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Abstract: Although significantly improved, the performance of secure two-party computation (2PC) is still prohibitive
for practical systems. Contrary to common belief that bandwidth is the remaining bottleneck for 2PC imple-
mentation, we show that the network is under-utilised due to the use of standard TCP sockets. Nevertheless,
using other sockets is non-trivial: the developers of secure computation need to integrate them into the operat-
ing systems, which is a challenging task even for systems experts. To resolve the efficiency barrier of 2PC, we
develop a framework, we call Transputation, which automates the integration of transport layer sockets into
2PC implementations. Transputation is the first tool which enables developers of 2PC protocols to easily
identify and use the optimal transport layer protocol for the given computation task and network conditions.
We integrate selected transport layer protocols into Transputation and evaluate the performance for a num-
ber of computational tasks. As a highlight, even a general purpose transport layer protocol, such as SABUL,
improves the run-time of 2PC over TCP on EU-Australia connection for circuits with > 106 Boolean gates by
a factor of 8. To enable evaluations of 2PC implementations in real life setups in the Internet we setup a dis-
tributed testbed.The testbed provides automated generation of network scenarios and runs evaluations of 2PC
implementations. We evaluate Transputation on in different network setups and report on our experimental
results in this work.

1 INTRODUCTION

Secure two-party computation (2PC) is a crypto-
graphic tool that allows two remote parties to jointly
compute any function on their inputs and obtain the
result without leaking any other information. As more
and more interaction is performed online between
parties that do not trust (or only partially trust) each
other, the need for secure and practically efficient 2PC
solutions is increasing, and there are plenty of appli-
cations that secure 2PC could facilitate. The classic
setting where 2PC is needed is that of two parties
holding some data and gaining extra utility by com-
bining their data with the data of the other party. How-
ever, the parties might not want (or might not be al-
lowed) to share their data with each other due to pri-
vacy concerns, competition (e.g., financial) or legisla-
tion. In these settings 2PC is a powerful tool that en-
ables collaborations that were previously infeasible.
Examples of such applications include key manage-
ment for digital currencies (Archer et al., 2018), auc-
tions (Bogetoft et al., 2009), tax-fraud detection (Bog-
danov et al., 2015), private set intersection (Pinkas
et al., 2018) and even prevention of satellite colli-
sion (Hemenway et al., 2016).

Implementations Are Still Not Practical. Despite
its huge potential, aside from initial attempts and
scant success stories, 2PC still remains the focus of
theoretical research. Most prototype implementations
are meant to demonstrate feasibility (Halevi, 2018).
The implementations are evaluated in simulated envi-
ronments or on a single host without taking into ac-
count realistic network conditions nor the presence of
other processes (Kreuter, 2017). Current 2PC imple-
mentations are not generally usable and the users have
to tradeoff their privacy with efficiency by resorting
to third parties for performing computations for them
instead of running 2PC with the target service.
Computation Is Optimal. While the idea of 2PC
is now more than 30 years old, the first public im-
plementation of 2PC was released in 2004 (Malkhi
et al., 2004). Since then, huge progress has been
made in terms of protocol design and implementa-
tion engineering. The most efficient implementations
of 2PC protocols are based on the protocol proposed
in 1986 by Yao (Yao, 1986) which is built from gar-
bled circuits (Bellare et al., 2012) and oblivious trans-
fer (OT) (Naor and Pinkas, 2001).What has changed
in recent years is that (thanks to protocol optimisa-
tions, hardware support for cryptographic operations
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and the use of multiple cores) the computation over-
head of 2PC protocols has been reduced drastically
and there are indications that the current constructions
of 2PC based on garbled circuits have reached the the-
oretical lower bound (Zahur et al., 2015). It is now
widely believed that the bandwidth and not the com-
putation, is the remaining bottleneck in 2PC (Asharov
et al., 2013; Zahur et al., 2015).
Communication Is yet to Be Explored. Although
there has been work on reducing the communication
complexity and limiting the amount of data that needs
to be exchanged between the two parties, no research
has been done on the networking layer of 2PC. In-
deed, evaluations of 2PC implementations on a single
machine now result in practical performance (Bellare
et al., 2013; Schneider and Zohner, 2013). Never-
theless, when 2PC is evaluated on separate hosts, the
latency overhead is prohibitive for practical applica-
tions (Nielsen et al., 2017; Wang et al., 2017). Eval-
uations of 2PC disregard issues faced by practical de-
ployment of 2PC: many implementations are not eval-
uated in real life setups where diverse network condi-
tions, such as packet loss, latency, and other traffic can
impact performance (Kreuter, 2017; Halevi, 2018).

1.1 Contributions

In this work we explore two obstacles that have held
back secure computation from being practical for real
life systems. We identify two central issues which
need to be resolved: (1) there should be an easy way
for 2PC developers to integrate and experiment with
various transport protocols in their implementations
of 2PC and (2) there should be an automated way to
evaluate and compare the performance of 2PC imple-
mentations in different network setups.
Automated Transport Layer. All 2PC implemen-
tations use the standard TCP socket supported in
popular operating systems (OSes). We demonstrate
through our evaluations that, in contrast to other trans-
port protocols, TCP sockets result in high perfor-
mance penalty and do not fully utilise the bandwidth.
TCP connections not only suffer from poor perfor-
mance on paths with high latency and packet loss but
they also fail to adjust to rapidly changing network
conditions and incur high latency with buffer bloat.
Even in stable network conditions, TCP does not pro-
vide optimal performance, and is not suitable for dif-
ferent types of applications. In the recent years dif-
ferent variants of TCP and other transport protocols,
tailored to different applications and network setups,
have been proposed.

Why, then, are other more efficient transport
layer protocols not used in implementations of
secure computation?

The reason is the difficulty of integrating new trans-
port layer sockets. As a result, the developers use the
default option of TCP. In order to use other transport
layer sockets the developers have to integrate them
into the OS kernel: this is a challenging task even for
systems and networking experts. Hence, 2PC devel-
opers resort to using the default TCP sockets, sup-
ported in the available cryptographic implementations
and operating systems.

Which transport layer protocol is optimal for
2PC implementations?

To answer this question we perform evaluations with
popular transport protocols. Our results demonstrate
that there is no transport protocol that can provide op-
timal performance for all 2PC implementations. For
optimal performance the transport protocol has to be
selected as a function of the 2PC implementation, the
size of the inputs, and the network conditions (e.g.,
packet loss, latency).

In this work we develop a transport layer
framework for secure computation that we call
Transputation, which automates the usage and in-
tegration of transport layer protocols into secure com-
putation implementations. We use Transputation to
demonstrate the performance improvements of other
(even mainstream) protocols over TCP. For our eval-
uations we have integrated three transport protocols
into Transputation: UDP, TCP and SABUL1. We
explain the choice of the protocols in Section 4. Dur-
ing the computation, Transputation automatically
identifies the most suitable transport protocol for a
given computation task and network conditions. This
adaptive behaviour on the transport layer consistently
achieves high performance over different and com-
plex real world network conditions.
Evaluations of 2PC. Due to the difficulty and the
overhead of setting up real life testbed environ-
ments, 2PC developers typically evaluate the imple-
mentations on a single host or on simulated environ-
ments (Kreuter, 2017; Halevi, 2018). The perfor-
mance in those setups is not representative of real
networks, e.g., the developers cannot foresee the be-
haviour during execution with other traffic and in di-
verse network conditions. Although there are other
platforms for running experiments in distributed se-
tups, such as PlanetLab (Chun et al., 2003), they are

1Though we use the most updated version of SABUL,
also commonly known as UDT or UDP-based Data Transfer
Protocol, in this paper we use the former name to stress the
difference with “regular” UDP.
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Figure 1: TCP vs. SABUL as garbled circuit size increases.

not tailored for 2PC evaluations and they do not sup-
port the various transport layer protocols, nor do they
enable automated usage of transport protocols in 2PC
implementations. Hence, the 2PC developers would
themselves have to setup and install the requirements,
including upload binaries, install libraries and depen-
dencies, integrate transport layer protocols, measure
latencies and packet loss.

For automating the evaluations of 2PC, we de-
velop and set up a distributed 2PC testbed, which
is integrated with Transputation, that provides a
user friendly GUI and allows the users to select the
network conditions as well as setup and run their
2PC implementations over the Internet with the re-
quired latency, packet loss and concurrent traffic. Our
testbed is setup on Vultr cloud instances in differ-
ent physical locations, over networks with varying
latencies and packet loss and other concurrent traf-
fic. By using our preinstalled implementations or
by uploading binaries of their implementations, 2PC
developers can perform real life evaluations and re-
ceive immediate results without the need to install
or use any traffic monitoring tools. We provide the
source code implementation of Transputation at
https://github.com/Fraunhofer-SIT/transputation.

Through our evaluations using the platform, we
demonstrate that even general purpose protocols al-
ready provide significant performance improvement
over standard TCP sockets. For instance, for large cir-
cuit sizes in WAN setting, SABUL performs 8× bet-
ter than TCP (Figure 1). Of course, transport proto-
cols tailored for specific tasks would further improve
efficiency. There is a large body research of show-
ing performance improvements over general purpose
transport protocols when tailoring protocols to spe-
cific tasks and engineering patches for specific net-
work conditions, e.g., (Caini and Firrincieli, 2004; Ha
et al., 2008; Obata et al., 2011; Wu et al., 2013; Al-
izadeh et al., 2011).

Organisation

In Section 2 we introduce the Transputation frame-
work and its layers. The optimizations and imple-
mentations on secure computation layer and the trans-
port layer are explained in Section 3 and 4 respec-
tively. In Section 5 we present the design and im-
plementation of the Transputation framework. In
Section 6 we report our simulation and evaluation re-
sults of Transputation on our testbed environment.
In Section 7 we review related work and we conclude
this work in Section 8.

2 TRANSPUTATION
FRAMEWORK

In this section we provide an overview of
Transputationand explain how it can be used.

2.1 Components

The goal of Transputation is to identify which
transport layer protocol is optimal for a given com-
putational task at hand, the input sizes, the net-
work setup and buffer sizes. The functionality of
Transputation is split between two layers: the se-
cure computation layer and the transport layer.
Secure Computation Layer, composed of secure
computation implementations, accepts the function or
application to be evaluated securely and the size of the
circuit representing the function. In Section 3, we mo-
tivate our choices for 2PC implementations that we
integrate into Transputation. We identify the pa-
rameters that impact the data volume and communi-
cation pattern, and deploy optimizations relevant for
performance improvements on the transport layer.
Transport Layer is responsible to identify an optimal
transport layer protocol for a given computation task.
To that end, it determines the latency, bandwidth and
packet loss on the network through live experimental
probes. Transport layer is also responsible for avoid-
ing overflow at the sender and the receiver. To avoid
overflow, given the function to be computed and the
size of inputs to the circuit, Transputation calcu-
lates the required buffer sizes on the sender and the
receiver. We explain the transport layer implementa-
tion in Section 4.

We integrate, in both layers, popular and represen-
tative protocols to demonstrate the usage of frame-
work as well as the evaluation of 2PC implementa-
tions. In the secure computation layer, we have inte-
grated a garbled circuit protocol under standard as-
sumptions (Gueron et al., 2015), a garbled circuit
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protocol under circularity assumption (Zahur et al.,
2015) and the scheme that assumes AES as a ideal
cipher (Bellare et al., 2013). In the transport layer, we
support TCP (Ha et al., 2008), UDP and SABUL (Gu
and Grossman, 2008).

Transputation brings together the secure com-
putation layer and the transport layer by choosing a
suitable transport protocol based on the combination
of parameters obtained from them. Transputation
is built to support easy extensions at both layers. New
implementations of secure computation as well as
new transport layer protocols can be integrated into
Transputation. The flexibility for easy integration
of transport layer protocols is critical—new protocols
are continually devised, e.g., to improve performance
of applications in diverse network conditions or to
support new Internet architectures. Future protocols
may improve the performance of secure computation
more than the existing options. Transputation pro-
vides agility and flexibility for 2PC developers en-
abling them to constantly extend the implementations
with new transport protocols.

2.2 Usage of Transputation

Transputation makes it convenient for secure com-
putation developers to focus on the 2PC protocol.
First, the developers can implement the secure com-
putation protocol without worrying about the underly-
ing transport layer protocol. Then, the developers can
invoke the transport layer part of Transputation
which is implemented as a wrapper. Our implementa-
tion provides functions to set up a connection between
the two parties, to send and to receive data.

We have implemented abstract classes into
Transputation that makes selecting transport layer
protocols simple and automated. Adding a new trans-
port layer protocol to the framework only requires
specifying a string to identify the protocol without re-
quiring any changes to the secure computation imple-
mentation. Without the framework, substantial parts
of the secure computation implementation will need
to be re-written to accommodate new transport layer
protocols. In many existing secure computation im-
plementations, the code is not modular. The network
code is interwoven with the application code such that
not only is the transport layer protocol hard-coded
into the application code, but also the IP-address and
the port numbers are hard-coded. This has also been
recently observed by (Halevi, 2018). Unwrapping
such an implementation and adding transport layer
protocols requires extensive rewriting of the code
base. To begin with, an entangled code base prevents
retrofitting of transport layer protocols. The code base

will need to be made modular before considering the
integration of different transport protocols.

Secure computation developers can use
Transputation in three ways. First, they can
use the transport layer module to automatically
choose the most appropriate transport protocol in a
given network setting for their secure computation
implementation and 2PC application. The secure
computation implementation is then integrated with
the transport layer protocol which provides the most
efficient run time. Second, the developer can test the
secure computation protocol manually, by running
the implementation using the various transport layer
protocols available in Transputation under various
network conditions to choose the most suitable
transport layer protocol for the 2PC application.
Finally, secure computation protocols consist of
interactive primitives such as oblivious transfer (OT)
and OT extensions. Transputation can be used
not only by developers who use these primitives to
construct a 2PC protocol, but also by the designers of
the primitives to test the practicality of their design.

3 TWO-PARTY COMPUTATION
LAYER

In this section we present the secure computation
layer of Transputation. We explain our choice of
2PC protocols and the applications, describe the pa-
rameters that define the amount of data to be trans-
mitted, the properties that impact the communication
performance and we list recent optimisations relevant
for our improvements on the transport layer, which
we integrate into Transputation.

Currently most efficient technique for secure two-
party computation is based on Yao’s protocol with
garbled circuits. The main features of Yao’s proto-
col (as opposed to other protocols) are: it has con-
stant rounds (in fact, it is round optimal when using
a two-message oblivious transfer protocol), it is com-
putationally cheap (since it mostly uses lightweight
symmetric-key operations, and very few expensive
public-key operations such as exponentiations). The
main alternative to Yao’s protocol is the GMW pro-
tocol (Goldreich et al., 1987) (which is purely based
on Oblivious Transfer). Unlike Yao’s protocol, the
GMW protocol has non-constant round complexity
(proportional to the depth of the circuit to be evalu-
ated), and is less efficient than Yao. Hence, we do not
consider it in this work.

We focus on the recently optimized garbling
schemes. The three main characteristics of such gar-
bling schemes are: the size of the produced garbled
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circuits (which impacts the communication efficiency
of the protocol), the number of encryptions/decryp-
tions which have to be performed for generating/e-
valuating a garbled gate (which impacts the compu-
tational overhead of the protocol), and the computa-
tional assumptions under which the garbling scheme
is proven secure. We included the most represen-
tative, with respect to efficiency-security trade-offs,
garbling schemes into Transputation. All other
schemes in the literature are strictly worse when it
comes to either efficiency or security. In our evalua-
tions with Transputation, we extend upon the work
of GLNP15 (Gueron et al., 2015) to show that with
a better selection of transport layer protocols, secure
computation with standard assumptions can be made
more efficient.

3.1 Garbling Schemes

We identify the computations and operations which
have impact on the communication efficiency and
explain the corresponding optimizations that we de-
ployed (which, as we explain, do not sacrifice secu-
rity). We use the garbled circuits implementations
that are part of the libscapi library (Ejgenberg et al.,
2012), since all the known garbled circuit optimiza-
tions have been incorporated into it. All implementa-
tions use AES-NI.
GLNP15. The first implementation is based on the
garbling scheme from (Gueron et al., 2015). The
main advantage of this garbling scheme is that it only
makes conservative computational assumptions, i.e.,
it can be proven secure under the assumption that
AES behaves like a pseudorandom function (PRF).
Similar to all garbling schemes that we consider in
Transputation, the garbling of linear gates (e.g.,
XOR) and non-linear gates (e.g., AND) is performed
differently. In GLNP15, garbling an AND gate pro-
duces two ciphertexts (using the 4-2 Garbled Row Re-
duction technique, or GRR for short), while garbling
an XOR gate produces one ciphertext using the XOR-
1 technique. From a computational point of view, gar-
bling with AES key scheduling is pipelined. Circuit
garbling requires four key schedules per gate while
circuit evaluation requires two key schedules.
Half-Gate. The second implementation is based on
the work of (Zahur et al., 2015), and uses the so called
“half-gate” optimization, which in turn is compati-
ble with the “free-XOR” optimization of (Kolesnikov
and Schneider, 2008). This optimization requires a
stronger computational assumption on AES, namely
assuming some form of circular-security (a kind of
related-key assumption). The half-gate optimization
reduces the number of ciphertexts necessary to gar-

Table 1: Number of gates.

Function AND gates XOR gates
AES 6,800 25,124
SHA256 90,825 42,029
MinCut 999,960 2,524,920

Table 2: Garbled circuit size in Megabytes.

Assumption AES SHA256 MinCut
PRF 0.59 3.41 69.04
Circularity 0.21 2.77 30.52
Ideal cipher 0.21 2.77 30.52

ble an AND gate from four to two, using a different
approach than GLNP15. We refer to the original pa-
per (Zahur et al., 2015) for details.
JustGarble. The final implementation we consider
was proposed in the JustGarble framework of (Bel-
lare et al., 2013). Recall that key-scheduling is the
most expensive phase when using the AES-NI, i.e.,
the instruction is optimized to garble large amount of
data under the same key, but loses some of its effi-
ciency when different keys have to be used all the
time. In garbling schemes each gate consists of ci-
phertexts where different keys are used, thus the full
power of the AES-NI set is not exploited. In JustGar-
ble, AES is used as an ideal permutation “in stream
cipher mode” by setting the key as a fixed constant,
e.g., to encrypt message m under key k one computes
C = AESc(k)⊕ m for some constant c. This usage
of AES is quite non-standard, and amongst the three
presented, it provides the most extreme efficiency/se-
curity trade-off.

3.2 Applications and Circuit Size

Once we have fixed the protocol and the garbling
scheme, we are left with one dimension, namely,
which function should we evaluate using the 2PC pro-
tocol? For garbled circuit protocols, the circuit size
plays a significant role in defining the amount of data
that is to be transferred over the network. The amount
of data transferred from the Garbler to the Evaluator
is a linear function of the circuit size. In particular,
there is a difference in the price to pay (in terms of
communication complexity) for linear gates vs. non-
linear gates, and different garbling schemes have dif-
ferent coefficients for these two types of gates.

In this work, we consider three applications with
circuits of three different sizes. These circuits are be-
coming the de-facto standards for benchmarking of
MPC protocols, mostly since they represent three dif-
ferent orders of magnitude in circuit sizes. In particu-
lar, we benchmark Transputation on the circuits for
AES (≈ 105 gates), SHA256 (≈ 106 gates) and Min-
Cut (≈ 107 gates). The exact number of gates and the
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distribution between AND and XOR gates for these
circuits is shown in Table 1. For a particular circuit,
the circuit size depends on the on the security assump-
tions. In Table 2, a summary of the circuit sizes in
megabytes is provided.

4 TRANSPORT LAYER

In this section we describe the network characteris-
tics which Transputation measures in order to op-
timise performance, parameters for selection of op-
timal transport layer protocol and the challenges of
integrating transport sockets.

4.1 Transport Protocol Selection

Given the sizes of the inputs and the 2PC implementa-
tion, the transport layer of Transputation measures
the packet loss and the latency and heuristically deter-
mines which transport protocol is optimal. The deci-
sion whether reliability and congestion control mech-
anisms are needed is made considering the network
characteristics. Transputation runs continuous ex-
periments with PING, probes the network for losses,
tries different sending rates and selects a protocol that
empirically produces optimal performance.
Protocol Selection based on Latency. Latency plays
an important role in the choice of transport layer pro-
tocol. When the time to transmit one TCP window is
longer than the round trip time (RTT), the transmis-
sion proceeds in full pipe, and is essentially similar to
UDP since the congestion window does not limit the
transmission. In that case if the network has packet
loss TCP will be used, otherwise UDP. To determine
if transmission proceeds in full pipe, Transputation
performs the following computation: let W be the
bytes in the TCP window and let ttrans be the transmis-
sion delay of one byte. Let RTT be the time it takes
to transmit one TCP segment and receive an ACK.
If W · ttrans > RT T , then there is no impact of TCP
congestion window on the latency since transmission
proceeds in pipeline. Transputation measures the
RTT, the window size W and the ratio W · ttrans vs.
RT T and determines which transport protocol to use
(i.e., window-based or to transmit in full pipe). In low
latency networks, e.g., evaluations on the same LAN,
congestion control is generally insignificant (typically
LANs do not suffer from packet losses and have low
latency). In those settings Transputation resorts to
UDP-like protocols.
Protocol Selection based on Communication
Rounds. The relevant parameters here are the num-
ber of interactions and data volume. Window based

protocols, such as TCP, are not optimal for 2PC im-
plementations with small number of interactions and
large data volumes due to the fact that the transmis-
sion window of TCP increases with the number of
RTTs. In TCP the window starts with one segment
and increases exponentially with every received ACK.
As a result, although only a few interactions are re-
quired on the application layer, they will be performed
in multiple interaction rounds on the transport layer.
This factor is most evident in high latency networks.
Protocol Selection based on Packet Loss. TCP per-
forms poorly during packet loss events, even when
very few packets are lost, say 1%. During packet loss,
reliability should be taken care of in the user space
with UDP or with SABUL.

4.2 Avoiding Packet Loss

Transputation avoids packet loss at the sender by
adjusting the size of buffers as a function of latency,
transmission rates and the data volume that needs to
be transmitted. The idea is the following: the applica-
tion sends packets to the transport layer and the trans-
port layer depletes the buffer by passing the pack-
ets on to the IP layer, which subsequently transmits
the packets on the wire. When the application passes
the packets faster than the transport and the IP layers
can process them, then the buffers will overflow and
packets will be lost. Transputation performs ad-
justs the buffers, according to the computation below,
to avoid packets’ loss. Given (1) the differences be-
tween the transmission rate and the rate at which the
data is passed on to the IP buffer (respectively trans-
port layer) at the sender, (2) the transmission rate and
the rate at which the IP buffers (and respectively trans-
port layer) are depleted at the receiver and, (3) the in-
put sizes and the secure computation implementation
(both of which define the data volume and the rate
at which it will be exchanged), Transputation per-
forms a computation of the maximal amount of data
that can be sent in one window.

The computation that is performed by
Transputation is as follows. Given a receiver
buffer of size B, with data arrival rate Rarrival , and
the buffer depletion rate Rread . Transputation
computes the maximum window size as geometric
series that converges to: L = B

1−Rarrival/Rread
During

the computation, the data transmitted will be limited
by L bytes during each transmission window. This ac-
counts for the data that is being read, while new data
arrives, and allows to optimise the communication.
This is not the same as the flow control performed by
TCP, which avoids overflow at the receiver.
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4.3 Transport Protocols in
Transputation

We integrated into Transputation the following
transport protocols: TCP, UDP and SABUL. We im-
plemented TCP for comparison to other transport pro-
tocols. We used UDP as a benchmark for connection-
less protocols on networks without losses. Exam-
ples for such networks is evaluations on LAN, or
implementations which are meant to run on 5G net-
works, which guarantees reliability and no packet loss
(Parvez et al., 2018).We integrated SABUL, as it is
currently used by an increasing number of applica-
tions, and provides reasonable performance for Inter-
net communication. Furthermore, SABUL is TCP-
friendly and fair to other applications sharing the
same network. New and even more efficient protocols
may be developed in the future. Transputation en-
ables easy integration of new and additional transport
protocols. We describe the steps needed for integrat-
ing new protocols into Transputation in Section 5.

5 Transputation
IMPLEMENTATION

The design goal of Transputation is to provide a
modular design that can be extended with other secure
computation protocols as well as transport layer pro-
tocols. Transputation allows secure computation
researchers to focus on the protocol details without
worrying about the networking aspects of the imple-
mentation. Modularity is not restricted to secure com-
putation protocols. Transport layer protocols, ancil-
lary to those included in the framework, can be added
to the framework if required.
Abstraction. The transport layer part of
Transputation is implemented as a wrapper
written in C++ which can be easily plugged in with
secure computation protocols. The current version
uses synchronous sockets which is sufficient for our
purposes. It abstracts the network functionality and
removes the requirement to deal with the transport
layer protocols themselves. The transport layer
protocol can be set at runtime, making it easier to
compare different protocols without the need for
recompilation. Since most of the secure computation
implementations developed in the past few years
are written in C++, polymorphism in C++ are used
to achieve modularity. We implement an abstract
class with methods required to establish and close
connections, and to send and receive data. Every
transport layer protocol that is or will be implemented

in our wrapper extends this class and implements
these methods. This provides secure computation
developers with two benefits: First, they do not need
to know how to use the transport layer protocol
and second, they can use new protocols that are
added to the wrapper without making any change to
the executable or library of the secure computation
implementation. To implement a new protocol only
the four methods of the abstract class are required:
SetupClient, SetupServer, RecvRaw, SendRaw.

The wrapper currently supports UDP, TCP and
SABUL. Since UDP does not provide reliability,it
cannot be used in real-world scenarios with packet
losses and where the correct order of packets can-
not be guaranteed. If a dedicated network without
packet loss is available, then UDP can be used. In all
other cases, we recommend to use TCP or SABUL
in Transputation. To choose between TCP and
SABUL, we provide evaluations in Section 6.
Simplification. We have used predefined class meth-
ods to simplify common tasks. When an instance of
the Transport class is created, a socket is already
allocated and set up on creation (by using socket()
e.g. for TCP or UDP). Then the user decides if a client
which connects to a server should be created, or if a
server which listens on a port and waits for incoming
connections should be created. This reduces the num-
ber of lines needed as well as improves the readability
and encourages users to separate program logic from
network code. This is important to make the code
reusable. It is also easier to test the functionality of
different parts when they are separated in a modular
design. The wrapper also includes two static methods,
GetLatencyClient() and GetLatencyServer() to
measure the latency. These methods use UDP packets
to measure the RTT in milliseconds. This can be used
to decide which protocol should be used. Finally, the
wrapper takes care of packet sizes’ byte order, which
simplifies porting applications to different platforms.
Packet Handling. Transport layer protocols have
contrasting methods to send data. For instance, UDP
sends single packets, and hence, sending ten 100 byte
packets is not an issue. However, sending packets
larger than the maximal allowed packet size, limited
by the underlying maximum transmission unit (MTU)
of the network stack, is not possible without splitting
the data into smaller chunks. This has to be done by
the program that incorporates UDP, which does not
provide this by itself. In contrast to UDP, TCP sends
data as a stream. If the data to be sent is too large, it
will be split into multiple packets by the protocol.

To solve the issue where multiple packets are re-
ceived as a big chunk, the wrapper includes a Packet
class which can be used to send a given amount of
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data. The receiver can then, without knowing the
packet size prior to receiving, receive the packet. For
all protocols, that can be included in the wrapper, the
data will be split into multiple packets if needed and
reassembled at the receiver side. In order to tell the
packets apart, the length information is added to the
data so it can be interpreted by the receiving side.
Integration. The wrapper can be integrated into any
secure computation protocol, by simply calling meth-
ods of the wrapper such as Send() or Recv() in the
Transport instance. The protocols can be supplied
as a string such as udp, tcp. If the wrapper is then
extended with a new transport layer protocol, then the
framework will be able to use this protocol without
any changes. We have integrated the wrapper into lib-
scapi. Libscapi uses external OT extension libraries
which has its own network code. By incorporating
our wrapper in libscapi, both—libscapi code and OT
extension code—can use suitable transport layer pro-
tocols without changing the rest of the code. This is
an advantage of using a common network wrapper.

6 SIMULATIONS AND
EVALUATIONS

In this section we provide the simulation results which
are used to understand the effect of latency, packet
loss and bandwidth on the performance of secure
computation protocols (Section 6.1). Then we de-
scribe realistic deployment scenarios (Section 6.2)
followed by evaluation results obtained in LAN and
WAN settings (Section 6.3).

6.1 Simulations

In this section, we provide the results obtained by
simulating two parties performing secure computa-
tion on a single machine. The simulation results pro-
vide the benchmark for the executions in real network
setups that we describe in Section 6.3 We simulate
latency and packet loss using tc qdisc network em-
ulator on a single Vultr instance with a 64-bit single
core CPU with 2.6 GHz and 2 GB RAM. The com-
munication takes place over the loopback interface.

Through these simulations we aim to understand
the impact of latency and packet loss on secure com-
putation protocols. We simulate latencies between
1ms to 300ms and packet losses between 0.01% and
0.05%.The latencies were chosen to represent com-
munication between machines on the same network
as well as those in different parts of the world. For in-
stance, the round-trip time (RTT) within North Amer-
ica is 50ms on average, RTT between machines on

either side of the Atlantic Ocean is about 100ms and
machines placed in North-America and Asia or EU
and Australia is about 300ms. Packet losses were cho-
sen such that they are representative of realistic packet
losses observed in networks2. Here we have presented
the results on a 10Gbps network.

To understand the effect of latency on secure com-
putation protocols, we run them using TCP, UDP and
SABUL. We use UDP to provide the best possible
runtime of the protocol if a reliable transport layer
protocol is not needed. As reliable communication is
required to satisfy the correctness property of secure
computation in real networks, we use UDP to bench-
mark the runtimes achievable when the bandwidth is
optimally utilized. We use two reliable transport layer
protocols, TCP and SABUL, to show the bandwidth
utilisation for different circuit sizes. All experiments
use single thread with AES-NI.

For a small circuit such as AES, it can be observed
in Figure 2 that TCP with Nagle’s algorithm (Nagle,
1984) disabled performs better than SABUL. This is
because for small circuits, few kilobytes of data are
sent over the network while SABUL is optimized for
transfer of large data transfer. For a medium-sized cir-
cuit such as SHA256, it can be observed in Figure 2
that TCP performs better than SABUL under ideal
cipher assumption and circularity assumption, while
under PRF assumption, the performance of SABUL is
better than TCP as RTT increases. Our observation is
due to a combination of reasons: the performance of
SABUL is better as Bandwidth Delay Product (BDP)
increases as well as when the amount of data trans-
ferred increases. For a large circuit such as MinCut,
the performance of SABUL and TCP is quite differ-
ent from that observed for AES and SHA256. It can
be observed in Figure 2 that SABUL utilizes the avail-
able bandwidth much better than TCP. As many pack-
ets are sent from the Garbler to the Evaluator, the con-
gestion control mechanism plays an important role in
controlling the rate of packet transmission. The in-
crease in latency affects the performance of TCP more
than SABUL as SABUL uses a timer-based selective
ACK instead of reacting to packet level events.

When considering packet loss, for small circuits
such as AES, loss rate that we consider impacts the
performance of TCP more than SABUL, as can be
seen in Figure 3. For medium-size circuits such as
SHA256 and large circuits such as MinCut, increase
in loss rate deteriorates the performance significantly
when TCP is used. On the other hand, SABUL han-
dles packet loss better and the performance deterio-
ration is very low. For medium and large-sized cir-

2http://www.verizonenterprise.com/about/network/
latency/
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Figure 2: Effect of latency on a 10Gbps link for (a) AES (b) SHA256 (c) MinCut.
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Figure 3: Effect of loss on a 10Gbps link for (a) AES (b) SHA256 (c) MinCut.

cuits on a network with at least 100ms delay, SABUL
is more suitable than TCP. We have also plotted the
standard deviation of the runs as the variance is non-
negligible in many of the results.

6.2 Deployment Setups

For performance evaluation, two deployments were
set up on our testbed environment: LAN setting and
WAN setting. These settings provide two common
setups of evaluation of secure computation protocols.
In both setups, we use two Azure instances, each with
a 64-bit Intel Xeon quadcore CPU with 2.4 GHz and
28 GB RAM.
LAN Setting. We ran the experiments on two Azure
instances located in the same data centre in the EU
using high-bandwidth network and low latency. The
latency was 0.5 ms on a 10Gbps link. The variance
was within 10%.
WAN Setting. We ran experiments on two pairs of lo-
cations with different latencies. These locations were
chosen to show the behaviour of secure computation
protocols with different transport layer protocols as
latency increases.

EU-US: In this setting, one machine is located in
the EU while the other is located in central US. The
latency was 110ms and the network speed was esti-
mated to be 1Gbps. The measured speed for a single
TCP connection was 200Mbps on average. Both ma-
chines run Ubuntu 16.04. Variance of 15% was ob-
served in this setting.

EU-AUS: In this setting, one machine is located in
the EU while the other is located in south-east Aus-
tralia. The latency was 300ms and the network was
estimated to be 1Gbps. The measured speed for a sin-
gle TCP connection was 100Mbps on average. Vari-

ance of 20% was observed in this setting for secure
computation of AES and SHA256 while the variance
for MinCut was 30% for TCP and 25% for SABUL.

Table 3: Experimental results for garbled circuit protocols
(Runtime in ms).

Circuit Setting JustGarble Half-Gate GLNP15

TCP SABUL TCP SABUL TCP SABUL

AES

LAN 2.4 187.1 2.9 191.3 7 202.7

EU-US 127.4 403.9 126.3 408.3 130.4 444.2

EU-AUS 312.44 566.84 310.88 580.2 377.92 592.5

SHA256

LAN 13.5 191.9 19.9 226.7 30.5 233.45

EU-US 146.23 332.24 151.99 318.26 266.46 411.96

EU-AUS 362.53 568.22 394.13 587.03 650.44 612.43

MinCut

LAN 255.19 598.2 267.2 740.2 700.8 1255.9

EU-US 2616.59 896.74 2783.6 957.6 4911.89 1802.25

EU-AUS 8204.61 1068.07 8693.57 1163.14 13805.2 2001.27

6.3 Experimental Evaluations

In this section we present the results obtained by us-
ing Transputation for the three secure computation
protocols using TCP and SABUL for communication
in LAN and WAN settings. All experiments are run
using single thread and AES-NI.

We summarize the experimental results in Table 3.
The timing in the table include the garbling time,
transfer of data from the Garbler to the Evaluator and
the computation of output. In LAN setting, TCP per-
forms best for all circuit sizes. This is because, when
Nagle’s algorithm (Nagle, 1984) is disabled, the pack-
ets are sent as soon as they arrive at the buffer. Dis-
abling Nagle’s algorithm is advantageous in LAN set-
ting as the communication is fast and computation
consumes bulk of the time taken by the protocol.
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In the WAN setting, when the 2PC protocol is run
between Azure instances in EU and US, the circuit
size begins to influence the performance. For AES
and SHA256, TCP is still more efficient than SABUL
but the tide tilts for MinCut. MinCut using SABUL is
2.7−3× faster than TCP. In fact, secure computation
of MinCut under PRF assumption using SABUL is
more efficient than under ideal cipher assumption or
circularity assumption using TCP.

In the WAN setting, when the secure computation
protocol is run between Azure instances in EU and
Australia, the influence of latency on secure computa-
tion of large circuits becomes much more evident. Se-
cure computation of SHA256 under PRF assumption
(with 223,679 ciphertexts) using SABUL is only a lit-
tle faster than using TCP. Secure computation of Min-
Cut using SABUL is 7− 8× faster than using TCP.
This is significantly more than the improvements that
can be expected from secure computation protocol
improvements (Zahur et al., 2015).

7 RELATED WORK

The landscape of secure multiparty computation pro-
tocols is broad and diverse, and different protocols ex-
ist for different number of parties, adversarial models,
corruption thresholds, etc. In this paper we have cho-
sen to focus on the most natural case of secure two-
party computation, and we leave the investigation of
the multiparty case as future work.
Secure Computation. Secure 2PC protocols
have been extensively studied since mid-1980s
when the first feasibility results were provided by
Yao (Yao, 1986) and Goldreich, Micali and Wigder-
son (GMW) (Goldreich et al., 1987). These seminal
results show that it is possible to evaluate any function
in a secure way, that is, two parties P1,P2 with inputs
x,y can jointly evaluate some function f (expressed as
a Boolean circuit) on their inputs in such a way that
both parties learn the desired output z = f (x,y) and
nothing else about the input of the other party.

A long line of works have tried to improve the ef-
ficiency of garbled circuits. The original protocol by
Yao (Yao, 1986) requires a transfer of 4 ciphertexts
per Boolean gate in the circuit, and requires 4 decryp-
tions for the evaluation of a garbled gate. The number
of decryptions per gate in the evaluation phase was
reduced to 1 due to the point-and-permute strategy
of (Beaver et al., 1990), which also reduces the size
of the ciphertexts by a factor 2 (approximately). The
main measure of communication complexity of gar-
bling schemes is the number of ciphertexts which are
transmitted per Boolean gate. This was first reduced

in (Naor et al., 1999) using the garbled row-reduction
technique (GRR) to 3 ciphertexts per gate (the so
called 4-3 GRR technique) and to 2 ciphertexts per
Boolean gate in (Pinkas et al., 2009) (e.g., 4-2 GRR).
Thanks to the free-XOR technique (Kolesnikov and
Schneider, 2008), it is not necessary to transfer any
ciphertexts for XOR (or other linear) gates. Unfortu-
nately the free-XOR technique was incompatible with
the more advanced 4-2 GRR technique. The two tech-
niques were finally combined thanks to the half-gate
optimization, which combines the benefit of free-XOR
(no ciphertexts for XOR gates) with the advanced 4-
2 GRR technique (only 2 ciphertexts per AND gate).
Unfortunately, the free-XOR technique is only secure
under non-standard cryptographic assumption (Choi
et al., 2012) and, in particular, it requires some form
of “circular security” assumption. Using an even
stronger assumption, i.e., fixed-key AES behaves like
a random permutation, faster garbling schemes were
proposed in (Bellare et al., 2013).

While efficiency is a crucial aspect in 2PC, some
have questioned whether it is wise to make protocols
efficient at the cost of strong assumptions. In partic-
ular, we note that a conservative approach is usually
adopted by the industry as it is difficult to change pro-
tocols if vulnerabilities are discovered after deploy-
ment. Therefore, (Gueron et al., 2015) provided novel
constructions of garbled circuits that can be proven
secure using standard assumptions only and that re-
quire 2 ciphertexts for AND gates (4-2 GRR) and 1
ciphertext for XOR gates (XOR-1). (Gueron et al.,
2015) conclude that the price to pay for the stronger
security guarantees in practice is much less than it is
in theory. Our evaluations in some sense confirm and
strengthen the conclusions of (Gueron et al., 2015):
our experiments show that the choice of the right
transport protocol has a much higher impact on over-
all efficiency than gambling on security by using non-
standard assumption. In particular (when evaluating
large circuits over WAN), using SABUL plus stan-
dard assumptions is 4× faster than using TCP plus
non-standard assumptions.
Secure Computation Frameworks. Since the im-
plementation of Fairplay framework (Malkhi et al.,
2004) in 2004, various frameworks have been devel-
oped for secure 2PC (Huang et al., 2011; Ejgenberg
et al., 2012; Demmler et al., 2015). Currently, a gar-
bled circuit framework with security against passive
and active adversaries is provided in libscapi (Ejgen-
berg et al., 2012) library with the latest optimizations.
All the previous frameworks focus on secure compu-
tation and use standard TCP socket provided by the
operating system. The recent work of (Hastings et al.,
2019) surveys general purpose compilers for secure
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computation, which provide high-level abstractions to
describe functions in an intermediate representation
(such as a circuit). While (Hastings et al., 2019) fo-
cuses on compilers, we focus on efficiency of protocol
execution. Hence, the two works address orthogonal
problems. Another recent work is (Barak et al., 2018),
which considers the possibility of providing MPC as
a service where users use the platform to run proto-
cols. They provide an environment where users can
participate in a low-bandwidth MPC protocol using
web-browser or an app on the phone. While they fo-
cus on low-bandwidth MPC protocols, we focus on
high-bandwidth constant round 2PC protocols.

Related work shows that significant progress has
been made in computation complexity of 2PC im-
plementations. When evaluated on a single host the
implementations produce good performance. How-
ever, on real networks with other traffic and concur-
rent processes, latency and packet loss, the efficiency
collapses and implementations incur prohibitive la-
tency. In particular we note that no previous work has
considered how to improve secure computation by ad-
dressing the issue of transport layer performances, as
addressed in this work.

8 CONCLUSION

Our work demonstrates that, contrary to folklore be-
lief, bandwidth is not the bottleneck in performance
of secure computation. The performance of 2PC im-
plementations can be significantly improved if other
transport protocols are used instead of the standard
TCP sockets. Our evaluations demonstrate perfor-
mance improvements for 2PC even with general pur-
pose transport layer protocols, e.g., SABUL is 8×
more efficient than TCP for the same task and 4 times
more efficient than TCP when comparing 2PC with
standard assumptions over SABUL vs 2PC with non-
standard assumptions over TCP.
Support of Multiple Protocols. To enable 2PC de-
velopers to benefit from the wide range of existing
protocols, we have developed Transputation. Users
can setup Transputation locally or can use our in-
stallation (with preconfigured 2PC implementations
and transport protocols) which can be accessed on-
line. Transputation is running on the testbed with
representative network setups for evaluation of secure
computation implementations.
Evaluation of 2PC in Realistic Setups. Although
evaluations on a single host provides practical results,
they “break” when run in real Internet networks. We
setup a testbed, which automates setup and configura-
tions, to evaluate 2PC implementations and to allow

developers to run evaluations without having to dive
into complicated setups, renting remote machines and
running network measurements.
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