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Abstract: Recent advances in data-driven approaches especially deep learning and its application on visual imagery 
have drawn a lot of attention in recent years. The lack of training data, however, highly affects the model 
accuracy and its ability to generalize to unseen scenarios. Simulators are emerging as a promising alternative 
source of data, especially for vision-based applications. Nevertheless, they still lack the visual and physical 
properties of the real world. Recent works have shown promising approaches to close the reality gap and 
transfer the knowledge obtained in simulation to the real world. This paper investigates Convolution Neural 
Networks (CNNs) ability to generalize and learn from a mixture of real and synthetic data to overcome dataset 
scarcity and domain transfer problems.  The evaluation results indicate that the CNN models trained with real 
and simulation data generalize to both simulation and real environments. However, models trained with only 
real or simulation data fails drastically when it is transferred to an unseen target environment. Furthermore, 
the utilization of simulation data has improved model accuracy significantly. 

1 INTRODUCTION 

Deep Convolution Neural Networks (CNNs) uses 
multiple layers to automatically learn the hierarchical 
representation from the raw input data. This process, 
however, requires a massive amount of training data 
which in most cases is difficult to find, e.g. in medical 
and education domains. The amount of data required 
during training depends mainly on the network 
complexity, type of data, existing gaps between data 
samples, and whether we are training from scratch or 
fine-tuning a pre-trained model (Tkacz, 2005). 

The CNN models trained with a low amount of 
data are very poor in terms of performance and cannot 
generalize to unseen scenarios (Yu and Yali, 2011). 
Fine-tuning of pre-trained models and usage of 
synthetic data, i.e. data collected from simulators are 
promising solutions for dataset scarcity. Simulators 
can provide the domain with an infinite amount of 
data samples, however, they do not have a perfect 
representation of the real world in both visual and 
physical properties (Bousmalis and Levine, 2017). 
This creates a huge gap between both environments 
which is often called the "reality gap". The reality gap 
has been addressed by researchers in different works 

and there exist several strategies for bridging the gap 
between simulation and reality. One of the strategies 
adopted is to develop high-quality simulators that 
represent the real-world visual and physical 
properties as close as possible. Furthermore, 
rendering real-world images has shown significant 
improvement in performance (Peng, Sun, Ali, and 
Saenko, 2014; Stark, Goesele, and Schiele, 2010; Su, 
Qi, Li, and Guibas, 2015). 

Domain randomization is one of the recent and 
promising techniques used to bridge the gap between 
simulation and reality. Sadeghi and Levine (2016) 
showed that training deep reinforcement learning 
algorithms only on simulation data can generalize to 
the real world by randomizing the simulation 
environment.  Similarly, Tobin et al. (2017) showed 
that randomizing the simulation environment using 
non-realistic textures can generalize a deep neural 
network model to the real environment. 

Retraining the CNN model from scratch or fine-
tuning a pre-trained model in the unseen target 
environment has shown also a significant increase in 
performance. For example, Tzeng, Hoffman, Zhang, 
Saenko, and Darrell (2014) proposed a new CNN 
model architecture with adaption layer and domain 
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confusion loss to automatically learn meaningful and 
domain invariant representations. Li, Wang, Shi, Liu, 
and Hou (2016) presented an adaptive batch 
normalization approach that ease model transfer to an 
unseen target domain. A variety of other studies have 
shown a significant increase in CNN model 
performance when trained in the unseen target 
environment (see, e.g., Duan, Xu, and Tsang, 2012; 
Hoffman, et al., 2014; Kulis, Saenko, and Darrell, 
2011; Yosinski, Clune, Bengio, and Lipson, 2014). 

In robotics field, however, domain transfer is 
rather difficult to apply, especially when vision 
sensors are used to perceive the surrounding 
environment. Only a few studies have examined 
domain transfer in robotics and showed successful 
results (see, e.g., Cutler, Walsh, and How, 2014; 
James, Davison, and Johns, 2017; Loquercio, et al., 
2019; Tobin, et al., 2017; Yan, Frosio, Tyree, and 
Kautz, 2017; Zhang, Leitner, Milford, and Corke, 
2016). Therefore, there exist fewer approaches to 
transfer the knowledge obtained in simulation to 
reality (Sünderhauf et al., 2018).  

To our knowledge, most of the research in the 
robotics field employs either simulation or real data 
but not a mixture of both. This paper investigates 
Convolution Neural Networks (CNNs) ability to learn 
from a mixture of real and artificial data when trained 
from scratch and fine-tuned to fit the dataset classes 
of the respective task. Each CNN model is trained six 
times wherein each time a different combination of 
the collected real and simulation datasets is used. The 
learning ability of the trained CNN models is 
evaluated using classification models metrics and 
deployment of models frozen inference graphs in both 
environments, i.e. real and simulation environments. 

The work of Bayraktar, Yigit, and Boyraz (2019) 
is the most similar to our idea, however, their focus is 
mainly on object detection. The authors proposed 
their own dataset ‘‘ADORESet’’ which includes 30 
classes with 2500 real plus 750 artificial images per 
class. In their experiments, they used the dataset to 
fine-tune four different pre-trained models, however, 
they did not consider training models from scratch. 
Furthermore, they did not deploy the trained models 
to real and simulation environments. 

2 METHODOLOGY 

In this work, we will investigate the ability of CNN 
models to generalize and learn from a mixture of real 
and artificial data to overcome dataset scarcity and 
domain transfer problems. We will examine the 
learning ability of CNN models when trained from 

scratch and fine-tuned to fit the dataset classes of lane 
following task. In lane following, the models are 
trained to infer the steering angle and velocity 
required to drive a Radio-controlled (RC) car model 
kit autonomously on the track.  

For dataset collection and inference stages, we 
created physical and simulation environments for the 
lane following task. The simulation environment is 
created using the robot simulator CoppeliaSim and 
made to be as close as possible to the physical 
environment. To ease the dataset collection in both 
environments we used computer vision to define the 
centreline coordinates of the track and generate a path 
from start to endpoint. We then utilized a geometric 
path tracking system developed in an earlier project 
(Gamal, Imran, Roth, and Wahrburg, 2020) to follow 
the generated path. To localize the vehicle in the 
environment the Apriltags ROS wrapper is used. 
Figure 1 illustrates the geometric path tracking 
system used for lane tracking task. 

 

Figure 1: Geometric path tracking system. 

To evaluate the learning ability of the CNN 
models six datasets are created wherein four of them 
33% of the dataset collected from the real-world 
environment is kept fixed based on the assumption 
that we have a very limited dataset. In these four 
datasets, the number of incorporated simulation data 
samples is varied. More specifically, each CNN 
model will be trained for six times wherein each time 
the dataset is changed as follows; 0% real word data 
+ 100% of simulation data, 100% real-world data + 
0% simulation data, 33% real-world data + 0% 
simulation data, 33% real-world data + 33% 
simulation data, 33% real-world data + 66% 
simulation data, and finally 33% real-world data + 
100% simulation data. To measure the models' 
performance and their learning ability classification 
models evaluation metrics are used. Furthermore, the 
frozen inference graphs of the models trained with all 
datasets combinations are deployed on both 
environments, i.e. simulation and real-world 
environments. 
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3 SYSTEM SETUP 

In this section, we will discuss the procedure followed 
to setup the physical and simulation environments for 
lane tracking task. Furthermore, we will introduce the 
platform used in the real-world environment for 
dataset collection and CNN models’ inference. 

3.1 Test Platform 

The test platform is an RC car model kit with 
Ackerman steering mechanism, see Figure 2-b.  

 
Figure 2: (a) Vehicle control system (b) Test platform. 

The platform features a DC motor belt drive 
system and a servo motor for controlling the steering 
angle. The servo motor angle ranges from 0° to 180 ° 
however it is restricted with Ackerman steering 
mechanism range. A 90° steering angle steers the 
front wheels to face forward direction, an angle below 
90° steers it to the right and above 90° to the left.   
Figure 2-a illustrates the vehicle control system where 
the low-level controller (Arduino Mega 2560 board) 
is used for sensor data collection, motors control, and 
bidirectional communication with the high-level 
controller. The high-level control is the robot’s 
onboard computer (NVIDIA Jetson TX2 developer 
kit). It is used for high processing tasks (e.g. CNN 
models’ deployment) and to provide an interface with 
sensors and hardware components, whose data 
transmissions standards are found difficult to be 
handled by the Arduino microcontroller. 
Furthermore, the car is equipped with a Logitech 
C920 webcam for dataset collection and CNN 
models’ inference. The camera is placed facing the 
heading direction of the vehicle and tilted with an 
angle of 70° to keep the focus on the region of 
interest, i.e. track lanes. 

3.2 Test Environments 

As stated earlier two test environments are setup for 
dataset collection and CNN models’ inference. These 
are real and simulation environments. In the next 

subsections, we will discuss the procedures followed 
to setup both environments. 

3.2.1 Real Environment Setup 

To prepare the lane track, we used black carton sheets 
and white tape to mark the track lanes. Figure 3 
depicts physical environments setup. 

 

Figure 3: Lane tracking environment. 

The ROS wrapper of the AprilTag 3 system is 
used for localizing the vehicle in the environment 
using external Logitech C920 webcam. The pose of 
all April tags present in the field of view of the camera 
is tracked by the tf ROS package which allows us to 
get the transform between any two coordinate frames 
in the system transformation tree. The position and 
orientation of the detected tag are fed to the geometric 
path tracking algorithm to infer the required vehicle 
speed and steering angle to drive the vehicle 
autonomously on the generated path. 

3.2.2 Simulation Environment Setup 

The robot simulator CoppeliaSim formally known as 
V-REP is used to create the lane tracking simulation 
environment. The car model used in the robot 
simulator is a simple Ackermann Steering model 
provided by CoppeliaSim, which is similar to the test 
platform used in this work. A vision camera is placed 
on top of the model for dataset collection and CNN 
models’ inference. 

To add a new environment in CoppeliaSim, a 
Unified Robot Description Format (URDF) model of 
the environment is required. We used Solidworks to 
model the environment and sw_urdf_exporter add-in 
to convert the environment model into URDF model 
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format. Figures 4 illustrates the lane tracking 
simulation environment. 

 

Figure 4: Lane tracking simulation environment. 

The CoppeliaSim platform provides dummy 
objects to track the position and orientation of the 
robot within the simulation environment. In the lane 
following simulation environment, we used three 
dummy objects to define the vehicle position, start, 
and endpoints on the track. To use the same lane 
tracking algorithms in the simulation environment we 
used CoppeliaSim remote API to establish a 
communication channel between CoppeliaSim and 
our External client application, i.e. Python scripts. 

4 CNN MODELS DESIGN AND 
TRAINING 

To investigate the learning ability of Convolution 
Neural Networks two models are evaluated where the 
first is trained from scratch and the second is fine-
tuned to fit the dataset classes of the lane tracking 
task. To train these models two datasets are collected; 
namely simulation and real-world datasets. 

In the next subsections, we will discuss the dataset 
collection and CNN model architecture design and 
training. 

4.1 CNN Model Architecture 

The chosen CNN model architecture was designed in 
one of our earlier projects related to lane tracking 

which makes it an ideal candidate for our study. The 
network architecture was inspired by different CNN 
model architectures such as the Inception model by 
Szegedy et al. (2015) and Network In Network 
structure by Lin, Chen, and Yan (2013). Figure 5 
illustrates the pre-trained model architecture. The 
network model has 126,058 trainable parameters and 
takes an input image of size (320 X 240 X 3). It 
consists of six convolution layers, four Maxpooling 
layers, one dropout layer, flatten layer, and two fully 
connected layers. The first convolution layer consists 
of 64 kernels of size 11X11 with stride 4X4 and 
followed by a Maxpooling layer with a pool size of 2 
X 2. The second convolution layer has 128 kernels of 
size 7X7 with stride 2X2 and followed by a 
Maxpooling layer with a pool size of 2 X 2. The Max-
pooling layer is then followed by two inception 
modules with different kernel sizes. These are 5x5, 
3x3, and 3X3, 1X1 respectively. Following this, a 
Maxpooling layer and one additional inception 
module with a kernel size of 1x1 combined with 
average pooling. Finally, we have a network in 
network and two fully connected layers. 

4.2 Dataset Collection and Preparation 

In lane following, the steering angle range used is 80° 
to 100° and divided into 3 classes. The chosen range 
will ensure that the vehicle doesn’t deviate from the 
center of the track because of the small field of view 
of the camera.  Owing to the large weight that the RC 
Car carries, the speed of the vehicle is kept fixed at 
100% throttle value ‘‘full speed’’ so that the DC 
motor is able to drive the vehicle. Table 1 illustrates 
the dataset class labels of the lane following task 
where F means forward and S stop. 

Table 1: Lane tracking dataset class labels. 

No. Class Turning Angle Velocity 

0 80F100 80 100% 

1 90F100 90 100% 

2 100F100 100 100% 

3 090S000 0 100% 

 

Figure 5: Lane tracking CNN model architecture. 
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In dataset collection, the geometric path tracking 
system is used to drive the car autonomously in both 
simulation and real environments and simultaneously 
collects, labels, and store the data. Two datasets are 
created, i.e. real and simulation datasets where each 
contains around 30,000 labeled images. Figures 6 
illustrates the number of images collected per class in 
both environments. 

 
Figure 6: Dataset collected for the lane tracking task. 

4.3 CNN Models Training and Fine 
Tuning 

As mentioned earlier the two CNN models will be 
trained for six times wherein each the dataset is 
changed as follows:  

a) 0% real word data + 100% simulation data 

b) 100% real-world data + 0% simulation data 

c) 33% real-world data + 0% simulation data 

d) 33% real-world data + 33% simulation data 

e) 33% real-world data + 66% simulation data 

f) 33% real-world data + 100% simulation data 
The datasets are further divided into training and 

validation datasets. The training and validation 
datasets percentage are chosen to be 90% and 10% of 
the original dataset respectively. The CNN model 
used in this work is a pre-trained model with ten 
classes. The model will be fine-tuned to fit the four 
classes of the lane tracking task. To fine-tune the 
model, we truncated the last fully connected layer of 
the pre-trained network and replaced it with our own 
fully connected layer with four units and softmax 
activation. To train the same CNN model from 
scratch the complete model parameters are randomly 
initialized and trained to find the optimal parameter 
set that maps the inputs to their associated targets. 

The networks are trained using Adam optimizer 
and binary cross-entropy loss function. The batch size 
used for training is 32 and the learning rate is 0.001. 
During the training phase, we used model 
checkpoints to continually save the model along with 
the corresponding epoch number. Figures 7, 8 depict 
the training loss and validation graphs of the trained 
 

 

Figure 7: Fine-tuned CNN models training graphs (a) 100% of Simulation dataset (b) 100% of Real dataset (c) 33% of Real 
dataset + 0% of simulation data (d) 33% of Real dataset + 33% of simulation data (e) 33% of Real data + 66% of simulation 
data (f) 33% of Real data + 100% of simulation data. 

1
0
2
5
6

1
0
0
5
8

1
0
1
6
3

1
0
0
0
3

1
2
4
1
5

1
0
7
5
3

1
0
8
6
3

1
0
0
2
8

0 1 2 3

N
u
m
b
er
 o
f 
Sa
m
p
le
s

Data Label

Real Environment Simulation Environment

ICINCO 2020 - 17th International Conference on Informatics in Control, Automation and Robotics

450



 
Figure 8: Training graphs of the CNN models trained from scratch  (a) 100% of Simulation dataset (b) 100% of Real dataset 
(c) 33% of Real dataset + 0% of simulation data (d) 33% of Real dataset + 33% of simulation data (e) 33% of Real data + 
66% of simulation data (f) 33% of Real data + 100% of simulation data. 

CNN models where a, b, c, d, e, and f refers to the six 
dataset variations mentioned above. 

Table 2: Training loss and accuracy of the chosen fine-
tuned CNN models. 

Model Epoch 
Training 

Loss Accuracy 
a  19 0.012 0.99 
b  16 0.048 0.97 
c  13 0.064 0.96 
d  17 0.036 0.98 
e  13 0.032 0.98 
f  19 0.022 0.99 

To avoid overfitting and improve the 
generalization of the trained models the epoch with 
minimum validation loss value is selected for 
inference. Tables 2, 3 illustrate the chosen epoch 
number and the corresponding training loss and 
accuracy for all trained models. 

Table 3: Training loss and accuracy of the chosen CNN 
models trained from scratch. 

Model Epoch 
Training 

Loss Accuracy 
a  9 0.225 0.89 
b  3 0.068 0.97 
c  12 0.053 0.97 
d  6 0.032 0.98 
e  6 0.025 0.99 
f  2 0.19 0.91 

5 EVALUATION OF THE 
TRAINED CNN MODELS 

To investigate the learning ability of the models we 
computed the confusion matrix, accuracy, precision, 
recall, and F1 score for all trained models. The results 
showed that there is a significant increase in the 
accuracy per class as well as overall accuracy with the 
continuous addition of simulation data.  In other 
words, the accuracy of the model trained with 33% 
real-world data +100% simulation data is higher than 
the model trained with only 33% of real data. Table 4 
depicts the overall accuracy for models trained with 
datasets c, d, e, and f.  

Table 4: Overall accuracy for models trained with datasets 
c,d,e, and f. 

Model 
Overall Accuracy 

c d e f 

Fine-tuned  0.816 0.9 0.93 0.95 

From scratch 0.77 0.52 0.77 0.93 

Table 5 depicts the F1 score for all trained 
models. The F1 score measures the model accuracy 
by calculating the weighted average of precision and 
recall. An F1 score value of 1 is considered perfect, 
i.e. model predictions have low false positives and 
negatives.  
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Table 5: F1 score of the trained models. 

M
od

el
 

C
la

ss
 Dataset 

a b c d e f 

F
in

e-
tu

ne
d 

1 0.98 0.84 0.76 0.87 0.91 0.93 
2 0.96 0.80 0.71 0.87 0.89 0.92 
3 0.97 0.85 0.78 0.87 0.91 0.94 
4 0.96 0.99 1.0 0.98 0.97 0.98 

F
ro

m
 

sc
ra

tc
h 

1 0.99 0.79 0.71 0.5 0.71 0.91 
2 0.97 0.78 0.71 0.5 0.71 0.89 
3 0.97 0.80 0.72 0.3 0.72 0.92 
4 0.96 0.94 0.91 0.56 0.9 1.0 

Figure 9 illustrates an example of the confusion 
matrix for the models fine-tuned with datasets c, d, e, 
and f. The confusion matrix diagonal elements 
represent the accuracy of correct predictions per 
class. The analysis of the confusion matrix for all 
trained models showed a major confusion between 
one class and its neighbor classes. This confusion, 
however, arises because of the small difference in 
steering angle ‘‘10°’’ between one class and another 
as well as the small field of view of the camera ‘‘78°’’ 
which decreases the size of the region of interest 
drastically.  

To analyze the models' performance further the 
frozen inference graphs of the models trained with 
datasets a, b, c, d, e, and f are obtained and deployed 
on both environments, i.e. simulation and real 
environments. In the inference stage, the models take 
the incoming image frame and infer the required 
action, i.e. vehicle velocity and steering angle. 

Several test runs have been conducted in both 
environments. The results of these experiments 
demonstrated that the model trained only with real or 
simulation data works only in its respective 
environment. However, the models trained with 
mixed data, i.e. real and simulation data generalize 
perfectly to both environments especially when the 
number of incorporated simulation data samples is 
increased to 100%. 

6 DISCUSSION 

Datasets are a very crucial element in the training of 
deep convolution neural networks as it requires a 
massive amount of training data which in most cases 
is difficult to find. Simulators can provide the domain 
with an infinite amount of data samples, however, 
they do not have a perfect representation of the 
physical world which results in a huge gap between 
both environments. Most of the research in the 
robotics field employs either simulation or real data 
but not a mixture of both. In this study, we 
demonstrated that CNN models trained with a 
mixture of real and artificial data generalize to both 
real and simulation environments without model 
adaption.  This holds for fine-tuned models as well as 
models trained from scratch. These findings are in 
accordance with findings reported by Bayraktar, 
Yigit, and Boyraz (2019). However, the authors did 
not consider training models from scratch as well as 
 

 
Figure 9: Fine-tuned CNN models confusion matrix (c) 33% of Real dataset + 0% of simulation data (d) 33% of Real dataset 
+ 33% of simulation data (e) 33% of Real data + 66% of simulation data (f) 33% of Real data + 100% of simulation data 
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deploying the trained models to real and simulation 
environments.  

Our results cast a new light on the performance 
and accuracy of the trained models. The models' 
overall accuracy and performance increased 
proportionally with the continuous addition of 
simulation data.  

7 CONCLUSIONS AND FUTURE 
WORK 

In this paper, we have investigated the ability of 
CNNs models to generalize and learn from a mixture 
of real and artificial data. Two CNN models have 
been evaluated where the first was trained from 
scratch and the other was fine-tuned to fit the dataset 
classes of the lane tracking task. The CNN models are 
trained six times wherein each a different 
combination of the collected real and simulation 
datasets is used. The results show that the models 
trained with a dataset collected from a particular 
environment can work only in this environment and 
fails when it is transferred to an unseen target 
environment. Another promising finding was that the 
models' performance increased significantly and were 
able to generalize to both real and simulation 
environments with the inclusion of simulation data. 
On this basis, we conclude that a mixture of 
simulation and real data can help the CNN models to 
generalize in cases where datasets are scarce and 
when models trained in a particular domain are 
transferred to an unseen target domain. This paper 
provides a good starting point for further research. In 
our future research, we intend to examine more 
complex model architectures and environments. 
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