the other hand, to give a pre-
liminary model based on state and transition which
structures the translation into Event-B (Sec. 3.2).

3.1 Modelling Interaction Patterns

3.1.1 Request/Response Pattern

The operations of the LwM2M client are based on a
request/response interaction pattern. We consider that
there is no loss of messages. Then, for each received
or sent operation, the client must respectively send or
receive its response. For each operation, there are two
kinds of response: f ailure and success.

For each operation, we associate one event for
the request. For some operations, we associate two
events to their response in order to distinguish be-
tween f ailure and success responses; for the others,

3Total (→) or partial (7→) functions, total (�) or par-
tial (7�) injections, total (�) or partial (7�) surjections and
bijections (��).

we associate one event that will group the two kinds
of response. We use the naming convention as illus-
trated by the examples in Tab. 1.

Table 1: Naming convention for Event-B events.

Operations Event-B events
Request is uplink opera-
tion from I1 interface

s Request I1,
r Request I1 Response

Discover is downlink
operation from I1 inter-
face

r Discover I1,
s Discover I1 Response

We use one variable to synchronize between re-
quest and response of each interface. Then we define
partial functions that map the operations with the cor-
responding interface. For the I1 interface, the client
communicates with one bootstrap server. The I1 State
variable is defined as a partial function that associates
True to an operation if it waits for a response other-
wise it is False, i.e. I1 State ∈ OPERAT IONS I1 7→
BOOL.

For the rest of the interfaces I2, I3 and I4, the
client can interact with several servers, and can re-
ceive several simultaneously requests from different
servers. The variable Ii State (with i ∈ {1,2,3})
is a partial function that associates an operation
with the set of servers waiting for a response for
that operation (e.g. I3 State ∈ OPERAT IONS I3 7→
P(dom(ServersState))4).

3.1.2 Subscribe/Notify Pattern

The I4 interface allows the server to observe any
changes in resource values on the LwM2M client
based on subscribe/notify pattern. The server initiates
the conversation by sending an Observe or Observe-
Composite operation that expresses interest in receiv-
ing notification messages about an object, an object
instance or a resource. Then, the client delivers a
stream of Noti f y messages to the server at the place
in which data becomes available. When a Cancel Ob-
servation or a Cancel Observation-Composite opera-
tion is performed, the observation terminates. Partic-
ularly, there are two sequences of operations based
on subscribe/notify pattern: Observe/Notify/Cancel
Observation and Observe-Composite/Notify/Cancel
Observation-Composite.

For I4 interface, in addition to the I4 State vari-
able introduced to support request/response pattern,
the variable tokens is introduced to support sub-
scribe/notify pattern. The variable tokens is used as a
set of tokens.This variable is used to match the asyn-
chronous notifications with previous Observe opera-

4dom: domain, P : powerset.

ICSOFT 2020 - 15th International Conference on Software Technologies

174

tions. For each successful Observe operation, a token
is added to the tokens variable and it will be deleted
when the client receive Cancel Observation.

3.1.3 Synchronous and Asynchronous
Communication Pattern

The OMA LwM2M enabler don’t specify if the com-
munication is synchronous or asynchronous then the
implementation can support both of them. We only
consider the context of synchronous communication.
In the context of uplink operation, the client can not
start another sending operation until it has received
the response to the already sent one; but it can re-
ceive operations (downlink operation). In the context
of downlink operation, the client can receives opera-
tions from several servers. Other servers are assumed
to communicate in a synchronous manner. Therefore,
if the client has received an operation from a server,
he can not receive another one until he has sent the
response of the first one.

The asynchronous communication can be easily
supported by our models by modifying the guards of
operations.

3.1.4 Example of Interaction Model Events

To illustrate the rules proposed in the Sec. 3.1.1,
Sec. 3.1.2 and Sec. 3.1.3, we give the example of
the two Event-B events associated to Noti f y opera-
tion (Fig. 2).

Event s Notify I4 〈ordinary〉 =̂
any s
where

grd3: I2 State = (OPERAT IONS I2×{∅})
grd4: I3 State = (OPERAT IONS I3×{∅})
grd5: I4 State = (OPERAT IONS I4×{∅})
grd6: s ∈ tokens

then
act1: I4 State(Noti f y) :=

I4 State(Noti f y)∪ {s}
end

Event s Notify I4 Response 〈ordinary〉 =̂
any s
where

grd5: (Noti f y ∈ dom(I4 State))⇒
(s ∈ I4 State(Noti f y))

grd6: s ∈ tokens
then

act1: I4 State(Noti f y) :=
I4 State(Noti f y)\{s}

end
Figure 2: Event-B events associated to Noti f y operation.

• Request/response pattern : the Noti f y operation is
an uplink operation from I4 interface, then it has

two events: s Notify I4 and s Notify I4 Response.
The variable I4 State appears in the guard of the
two events (grd5 in Fig. 2) and it is updated in
their action (act1 in Fig. 2). The variable I4 State
allows us to synchronize between request and re-
sponse of the operation Noti f y.

• Subscribe/notify pattern: the Noti f y operation
can be performed (i.e. the s Notify I4 and
s Notify I4 Response events can be executed)
only if the considered server has a token in the
tokens variable (grd6 in Fig. 2)

• Synchronous communication pattern: the event
s Notify I4 is sending event and it can be per-
formed only if there is not another received or
sent operation waiting for response (grd3, grd4
and grd5

3.2 Modelling Interfaces Protocol

3.2.1 Description of the LwM2M Client with a
State Machine Diagram

The abstract behavior of the LwM2M client can be
shown as a SMD in Fig. 3. This diagram includes
two composite states, “attempting to Bootstrap” and
“Bootstrap Success”, and one simple state “Bootstrap
Failure”.

The “Attempting to Bootstrap” state has three
nested states: “Attempting to Factory Bootstrap”,
“Attempting to Bootstrap from Smartcard”, and “At-
tempting Client Initiated Bootstrap”. In this compos-
ite state, the device sequentially try to bootstrap via
Smartcard and/or Factory Bootstrap mode. If these
two steps fail (i.e. the client has not any LwM2M
Server object instances), the LwM2M client performs
the Client Initiated Bootstrap. If the Client Initi-
ated Bootstrap also fails, then the LwM2M client is
in a deadlock state:“Bootstrap Failure”. In the “At-
tempting Client Initiated Bootstrap” state, there is
the “Client Initiated Bootstrap” activity. This activ-
ity consists of a set of interactions between the client
and the bootstrap server through the operations of the
I1 interface.

In the “Bootstrap Success” state, we introduce the
operations of I2 interface: Register, U pdate and De-
register. After the success of bootstrap, the client
must have at least one server account. As soon as
the client registers to a server, the client can per-
form the other operations of I2 interface with this
server as well as the operations of I3 and I4 in-
terfaces. Finally, the client can De-register and
stop interaction with the LwM2M server. In the
“Bootstrap Success” state, we can deduce three sub-
states: “Not Registered”, “Registered” and “Fail Reg-

Toward a Correct Implementation of LwM2M Client with Event-B

175

[Bootstrap server

Account not exist]

Bootstrap

BootstrapFail

A�emp�ng to Bootstrap

do/Factory Bootstrap

BootstrapFail

Fail Registered (si)

De-Register(I2)

UpdateFail(I2)

do/Opera�ons(I3, I4)

/Update(I2)

Not Registered (si)

RegisterSucces

Bootstrap Success

Bootstrap Failure

Success

Bootstrap
Perform

[Bootstrap

data changed]

Figure 3: Behavior of an LwM2M client with a State Machine Diagram.

istered”. Since the LwM2M client can register to sev-
eral LwM2M servers, the state of client is defined by
the set of LwM2M server’s instances. The “Boot-
strap Success” state is a composite state; it has three
nested states: “Not Registered (si)”, “Fail Registered
(si)” and “Registered (si)”; each of them refers to a
LwM2M server instance. If registration succeeds, the
client can interact with the corresponding LwM2M
server via operations on I3 and I4 interfaces. If the
registration fails, the client can perform bootstrap or
trying to register again.

In the “Not Registered (si)” state, the client can
perform Register operation; upon the client receives
a response it can change its state. In the “Registered
(si)” state, there is an activity composed of interac-
tions between the client and a server si. These inter-
actions use I3 and I4 interfaces, and also update and
De-register operations from I2 interface can be per-
formed.

3.2.2 Translation of the State Machine Diagram
into Event-B

We propose some rules to translate SMD to an Event-
B model associated with the LwM2M client. The
translation rules are not exhaustive since we restrict
ourselves to the elements used in the SMD of Fig. 3.
These rules are applied progressively since we rely
on a refinement-based approach. The elements of
SMD that will be covered, and its associated trans-
lation rules are summarized below.
Translation of a State. We associate a variable
with the states (simple state and composite state) of a
SMD, e.g. ClientState, and we ignore the sub-states.
For each composite state, we associate a variable to
its direct substates (i.e. it is not contained by any
other state), e.g. AttemptingToBootstrapState and

ServersState, and so on. We define two rules for the
type of the generated variables.

The first rule applies when the generated vari-
able is an enumerated set, which is generated
from the states of the considered states. It is
the same rule as the one proposed in (Snook and
Butler, 2006) and called enumeration translation
in iUML-B tool (Snook, 2014). For the SMD
depicted in Fig. 3, we introduce two variables,
ClientState that represents the three states of the
SMD and AttemptingToBootstrapState that repre-
sents the three nested states of “Attempting to Boot-
strap”.

The second rule applies when the generated vari-
able is a function that associates to each instance its
state. We use another variable that represents the set
of the considered instances.

For the SMD depicted in Fig. 3, we introduce two
new variables: Servers and ServersState. The first
one represents the servers with which the client can
interact. These servers are setting up in the bootstrap
phase. The second ServersState variable represents
the three nested states of “Bootstrap Succes” state and
it is defined by the function that associates a state to
each server.

ServersState ∈ servers→ SERV ER STAT E

Translation of a Transition. Transitions are trans-
lated into events. The Tab. 2 presents some of the
rules used to generate Event-B events associated to
activities and transitions: simple transition (R1), ini-
tial transition (R2), junctions (R3), choice (R4), and
transition and activity (R5).

In these rules, 〈in S1〉, 〈initiated by S1〉 and
〈becomes S2〉 depend on the data that represents the
state. The rules R5 considers that there is an ac-
tivity and an outcoming transition in the same state.

ICSOFT 2020 - 15th International Conference on Software Technologies

176

Table 2: Client’ behavior translation rules.

Ri SMD elements Transition into Event-B
R1

S1 e e =̂ when 〈in S1〉
then 〈becomes S2〉

R2
S1

INITIALISATION
then 〈initiated by S1〉

R3
S1

S2

e

S3
e =̂ when 〈in S1 or S2〉

then 〈becomes S3〉

R4 e =̂ when 〈in S1〉 then
〈become S2 or S3〉

S2

S3

e

e =̂

when 〈in S1 and cond1〉
then 〈becomes S2〉

e’ =̂
when 〈in S1 and cond2〉
then 〈becomes S3〉

R5
S1

do/ a
e

S2

a =̂ when 〈in S1 ∧
ActProcessed = 0〉
then 〈becomes S2
ActProcessed := 1〉

e =̂ when 〈in S1 ∧
ActProcessed = 1 〉
then 〈becomes S2
ActProcessed := 0〉

When a state contains activity, triggering the transi-
tion marks the end of the activity. We use a variable
ActProcessed that can take the value 0 or 1 to syn-
chronize between the execution of the activity and the
transitions in the same state. Translation of an Ac-
tivity. A state can hold a list of internal actions and
activities (do), that are performed while the element is
in the state. We associate at least one event with each
activity that depends on the description of the activity
and the considered level of abstraction.

In the “Attempting to factory Bootstrap” and the
“Attempting to Bootstrap from Smartcard” states,
there is respectively “Factory Bootstrap” and “Boot-
strap from Smartcard” activities. Each of these activ-
ities is translated into an Event-B event.

In the “Attempting to client initiated Bootstrap”
state, the operations from Bootstrap Interface can be
performed. This activity consists of a set of inter-
actions between the client and the bootstrap server
through the operations of I1 interface: Request,
Discover, Read, Delete, Write and Finished. Boot-
strap communication starts with Bootstrap-Request
message and ends with a Bootstrap-Finish message.
Between these two messages, the bootstrap server
may configure the client with the necessary informa-
tion. In the Event-B model, we introduce the events
associated to the operations from I1 Interface and the

I1 State variable.
In the “Registered(si)” state, the operations from

I3 and I4 interfaces, and U pdate and De-register op-
erations from I3 interface can be performed. The
events associated to these operations are added. The
events associated to I4 interface are based on sub-
scribe/notify pattern.

In the “Not registered (si)” state, the client can
send register request to the server and wait for the
response. If it receives f ailure response it can send
register operation one more time.

4 EVENT-B DEVELOPMENT OF
THE CLIENT

We summarize in this section the Event-B develop-
ment of the LwM2M client.

4.1 Architecture of the Event-B Models

The summary of the hierarchy of specification pre-
sented in Sec. 3 is illustrated in Fig. 4. In the Event-B
specifications, beside the ctx context, which gathers
all the used sets, we use the following contexts:

• ctx Interfaces: contains constants that are re-
quired for the definition of the client interfaces
and their properties.

• ctx InterfaceInstances Properties: contains the
properties on the client interfaces.

ctx

ctx_Interfaces

M_I

R_I1

R_I4

R_I2

R_I3

Legend

extends

sees
re�nes

ctx_InterfaceInstances-
Properties

Figure 4: Development hierarchy.

We construct several successive models. In the
first following five models, we focus on the mod-
elling of operations associated with the four inter-
faces. Therefore, we focus more on the protocol as-
pect (order of execution of operations) which is con-
sidered in Event-B by protocol variables that allow
synchronization between operations. Then in the last

Toward a Correct Implementation of LwM2M Client with Event-B

177

model we introduce the resource data model. We use
the following Event-B machines:

• M I: we focus on the bootstrap process by intro-
ducing the four modes for bootstrapping: Factory
Bootstrap, Bootstrap from Smartcard, Client Initi-
ated Bootstrap and Server Initiated Bootstrap; no
operation is considered yet.

• R I1: we increase the first model with the de-
scription of the operations in I1 interface involved
in Client initiated bootstrap and Server initiated
bootstrap modes.

• R I2: we refine R I1 machine by adding the de-
scription of the operations in I2 Interface. The
client can interact with one or several LwM2M
servers.

• R I3: the machine R I3 refines the machine R I2,
and it contains new events associated with the I3
interface.

• R I4: the machine R I4 refines the machine R I3,
and it is enhanced by the events associated to the
I4 interface.

4.2 Proof Statistics

The development is formalized and proved using the
Rodin platform5(version 3.4). The verification of the
Event-B models is provided via means of proof obli-
gations (PO). The summary of the POs for the de-
velopment is as follow: M I (9 POs), R I1 (23 POs),
R I2 (50 POs), R I3 (68 POs) and R I4 (55 POs). The
POs are proved automatically (about 60%) or manu-
ally using the theorem provers of Rodin.

5 RELATED WORK

IoT protocols are the most crucial part of the IoT
technology. Indeed, without them, hardware would
be useless as the IoT protocols allow us to ex-
change data in a structured and meaningful way.
The IoT communication protocols attract numerous
researchers (Aziz, 2014), (Che and Maag, 2013),
(Schmelzer and Akelbein, 2019), (A. Nikolov and
Atanasov, 2016), (Thangavel et al., 2014), (Diwan
and D’Souza, 2017), (Snook et al., 2017). These
works deal with different issues and each of them is
interested in distinct protocols or deal with different
issues.

There are few works (Aziz, 2014), (Che and
Maag, 2013) that provide formal semantics for some

5http://www.event-b.org/

IoT protocols in order to check some communication
properties.

Event-B method is already used to provide for-
mal semantics for communication protocols in IoT.
In (Diwan and D’Souza, 2017), the authors propose
an approach to verify an IoT communication protocol
through a framework in Event-B. They present mod-
els of MQTT, MQTT-SN and CoAP protocols, and
they verify some communication properties.

In (Snook et al., 2017), a general approach is pro-
posed for constructing and analysing security proto-
cols using Event-B. The approach is based on abstrac-
tion, refinement, and a systematic modelling method
using the UML state and class diagrams of iUML-
B (Snook and Butler, 2006; Said et al., 2015). Due to
the exponential growth of network endpoint devices,
several studies have been made on protocols towards
efficient remote device management (de C. Silva
et al., 2019). In this paper, we focus on the LwM2M
emerging open standard that meets the requirements
for managing constrained devices. It is adopted by
several manufacturers such as Microsoft and Intel.
Several implementations of the LwM2M protocol
stack became available in the last few years, such that
the open source implementations Wakaama6 and Le-
shan7 that are, widely used.

Consequently LwM2M implementations attract
numerous researchers. In (Schmelzer and Akelbein,
2019), the authors propose useful metrics for mea-
suring device management capabilities on constrained
nodes based on the LwM2M standard. They present
their work as an upfront analysis for selecting an ap-
propriate implementation and they give a comparison
between two open source implementations: Wakaama
and Leshan.

In (Thramboulidis and Christoulakis, 2016), the
main contribution is the definition of a UML profile
for the IoT, namely the UML4IoT profile. The authors
define a UML profile based on the LwM2M protocol,
designed to integrate the smart devices into industrial-
level Iot-based systems. UML profile is used to auto-
matically generate code and they propose a prototype
implementation of the OMA LwM2M (v1.0) protocol
based on meta programming.

To our knowledge, there is one work that pro-
vides formal semantics for this standard. In the
paper (A. Nikolov and Atanasov, 2016), the au-
thors define a formal approach to the verification of
LwM2M server and client behaviour. Behavioral
models of LwM2M server and client for connectiv-
ity management are proposed. Both models are for-
mally described as labeled transition systems, and

6http://www.eclipse.org/wakaama/
7http://www.eclipse.org/leshan/

ICSOFT 2020 - 15th International Conference on Software Technologies

178

they are compliant with Enabler Test Specification for
Lightweight M2M (v1.0). Then, it is proved that both
models are synchronized using the concept of weak
bisimulation. The considered behavioral models of
LwM2M server and client are at a very abstract level.

In our work, we provided a formal semantics for
the LwM2M protocol by using Event-B method. We
analyzed and verified the behavior of LwM2M client
with The Rodin tool and the ProB model checker. We
intend to generate automatically the code from the
Event-B models that we have defined for the LwM2M
protocol.

6 CONCLUSION

To better understand and trust the LwM2M enabler,
formally derived and verified models should be de-
fined. In this paper, we presented an approach of
modelisation and verification for the specification of
the IOT systems by exploiting the OMA lightweight
M2M enabler. We focused on the behavior of the
LwM2M client. We followed a refinement-based ap-
proach by building several formal models by using
the Event-B method. Indeed, we proposed systematic
rules for the translation of the LwM2M enabler to-
ward Event-B. The refinement-based approach allows
us to master the complexity of the model and facili-
tates the proof and the correction of the sub-models.
The proof of the correctness of models, and the check-
ing of consistency properties are made with the pow-
erful tools of the Event-B platform.

We are conducting more experimentations on
modelling with Event-B. We project to define an ap-
proach for providing code generation. A possible
perspective consists to consider the modelisation of
LwM2M server side and then to consider both sides
(client and server). In the latest case, the checking
of the compatibility between client and server must
be established. Our future work will focus on valida-
tion, which includes running scenarios in the form of
model acceptance test.

REFERENCES

A. Nikolov, E. P. and Atanasov, I. (2016). Formal veri-
fication of connectivity management models in m2m
communications. In 2016 IEEE International Black
Sea Conference on Communications and Networking
(BlackSeaCom), pages 1–4.

Abrial, J.-R. (2010). Modeling in Event-B: System and Soft-
ware Engineering. Cambridge University Press, 1st
edition.

Aziz, B. (2014). A formal model and analysis of the
mq telemetry transport protocol. In Ninth Interna-
tional Conference, Availability, Reliability and Secu-
rity (ARES), pages 59–68, Fribourg.

Che, X. and Maag, S. (2013). A passive testing approach for
protocols in internet of things. In Green Computing
and Communications (GreenCom), IEEE and Inter-
net of Things (iThings/CPSCom), IEEE International
Conference on and IEEE Cyber, Physical and Social
Computing, pages 678–684.

de C. Silva, J., Rodrigues, J. J. P. C., Al-Muhtadi, J., Rabêlo,
R. A. L., and Furtado, V. (2019). Management plat-
forms and protocols for internet of things: A survey.
Sensors, 19(3):676.

Diwan, M. and D’Souza, M. (2017). A framework for mod-
eling and verifying iot communication protocols. In
Dependable Software Engineering. Theories, Tools,
and Applications, SETTA 2017, volume 10606 of
LNCS, pages 266–280. Springer.

Open Mobile Alliance (2018a). Lightweight machine to
machine technical specification: Core.

Open Mobile Alliance (2018b). Lightweight machine to
machine technical specification: Transport layer.

Said, M. Y., Butler, M., and Snook, C. (2015). A method of
refinement in uml-b. Softw. Syst. Model., 14(4):1557–
1580.

Schmelzer, P. and Akelbein, J.-P. (2019). Evaluation
of hardware requirements for device management of
constrained nodes based on the lwm2m standard. In
Proceedings of the 5th Collaborative European Re-
search Conference (CERC 2019), pages 103–110.

Snook, C. (2014). iUML-B statemachines. In Proceed-
ings of the Rodin Workshop 2014, SE’08, pages 29–
30, Toulouse, France.

Snook, C. and Butler, M. (2006). Formal modeling and de-
sign aided by UML. ACM Transactions on Software
Engineering and Methodology (TOSEM), 15(1):92–
122.

Snook, C. F., Hoang, T. S., and Butler, M. J. (2017).
Analysing security protocols using refinement in
iuml-b. In NASA Formal Methods - 9th International
Symposium, NFM 2017, volume 10227 of LNCS,
pages 84–98. Springer.

Thangavel, D., Ma, X., Valera, A., Tan, H., and Tan, C. K.
(2014). Performance evaluation of mqtt and coap via
a common middleware. In 2014 IEEE Ninth Interna-
tional Conference on Intelligent Sensors, Sensor Net-
works and Information Processing (ISSNIP), pages 1–
6. IEEE Press.

Thramboulidis, K. and Christoulakis, F. (2016). UML4IoT
- A UML-based approach to exploit IoT in cyber-
physical manufacturing systems. Computers in Indus-
try, 82:259–272.

Toward a Correct Implementation of LwM2M Client with Event-B

179

