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Abstract: This research proposes approximate computing techniques to accelerate homomorphic encryption (HE). In
particular, the CKKS encryption scheme for approximate numbers is targeted. There is a requirement for HE in
services dealing with confidential data, however current constructions are not efficient enough for real-time
applications. A homomorphic encryption scheme which uses approximate arithmetic (showing faster results
than previous HE schemes) already exists, the CKKS scheme, and this research applies a variation of the
approximate computing techniques of task skipping and depth reduction (derived from loop perforation) to
determine whether further approximating the functions evaluated using CKKS scheme can have a positive
impact on performance of homomorphic evaluation. This is demonstrated via the evaluation of the logistic
and exponential functions that this is possible, showing positive results. The speed up in running time for
HE with task skipping is between 12.1% and 45.5%, depth reduction gives 35-45.5% speed-up with a small
error difference than task skipping alone. The combination of both techniques corresponds to a halving of
the running time, at the cost of increased error. This novel approach to further approximate homomorphic
encryption shows that it is possible for certain functions, where running time is of paramount importance, that
further approximations can be made with a lower-impacting greater error.

1 INTRODUCTION

As an increasing amount of data is stored in the
cloud, data security and privacy is evermore important.
Currently, to be able to compute on encrypted data
stored on the cloud, data has to be downloaded and
decrypted, using a key the provider has access to,
before re-encrypting it and restoring on the cloud
(Gentry, 2010). Homomorphic encryption (HE)
removes the need for download and decryption, by
allowing operations to be performed directly on
encrypted data, thereby enabling safe computation and
reducing the risk of data privacy-loss. Using HE, data
on the cloud could be stored in ciphertext form, upon
which analysis can be performed. Applications include
machine learning algorithms to predict trends using
sensitive data, electronic voting and secure database
searches (Archer et al., 2017). The growing demand
for analysis on encrypted data has motivated interest
and activity towards standardisation of HE schemes
and parameters (Albrecht et al., 2018).

Currently, HE schemes are effective in terms of
evaluating functions in ciphertext form to a high level
of accuracy, as shown by numerous applications, one
being Secure Genome-Wide Association Studies (Blatt

et al., 2019), but are not currently efficient enough
for real-time usage. For example, in research which
applied a logistic regression model homomorphically,
the training took up to a few days (Chen et al., 2018).
This research proposes the integration of approximate
computing techniques with HE schemes to achieve
improved HE evaluation runtimes.

One of the main motivations driving research into
approximate computing is to design energy-efficient
technology for the future (Barua and Mondal, 2019).
One way to achieve this, is to trade-off between
accuracy and the energy and running time required
to compute algorithms. There are many applications
where this trade-off is acceptable such as machine
learning, signal processing, and big data analytics
(Barua and Mondal, 2019). To the best of the authors’
knowledge, evaluating the impact of approximate
computing to advance the practicality of HE has not
yet been conducted. This research provides an insight
as to whether using approximate computing is feasible
for approximate HE and the effect such techniques
have when applied to the CKKS encryption scheme
(Hee Cheon et al., 2017), currently the only HE scheme
based on approximate arithmetic.

In this research, two approximate computing
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techniques, task skipping and loop perforation,
are adapted to accelerate HE. To demonstrate the
efficiency of the proposed approximate computing
techniques, two target functions are considered for
HE evaluation: the logistic and exponential functions.
These are compared to the same operations without
approximate computing optimisations. Both are
implemented in Microsoft SEAL’s HE library (SEAL,
2019), and results are given, measuring performance
and average error with respect to the actual calculation.

2 RELATED WORKS

2.1 Homomorphic Encryption

Due to numerous data leaks and the increasing focus
on the privacy of public data, including who has access
to it and what is done with this data, being able to
efficiently compute with encrypted data would be
ideal for both the user and the company who wants to
continue analysing data. An example application of
HE, is e-voting (Chillotti et al., 2016). In 2009, the
first fully homomorphic encryption (FHE) scheme was
proposed (Gentry, 2009) after over 30 years research
into finding the first FHE scheme. Over the past
10 years there has been a large advancement in the
development of HE schemes. Further details on major
HE schemes can be found in the following subsection.

2.1.1 Homomorphic Encryption (HE) Schemes

An elementary definition of homomorphic encryption
is simply where computations can be performed on
the ciphertexts, which, when decrypted, give the
same result as if those same computations had been
performed on the plaintexts (Halevi, 2017). This can
be written as follows:

E(m1)?E(m2) = E(m1 ?m2) ∀m1,m2 ∈M,

where E is an encryption algorithm, M is the set of all
plaintexts and ? is an arbitrary operation.

Definition 1. Homomorphic Encryption (Halevi,
2017), (Vaikuntanathan, 2011):
A homomorphic (public-key) encryption scheme E
is defined as a quadruple of four probabilistic
polynomial-time algorithms as follows:

• KeyGen: An algorithm generating a public key
pk and a private key sk from an input of a unary
representation of the security parameter λ, 1λ.

• Encrypt: An algorithm which takes as input the
public key pk, and a single-bit message µ ∈ {0,1}
and outputs a ciphertext c.

• Decrypt: An algorithm which takes as input the
secret key sk, and a ciphertext c to output a
message µ? ∈ {0,1}.

• Evaluate: An algorithm which inputs the public
key pk, a function represented using boolean
circuits BC ∈ {BC} (consisting of gates such
as AND and XOR), the original ciphertext (c =
Enc(x)) and outputs a new ciphertext c′.

A HE scheme is often denoted as
E = (KeyGen, Encrypt, Decrypt, Evaluate).

The difference between a standard encryption
scheme and a HE scheme is that the HE scheme
contains an Evaluation stage, where multiple
ciphertexts (usually represented as a vector of
ciphertexts) are inputs into the evaluation algorithm
(which evaluates a given function) and outputs a new
ciphertext. The choice of function to be evaluated
depends on the application requirements.

Since Gentry’s first FHE scheme (Gentry, 2009), a
variety of HE schemes have been introduced. Several
are based on the Learning with Errors (LWE) problem
proposed by Regev (Regev, 2005), or its Ring variant
(RLWE) (Lyubashevsky et al., 2013), for example, the
BV Scheme (Brakerski and Vaikuntanathan, 2011), the
LTV scheme (Lyubashevsky et al., 2013), the BGV
scheme (Brakerski et al., 2012), the GSW scheme
(Gentry et al., 2013) and the CKKS encryption scheme
(Hee Cheon et al., 2017). There are other schemes
which derive from those named above and more
details (including the implementation libraries) can
be found at (Albrecht et al., 2018). Since the aim
of this research is to accelerate HE evaluation using
approximate computing techniques, the CKKS scheme
is best suited, since it enables approximate arithmetic
(Hee Cheon et al., 2017).

2.1.2 The CKKS Encryption Scheme

The CKKS HE scheme was introduced in 2017
(Hee Cheon et al., 2017), and uses the RLWE
assumption. However, unlike previous RLWE-based
HE schemes, it does not use exact arithmetic, instead
enabling approximate arithmetic. This approach
enables the calculation of the approximate value of the
plaintext after decryption, to a predetermined accuracy.

Before a text can be encrypted, it is scaled (by
multiplying a scaling factor to the message), ensuring
the size of the error (often considered as noise) does
not grow out of hand during evaluation. It must also
be encoded (and decoded after evaluation), where
the input vector is converted into a polynomial using
isometric ring isomorphisms, to ensure the size of the
error and plaintext remain the same. The encryption
of a message m, giving the ciphertext c satisfies
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< c,sk >= m + e(modq) where e is a small error,
c is the ciphertext and sk is the secret key, stating
that when the ciphertext, c, is decrypted using a
secret key, sk, the result is the message, m with a
small error, e. The scheme has a batching technique
used to pack the plaintext messages into a number
of slots, which can be run simultaneously, improving
efficiency. Key switching techniques (similar to the
BGV scheme) are required for ciphertext operations
and whenever a ciphertext multiplication has occurred,
the new ciphertext must be rescaled to the chosen scale
before any further calculations are calculated. Once all
operations are evaluated the final ciphertexts must be
decrypted and decoded. A detailed explanation of the
CKKS scheme is given in (Hee Cheon et al., 2017).

The Residual Number System (RNS) variant
(Cheon et al., 2019) has fast polynomial approximation
and can perform speedy multiplicative inverses and
Discrete Fourier Transforms (DFT), when compared
with the original CKKS scheme (Hee Cheon et al.,
2017). It allows for larger integers to be implemented
and for techniques based on RNS decomposition
and the Number Theoretic Transform (NTT). Further
information regarding the RNS-variant of the CKKS
scheme can be found in (Cheon et al., 2019).

The CKKS scheme has been proposed for use in
specific applications, e.g. logistic regression (Blatt
et al., 2019) and a multi-party version for use in Neural
Networks (Chen et al., 2019b). The HEAAN library
(HEAAN, 2018) and Microsoft’s HE library SEAL
(SEAL, 2019) are two of the many libraries which
implement the RNS variant of the CKKS scheme.

2.2 Approximate Computing

Due to the increasing demand of computing power
outpacing supply (Mittal, 2016), and the increasing
need for more ‘real-time’ computations, this has
motivated the research into approximate computing,
where a compromise is made between the quality
and efficiency of calculations. Mittal (2016) provides
a comprehensive survey of approximate computing
techniques, summarised in this section. Software
techniques include precision scaling, load value
approximation, loop perforation and task skipping,
memoization, multiple inexact program versions,
voltage scaling, reducing branch divergence in SIMD
architectures and specific neural network-focussed
approximate computing techniques. Hardware
techniques include using inexact or fault hardware,
approximating SRAM/eDRAM/DRAM/non-volatile
memories, using approximate computing techniques
for GPUs/FPGAs, using scalable effort design for
approximate computing and reducing error-correction

overhead using approximate computing. The
applications of these techniques has been shown in
areas such as machine learning, signal processing and
financial analysis, to name a few (Mittal, 2016).

Since, to the best of the authors’ knowledge, this
is the first research applying approximate computing
to HE, the techniques which the authors believe could
have a substantial impact on performance are targeted.
This research proposes and adapts definitions of task
skipping and loop perforation for acceleration of the
CKKS HE scheme.

2.2.1 Task Skipping

Task skipping is an approximate computing technique,
whereby a particular task, input or memory reference
is skipped according to a user-set condition (Mittal,
2016). This can be any condition, for example when
a particular variable hits a certain threshold, then a
particular task is skipped. The task skipping condition
is set so that, although a particular task is skipped when
that condition is met, the quality of the result is still
met. An example of task skipping in use can be seen
in (Goiri et al., 2015), where the authors apply (as well
as data input sampling) task skipping to MapReduce
programs and using these with various statistical
theories to reduce run times by approximately 38x
with an error of tolerance of 1% with 95% confidence.

2.2.2 Loop Perforation

A basic definition of loop perforation is to skip certain
iterations of a loop to output a result which is accurate
to a certain (perhaps pre-defined) level of accuracy
(Mittal, 2016), e.g. skipping every second term in the
addition of a sequence, yet still result in an answer
with only a 5% difference to the original solution.
Sidiroglou-Douskos et al. define a 2-step loop
perforation process; firstly to filter out loops which
cannot be perforated (‘critical loops’) and secondly
to find loops which can be perforated for certain
inputs and a corresponding accuracy bound (‘greedy
exploration’) (Sidiroglou-Douskos et al., 2011). They
show performance improvements, whilst preserving
accuracy, to applications such as information retrieval,
machine-learning and Monte Carlo simulations. In
this research, the concept of loop perforation was first
studied as an approximate computing technique to be
applied to the homomorphic evaluation of the selected
functions. However, with no immediately recognisable
loops in this process, using the multiplication approach
described in (Song, 2017), each depth of the
calculation is considered to be a loop. The question
then becomes whether it is possible to calculate the
evaluation with one depth reduced yet still output
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an appropriately accurate answer. This leads to the
approach of replacing the higher depth terms with
the highest one of the depth below, and analysing
the effect this has on the Evaluation process. This
concept is a form of a known computing technique,
depth reduction.

2.2.3 Depth Reduction

By representing a polynomial in the form of an
arithmetic circuit, the number of gates (usually AND,
XOR) denotes the size of the circuit and the depth is
the longest path in the circuit (Tavenas, 2015), i.e. the
maximum number of steps required to calculate an
operation. For this research, this can be interpreted
as the amount of operations required to calculate the
term with the highest power of that polynomial. Much
research has been carried out into arithmetic sizes and
improving the corresponding depths, e.g. (Valiant and
Skyum, 1981), (Tavenas, 2015), (Allender et al., 1998).
These works do not take the same explicit approach of
replacing the terms requiring higher depth calculations
with those requiring lower depth calculations as in this
research, however the principle of reducing the depth
of a circuit to evaluate, for example, a polynomial, for
efficiency purposes is the same.

3 PROPOSED APPROXIMATION
TECHNIQUES FOR HE

3.1 Preliminaries

The security of this research aligns with the advised
parameter sets as defined in the HE Community
Standard, (Albrecht et al., 2018); the bits for each
prime per level, the vector of inputs (must be a power
of 2) and therefore the polynomial modulus degree
are all aligned with the advised parameter sets. As
with previous work on the CKKS scheme, (Hee Cheon
et al., 2017), (Cheon et al., 2019), (Chen et al., 2019a),
all methods proposed in this research have at least
an 80-bit security level. The ring dimension is set as
N = 214, resulting in N

2 = 213 plaintext slots, which
means that that the functions can be evaluated for each
slot in parallel. The scale for this implementation is
set at 240 and the ciphertext modulus for the first and
last level is set to 60-bit, with all intermediate moduli
set to 40-bit. The parameters used here, especially for
213 = 8192 input slots, can be considered conservative.
For further details on parameters see (Hee Cheon
et al., 2017) or (Cheon et al., 2019). The accuracy
of the defined functions to be calculated (logistic
and exponential functions) is kept the same as in

(Hee Cheon et al., 2017) to ensure fair comparison.
Two sets of inputs have been used: The first set is the
vector 0 to 1 split into 213 slots and the second set is
the vector 1 to 8192 split into 213 slots, increasing by
increments of 1.

The application of depth reduction and task
skipping techniques in this research are to the RNS
variant of the CKKS scheme, used to calculate
the logistic function and the exponential function,
using their Taylor Series approximations to orders
9 and 8 respectively as in (Hee Cheon et al., 2017).
These functions have been chosen because of their
usefulness: the logistic function is commonly used in
statistics, neural networks and machine learning and
the exponential function for being one of a typical
circuit to be evaluated (Hee Cheon et al., 2017).
The logistic function can be approximated by the
corresponding Taylor Series approximation:

f (x) = 1
1+e−x

≈ 1
2 +

1
4 x− 1

48 x3 + 1
480 x5

− 17
80640 x7 + 31

1451520 x9 +O(x11)

(1)

The exponential function, can be approximated by
the corresponding Taylor Series approximation:

g(x) = ex

≈ 1+ x+ x2

2 + x3

6 + x4

24 +
x5

120 +
x6

720
+ x7

5040 +
x8

40320

(2)

3.2 Approximate HE via Task Skipping

In this research, it is proposed that instead of explicitly
setting a condition for when to skip a task, it is selected
on the basis that for a decimal number between 0 and
1, the more it is multiplied by itself the smaller it
becomes. This makes the largest powered term in each
polynomial negligible, and therefore has less impact
on the accuracy of the result if it is skipped. For any
other input greater than 1, the removal of the largest
powered term has the most impact on the accuracy so
cannot be removed. Hence, for inputs greater than 1,
the lowest two terms of the polynomials are skipped
as they have less impact on the accuracy of the result.

For approximate HE with task skipping, three
approaches are proposed and the approximated
polynomials defined for the logistic and exponential
functions respectively:
1. Approach 1 - input vector 0 to 1, the largest

powered term in both polynomials is skipped.

f (x)≈ 1
2 +

1
4 x− 1

48 x3 + 1
480 x5− 17

80640 x7

(3)

g(x)≈ 1+ x+ x2

2 + x3

6 + x4

24 +
x5

120 +
x6

720 +
x7

5040
(4)
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2. Approach 2 - input vector 0 to 1, the lowest three
terms are skipped.

f (x)≈ 1
2 +

1
480 x5− 17

80640 x7 + 31
1451520 x9

(5)

g(x)≈ 1+ x4

24 +
x5

120 +
x6

720 +
x7

5040 +
x8

40320
(6)

3. Approach 3 - input vector 1 to ‘number of slots’,
the lowest three terms are skipped.

f (x)≈ 1
2 +

1
480 x5− 17

80640 x7 + 31
1451520 x9

(7)

g(x)≈ 1+ x4

24 +
x5

120 +
x6

720 +
x7

5040 +
x8

40320
(8)

3.3 Approximate HE via Depth
Reduction

In this proposed depth reduction approach, instead of
certain iterations in a loop being skipped, a certain
number of depths are skipped, (usually more than
one depth skipped is not plausible due to the large
error occurring as more terms are approximated by
the largest term in the maximum depth required).
Since the functions being evaluated are defined to
orders of x, with results in depths of single-figures,
the approach in this research is a one-depth reduction.
The higher power terms which require the extra depth
are replaced with the highest powered term of a lower
depth. This replacement procedure aims to provide a
more accurate estimation than task skipping alone and
since performing an addition is less computationally
intensive than multiplication, this results in a more
accurate approximation with a lower computational
cost. If these terms were not replaced, this would
instead be a task skipping technique.

To further understand depth reduction (using the
multiplication approach in (Song, 2017), see the
following example: To calculate x11 homomorphically
is a depth 4 calculation, one can reduce this to a depth 3
calculation, cx7 (where c is a constant). In general, this
can be the largest possible term calculated with one
lower level of depth, which can be found by defining a
new level whenever a polynomial term equals a power
of 2. The novelty in this approach is to replace terms
of the polynomials resulting in depth 4 calculation
with the largest term requiring depth 3 calculations (as
opposed to removing the term completely as in Task
Skipping Approach 2). Focusing on the two functions
in this research, the logistic and exponential functions
with depth 4 are approximated by their Taylor Series’
requiring depth 3 calculations as follows:

• Logistic function:

f (x)≈ 1
2 +

1
4 x− 1

48 x3 + 1
480 x5− 17

80640 x7− 17
80640 x7

(9)

• Exponential Function:

g(x)≈ 1+ x+ x2

2 + x3

6 + x4

24 +
x5

120 +
x6

720 +
x7

5040 +
x7

5040
(10)

The double negative, highest powered term in
equation (9) greatly impacts the accuracy of the
approximation, especially for larger input values.
To combat this, yet still to retain the benefits
of approximating the logistic function using depth
reduction, this equation will be slightly modified; the
highest powered term(s) will be multiplied by −1 to
be turned into positive terms, therefore to compensate
this change without altering the approximation in (9)
by a large amount, the x5 term is also multiplied by
−1. This results in the depth reduced approximation
to be implemented as follows:

f (x)≈ 1
2 +

1
4 x− 1

48 x3− 1
480 x5 + 17

80640 x7 + 17
80640 x7

(11)

3.4 Approximate HE via Task Skipping
and Depth Reduction

The functions to be evaluated can be approximated
further by combining and applying together the two
previously proposed techniques. Applying depth
reduction to Task Skipping Approach 1 has been
computed in the form of the basic depth reduction
technique. However, depth reduction can be applied
to Task Skipping Approaches 2 and 3, resulting in the
following polynomials being evaluated for the inputs
defined in Section 3.1:
• Logistic function:

f (x)≈ 1
2 +

1
480 x5− 17

80640 x7− 17
80640 x7

(12)

• Exponential Function:

g(x)≈ 1+ x4

24 +
x5

120 +
x6

720 +
x7

5040 +
x7

5040
(13)

Due to the alternating signs in the approximation
of the logistic function, in addition to applying
task skipping and depth reduction techniques, the
resulting approximation gives a large error and thus
needs modification to give a more accurate evaluation.
Hence, the non-constant terms in the approximation
defined in equation (12) are multiplied by −1, giving
the following approximation to be implemented:

f (x)≈ 1
2 −

1
480 x5 + 17

80640 x7 + 17
80640 x7

(14)
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By using equation 13 as the approximation of the
exponential function for this approach, the calculation
still satisfies task skipping and depth reduction
techniques, but gives a more accurate result with
an additional reduction in running time. All of the
approximate functions, as given in Equations (1-8),
(11), (13) and (14), are homomorphically evaluated.

3.5 State of the Art in Approximate HE

Table 1 shows the current state-of-the-art running times
of the homomorphic evaluation of the logistic and
exponential functions, as given in (Hee Cheon et al.,
2017)1, (Cheon et al., 2019)2. It also shows that the
RNS variant of the CKKS scheme provides a much
faster evaluation time for the logistic and exponential
functions. In this research the depths and polynomial
degree have been kept the same as is in Table 1 to
ensure fair comparisons. It is important to note that
the results presented in this research cannot directly
be compared to those in Table 1 due to differences in
implementation arising from different libraries used.

Table 1: State-of-the-art implementation results for the
evaluation of the logistic and exponential functions using the
HEAAN library.

Method Depth N log q log Ql

Polynomial

Degree

Total

Time

Amortised
Time

Logistic Function
HEAAN 1 3 213 30 155 7 0.54 s 130 µs
HEAAN 1 4 214 30 185 9 0.78 s 90 µs
HEAAN-RNS 2 3 214 55 281 7 0.161 s 19 µs
Exponential Function
HEAAN 1 3 213 30 155 7 0.65 s 160 µs
HEAAN-RNS 2 3 214 55 281 7 0.164 ms 20 µs

4 RESULTS AND ANALYSIS

In this section, the proposed approximate techniques
(from Section 3) are implemented and compared
against implementations of the functions without
approximate techniques, both in the SEAL library
(SEAL, 2019). Table 2 displays the results. The
amortised running times (i.e. the running time per
individual ciphertext slot) are defined in microseconds,
as the time taken for the algorithm to run from the
encoding step to the decoding stage. The approximate
computing techniques is applied to the Evaluation
stage of the HE scheme, hence the KeyGen running
times are not included. The error terms are calculated
as absolute errors of the approximate evaluation
against the actual evaluation of the functions. The
calculation of the average error uses the absolute
values to work out an average error from all the input
values. The computations have been run on an Intel
Core i7-8700 CPU @3.20 GHz with 16GB RAM

using Microsoft’s SEAL library (Version 3.4) (SEAL,
2019). Table 2 shows running times, with and without
approximate optimisations, for homomorphically
evaluated logistic and exponential functions using
the inputs as described in Section 3.2. For each
optimisation the percentage speed-up is calculated
against the running time without optimisation and the
average error is calculated against the ‘actual’ input
evaluated in each function. In all cases the input vector
is of size 213, i.e. 8192 slots.

Task Skipping Approach 3 and Depth Reduction
with Task Skipping Approach 3 are compared with
second row for each function in Table 2, for input
values 1-8192. All other approximate technique
approaches are compared with the first row, where
input values range from 0 to 1. The results for ‘without
optimisations’ in Table 2 cannot be directly compared
with the results outlined in (Cheon et al., 2019), due
to differing underlying libraries used. It is also unfair
to compare the HEAAN and SEAL libraries directly.
Here SEAL is used to measure the effect the proposed
approximations have on homomorphic evaluations.
Further generic software optimisations could improve
performance. All approaches show a speedup of
12.1-45.5% for task skipping, 35-45.5% for depth
reduction and 53.3-57.6% for both techniques applied
together across all the functions evaluated.

For input values 0-1, as shown in Table 2, both
logistic and exponential functions benefit from Task
Skipping Approach 1. It runs on average 40% faster
with a larger error for the logistic function and around
10% better approximation for the exponential function.
For depth reduction, the logistic function shows a
similar speed up compared to Task Skipping Approach
1 but with a larger error. The exponential function,
however, benefits from an approximately 4x smaller
error than Task Skipping Approach 1, with a similar
speed-up. When applying both techniques together,
both functions run in around half the time compared to
when no optimisation is used, 53.3% (exponential) and
57.6% (logistic), with an expected larger error value
than when either technique applied on its own.

For the evaluations of the logistic and exponential
functions shown in Figure 1, Figures 1a and
1c (equations (3) and (11) respectively) show
the techniques which fare best for high accuracy
applications and Figures 1b and 1d (equations (14)
and (13) respectively) show the techniques for when
running time is most important. For Figures 1b, 1d and
Table 2, the approximations do not follow the general
trend of the outputs for the inputs 0-1. As shown in
Figures 1b and 1d, as the input value increases the error
value increases as well, i.e. unlike in Figures 1a and 1c
the trend of function approximation is not continuous.
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Table 2: Table showing results for homomorphic evaluation of approximated logistic and exponential functions respectively.
Three task skipping techniques (outlined in Section 3.2) and the depth reduction technique (outlined in Section 3.3) are
presented. Results are calculated using the RNS-CKKS scheme implemented in the SEAL library. The corresponding equation
numbers are shown in brackets. The rows with N/A in the speed-up column are the baseline results used for comparison.

Homomorphic Evaluation
of Function Degree log Ql Total Time Amortized Time % speed-up Average error

from actual
Logistic Function
Without Optimisation (1), inputs 0-1 9 280 0.274354 s 33 µs N/A 1.52 x 10−7

Without Optimisation (1), inputs ≥ 1 9 280 0.275538 s 34 µs N/A 3.55 x 1029

Task Skipping Approach 1 (3) 7 240 0.144749 s 18 µs 45.5 % 2.08 x 10−6

Task Skipping Approach 2 (5) 9 280 0.234501 s 29 µs 12.1 % 0.11979
Task Skipping Approach 3 (7) 9 280 0.235498 s 29 µs 12.1 % 3.55 x 1029

Depth Reduction (11) 7 240 0.145621 s 18 µs 45.5 % 6.18 x 10−4

Task Skipping Approach 2 with Depth Reduction (14) 7 240 0.114206 s 14 µs 57.6 % 0.12041
Task Skipping Approach 3 with Depth Reduction (14) 7 240 0.114705 s 14 µs 57.6% 3.55 x 1029

Exponential Function
Without Optimisation (2), inputs 0-1 8 280 0.495471 s 60 µs N/A 0.333321
Without Optimisation (2), inputs ≥ 1 9 280 0.495397 s 60 µs N/A 5.59 x 1025

Task Skipping Approach 1 (4) 7 240 0.316672 s 39 µs 35 % 0.08334
Task Skipping Approach 2 (6) 8 280 0.38291 s 47 µs 21.6 % 0.70835
Task Skipping Approach 3 (8) 8 280 0.384384 s 47 µs 21.6 % 5.59 x 1025

Depth Reduction (10) 7 240 0.318610 s 39 µs 35 % 2.42 x 10−5

Task Skipping Approach 2 with Depth Reduction (13) 7 240 0.228299 s 28 µs 53.3 % 0.70833
Task Skipping Approach 3 with Depth Reduction (13) 7 240 0.227856 s 28 µs 53.3 % 5.59 x 1025
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(a) Logistic Function Task
Skipping Approach 1,
equation (3)
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(b) Logistic Function Depth
Reduction with Task Skipping
Approach 2, equation (14)
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(c) Exponential Function with
Depth Reduction, equation
(11)
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(d) Exponential Function
Depth Reduction with
Task Skipping Approach 2,
equation (13)

Figure 1: Graphical representation of the approaches for both
functions where accuracy (1a, 1c) and improved running
time (1b, 1d) are the focus.

As shown by the large average error values in Table 2,
for large input vectors (inputs ≥ 1) the average error
is much worse and thus for such inputs, the reduction
in accuracy caused by the proposed approximation
techniques in their current form is too costly to justify
the gain in terms of run time. This is considered upon
in the recommendations in Section 5.

5 CONCLUSIONS

This research shows the proposed approximate
computing techniques provide a decent run-time
speedup of homomorphic evaluation, from 12.1-45.5%
(task skipping), 35-45.5% (depth reduction) and
53.3-57.6% (the combination of techniques). The
SEAL library is used to indicatively show how
approximate computing for homomorphic evaluation
of the logistic and exponential functions affects
performance, targeting the CKKS scheme.

As shown in Table 2, the error values for when
these techniques are applied to inputs ≥ 1 are very
large, therefore, giving unreliable estimations, even
though there is a speed-up. Thus, these techniques in
their current form, are recommended for input values
in the range 0-1.

Based on this research’s results, for a balanced
trade-off between performance and accuracy, the
recommended approximate computing techniques for
the logistic and exponential functions respectively are
(for input values 0 to 1): Task Skipping Approach 1
and Depth Reduction.
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