
Stay Thrifty, Stay Secure: A VPN-based Assurance Framework for
Hybrid Systems

Marco Anisetti1 a, Claudio A. Ardagna1 b, Nicola Bena1 and Ernesto Damiani2 c

1Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy
2Artificial Intelligence and Intelligent Systems Institute (AIISI), Khalifa University, Abu Dhabi, U.A.E.

Keywords: Assurance, Hybrid System, Security, Virtual Private Network.

Abstract: Security assurance provides a wealth of techniques to demonstrate that a target system holds some non-
functional properties and behaves as expected. These techniques have been recently applied to the cloud
ecosystem, while encountering some critical issues that reduced their benefit when hybrid systems, mixing
public and private infrastructures, are considered. In this paper, we present a new assurance framework that
evaluates the trustworthiness of hybrid systems, from traditional private networks to public clouds. It imple-
ments an assurance process that relies on a Virtual Private Network (VPN)-based solution to smoothly integrate
with the target systems. The assurance process provides a transparent and non-invasive solution that does not
interfere with the working of the target system. The performance of the framework have been experimentally
evaluated in a simulated scenario.

1 INTRODUCTION

We live in a pervasive and connected society, where
users as well as enterprises are engaging with digi-
tal technologies to carry out day-to-day activities and
business processes. Recent years have been charac-
terized by a continuous and fast evolution of commu-
nication and computation technologies towards pub-
lic infrastructures, moving from service-based archi-
tectures to the cloud, and more recently to microser-
vices and Internet of Things (IoT). At the same time,
the importance of private infrastructures has a come-
back pushed by an increasing need of data protec-
tion, which resulted in new regulations such as the
General Data Protection Regulation (GDPR) in Eu-
rope. In this complex scenario, made of hybrid sys-
tems mixing public and private infrastructures, new
concerns emerged undermining the users’ perceived
trust (e.g., (Teigeler et al., 2017)), as well as their con-
fidence in the security of the overall systems.

The problem of guaranteeing the trustworthiness
of such systems has been extensively studied by the
research community in the last couple of decades, to
the aim of fully unleashing their potential and foster
widespread adoption. Security assurance stands out

a https://orcid.org/0000-0002-5438-9467
b https://orcid.org/0000-0001-7426-4795
c https://orcid.org/0000-0002-9557-6496

as the way to gain justifiable confidence that IT sys-
tems will consistently demonstrate one or more secu-
rity properties, and operationally behave as expected,
despite failures and attacks (Anisetti et al., 2017). It
implements processes and techniques, based on audit,
certification, compliance, supporting the assessment
and verification of a target system behavior against
security properties and requirements (Ardagna et al.,
2015). Assurance solutions have been recently ap-
plied to service-based systems, including cloud and
IoT systems (Ardagna et al., 2015; Baldini et al.,
2016), introducing new frameworks addressing pecu-
liar requirements such as scalability, multi-layer eval-
uation, and continuous monitoring. Although they
provide outstanding benefits on the perceived trust,
they lack of generality and cannot be easily adapted to
current scenarios, where different services deployed
on hybrid public and private infrastructures are com-
posed at run time. Many of these solutions are in
fact ad hoc (Cheah et al., 2018; Elsayed and Zulk-
ernine, 2018), meaning they cannot handle a modern
IT system as a whole. Moreover, existing assurance
techniques, and corresponding frameworks, require
some effort for being integrated with the target sys-
tem, interfering with its normal operation (e.g., per-
formance), and introducing not-negligible (monetary
and business) costs.

98
Anisetti, M., Ardagna, C., Bena, N. and Damiani, E.
Stay Thrifty, Stay Secure: A VPN-based Assurance Framework for Hybrid Systems.
DOI: 10.5220/0009822600980109
In Proceedings of the 17th International Joint Conference on e-Business and Telecommunications (ICETE 2020) - SECRYPT, pages 98-109
ISBN: 978-989-758-446-6
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



In this paper, we aim to fill in these gaps by
proposing a new assurance framework enabling a cen-
tralized security assurance targeting both public and
private infrastructures, including public and private
cloud as well as traditional private systems. It im-
plements an assurance process that relies on a Virtual
Private Network (VPN)-based solution for a smooth
integration with the target system, minimizing the in-
terferences of the framework on the target system
functioning. Our contribution is threefold. We first
define the requirements a security assurance frame-
work and corresponding process have to fulfill in
our scenario made of hybrid systems. We then pro-
pose a novel VPN-based assurance framework and
corresponding process addressing these requirements.
To this aim, we introduce several modifications to a
standard VPN configuration, including the so-called
Server-side NAT, Client-side NAT, and a custom pro-
tocol to resolve conflicts between the networks in the
VPN. We finally propose an experimental evaluation
of our framework and comparison with the state of the
art according to the identified requirements.

The remaining of this paper is organized as fol-
lows. Section 2 defines an assurance process and
identifies the requirements it has to fulfill. Section 3
presents our assurance framework. Section 4 de-
scribes the VPN-based approach at the basis of our
assurance process in Section 5. Section 6 presents
an experimental evaluation of the framework perfor-
mance in a simulated scenario. Section 7 proposes a
comparison with the state of the art according to the
identified requirements. Section 8 draws our final re-
marks.

2 ASSURANCE REQUIREMENTS

The advent and success of cloud computing and Inter-
net of Things (IoT) are radically changing the shape
of distributed systems. Hybrid systems, building on
both private and public technologies, introduce new
requirements and challenges on security assurance
techniques, which must take a step forward for be-
ing applicable to modern architectures. In particular,
the definition of new assurance processes is crucial
to fill in the lack of trustworthiness that is one of the
main hurdles against the widespread diffusion of such
systems.

Despite targeting complex systems, a security as-
surance process should be lightweight and not in-
terfere with the normal operation of the system un-
der verification. The need of a lightweight process
is strictly connected to its psychological acceptabil-
ity (Saltzer and Schroeder, 1975), meaning that final

users are more willing to accept to perform assur-
ance activities that preserve the behavior of the sys-
tem and do not increase overall costs. In fact, al-
though the undebatable advantages given by a con-
tinuous evaluation of system security, users are recal-
citrant with respect to a process perceived as heavy
and costly (West, 2008).

Cost management and optimization are the foun-
dation of assurance adoption. Costs refer to monetary
costs in terms of additional human and IT resources,
as well as performance and business costs in terms
of overhead, latency, and reliability. Monetary costs
include the need of highly specialized personnel, on
one side, and resources allocated and paid on demand
on the other side, which are spent to manage non-
functional aspects of the system often considered as
superfluous. Performance costs include the need of
continuously verifying the security status of a system.
They intrinsically introduce a not-negligible overhead
and latency, an assurance process has to cope with.
Assessment activities are only viable if they take re-
source demands under control, avoiding scenarios in
which they become a source of attack. Business costs
are partially overlapped with performance costs and
model how much assurance activities interfere with
the normal operations of a business process. On one
side, changes required to the system to connect an as-
surance process should be reduced to the minimum,
and mostly work at the interface level. On the other
side, an assurance process cannot threat itself the sys-
tem. For example, run-time verification of a system
security status cannot increase the risk of system un-
availability by performing penetration testing on the
production system. A good balance between active
and passive testing/monitoring should be provided.

We identify the main requirements an assurance
process has to satisfy (MUST/SHOULD) to address
the peculiarities of modern systems, as follows.

Transparency: it MUST not interfere with the nor-
mal operation of the business processes, being
transparent to the final user of the system where
the assurance process is performed.

Non-invasivess: it MUST require the least possible
set of changes to the target system.

Safety: it MUST not introduce (or at least minimize)
new risks on the target system.

Continuity: it SHOULD provide a continuous pro-
cess, verifying the status of security while the sys-
tem is operating and evolving.

Lightness: it SHOULD be lightweight and cope with
systems having limited resources.

Adaptivity: it SHOULD be dynamic and incremen-

Stay Thrifty, Stay Secure: A VPN-based Assurance Framework for Hybrid Systems

99



tal to adapt to changes in the system under verifi-
cation and its environment.
Such requirements should be supported by a cen-

tralized framework tuning each aspect of the assur-
ance evaluation. The framework itself has its own
requirements (Anisetti et al., 2016), which are sum-
marized in the following.
Evidence-based Verification: it SHOULD imple-

ment a verification built on evidence collected on
the target system, to get the real picture of its se-
curity status.

Extensibility: it MUST inspect hybrid targets, from
traditional private networks to public clouds, as
well as hybrid clouds and IoT.

Multi-layer: it SHOULD assess system security
at different layers, from network protocols to
application-level services.

Scalability: it SHOULD support a scalable process,
able to manage an increasing number of assurance
processes and evaluations.
Generally speaking, an assurance framework

MUST at least implement a process that has the low-
est possible impact on the target resources and nor-
mal system activities (transparency), do not modify
the current ICT infrastructure or at least require very
few modifications (non-invasiveness), do not affect
security by introducing new risks (safety), while be-
ing generic enough to address peculiarities of hybrid
systems (extensibility).

3 ASSURANCE FRAMEWORK

We extend our assurance framework in (Anisetti et al.,
2018), designed for the assessment of cloud systems,
to satisfy the requirements in Section 2 and address
the peculiarities of modern environments. The frame-
work in (Anisetti et al., 2018), in fact, does not fully
satisfy property extensibility and needs to be modi-
fied to target those private deployments not directly
reachable from the outside (e.g., traditional private
corporate networks and private clouds). The sim-
plest solution of moving assurance controls to the
private network, directly connecting them to the tar-
get system, is not viable because it would cause
the violation of different requirements in Section 2.
For instance, it would affect properties transparency
and non-invasiveness, since one or more backdoors
should be coded in the target system, also affecting
property safety. It would also interfere with property
adaptivity constraining the ability of adapting the pro-
cess to changes in the system. It would also increase
costs, violating property lightness.

The framework in this paper aims to provide a
lightweight solution based on Virtual Private Network
(VPN) that embraces peculiarities of distributed sys-
tems, including cloud, microservices, and traditional
private networks. In particular, it adopts a layer-3
VPN that connects the framework with the private
deployments under verification (i.e., the target net-
works).

The architecture of the new assurance framework
is presented in Figure 1, adding three components to
the one in (Anisetti et al., 2018): VPN Server, VPN
Client, and VPN Manager. In a nutshell, different
VPN Servers are installed within the framework, each
one responsible to handle isolated VPN tunnels with
client devices placed in the target networks. A sin-
gle VPN connection consists of a VPN Client directly
connected to the target network, and a VPN Server in-
stalled in the framework. The framework manages
an assurance process (Section 5) that consists of a
set of evaluation rules (evaluations in the following).
Each evaluation is a Boolean expression of test cases,
which are evaluated on the basis of the evidence col-
lected by probes and meta-probes. Probes are self-
contained test scripts that assess the status of the given
target by collecting relevant evidence on its behavior.
They return as output a Boolean result indicating the
success or failure of the test case. Meta probes are de-
fined as probes collecting meta-information, such as
the response time of a service. The framework com-
ponents are summarized in the following.

Execution Manager manages the assurance pro-
cess. Upon receiving an evaluation request, it se-
lects the relevant probes and executes them. There
are two types of Execution Managers: one tar-
geting public clouds (Public Execution Manager),
and one targeting private deployments (Private
Execution Manager). The only difference be-
tween them is the way in which traffic is routed
to the destination.

Evidence Analyzer produces the overall result of an
evaluation by collecting the results of the single
test cases composing the evaluation, and validat-
ing them against the Boolean expression of the
evaluation.

Evidence Database stores the results of probe exe-
cution, including both the collected evidence and
the Boolean results.

Dashboard is the user interface used to configure
new evaluations and access their results.

VPN Server is a dedicated VM running the VPN
software. It handles several VPN tunnels, one for
each private network, which are strictly isolated.

SECRYPT 2020 - 17th International Conference on Security and Cryptography

100



DashboardEvidence Analyzer Evidence DB

Private Execution
Manager

Public Execution
Manager

Private network

Private target

Target service

Target
platform

Public
cloud

Public
cloud

Cloud API

VPN

Cloud API

(Meta)-
Probe

(Meta)-
Probe

VPN Manager

VPN Server VPN Client

Figure 1: Our framework architecture. Double line rectangles highlight new components.

It acts as a default gateway for multiple Private
Execution Managers.

VPN Client is physically located into the target net-
work. It establishes a VPN connection with the
VPN Server in the framework, traversing the fire-
wall protecting the private network.

VPN Manager is a REST API service that manages
the automatic configuration of the VPN. It auto-
matically generates configuration files and han-
dles all activities needed to manage VPN connec-
tions.

VPN Client and VPN Server are the stubs mediat-
ing the communication between the target system and
the framework, respectively. They act as intermedi-
aries supporting protocol translation and VPN work-
ing, and interacting with the VPN Manager for the
channel configuration.

Example 3.1 Let us consider an assurance evalua-
tion targeting a public website composed of two test
cases chained with a logic AND: i) a test case eval-
uating compliance against Mozilla best practices for
websites and ii) a test case evaluating the proper con-
figuration of HTTPS. The Execution Manager man-
ages the assurance process as follows. Two probes
are executed to collect the evidence needed to evalu-
ate the two test cases, producing two Boolean results.
Those results are then evaluated by the Evidence Ana-
lyzer according to the evaluation formula, a conjunc-
tion (AND) of test cases i) and ii). As such, the overall
evaluation is successful if and only if both test cases
succeed.

4 VPN-BASED METHODOLOGY

The assurance methodology implemented by the
framework in Figure 1 builds on Virtual Private Net-
work (VPN) to address the must-have requirements
(i.e., transparency, non-invasiveness, safety, and ex-
tensibility) in Section 2. The goal is to provide
a VPN-based solution that smoothly integrates our
framework with the target system. In the following
of this section, we briefly present the basis of VPN
and discuss the reasons why it cannot be used as is to
achieve our requirements; we then describe our VPN-
based solution and how it differentiates from a com-
mon VPN configuration.

4.1 VPN in a Nutshell

Virtual Private Network (VPN) stands for a set of
technologies used to build overlay networks over
the public network. It provides hosts with remote
access to a corporate network, or connects several
geographically-distributed networks like they are sep-
arated by one router (Alshalan et al., 2016).

In this paper, we focus on Site-to-Site VPN, where
several networks are connected using the VPN –
rather than connecting one single host with a remote
network. Usually there is one host per network con-
nected to the VPN that acts as a VPN gateway, me-
diating traffic between internal hosts within its net-
work and other networks. It routes traffic coming
from internal hosts to the other VPN gateways and
back. VPN gateways are called either VPN clients or
VPN servers, where servers can handle connections
to multiple clients, while a client establishes a single
tunnel with a server.

Stay Thrifty, Stay Secure: A VPN-based Assurance Framework for Hybrid Systems

101



Private network

Private target
(host)

Private target
(private
cloud)

VPN Server

VPN
Client

Gateway

VPN

VPN Manager

Framework

Figure 2: Architecture of VPN-Based Solution.

VPNs usually combine a virtual network interface
card (virtual NIC) and a socket-like connection. A
virtual NIC is a NIC that has no physical correspon-
dence, and is associated with a userspace process –
in this case the VPN software. Packets sent by such
process to its virtual NIC are received by the oper-
ating system (OS), and further processed just like a
real network packet. At the same time, the OS can
send packets to it, and the VPN software, through its
NIC, will be the receiver. The socket-like connection
is used to transmit packets between VPN gateways us-
ing a cryptographic VPN protocol. The virtual NIC
is used to send and receive packets coming from and
whose destination is the host’s network.

Virtual NICs of the same VPN have IP addresses
belonging to the same subnet, called VPN subnet.
When the operating system of the VPN gateway han-
dles a packet whose destination is a host in the VPN
subnet, it sends the packet to the local virtual NIC,
like a normal routing operation. Two sets of routing
rules have to be defined: i) on each network, a rule on
the default gateway that specifies to route traffic for
other networks to the local VPN gateway; ii) on each
VPN gateway, a rule that specifies to route traffic for
other networks to the local virtual NIC.

Our final goal is to realize a Site-to-Site VPN be-
tween the framework and the private targets. How-
ever, a traditional VPN implementation does not per-
mit to address many of the requirements in Section 2.
The aforementioned routing rules, in fact, must be
installed on both sides of the communication. Set-
ting up these routes on the targets’ default gateways
requires access to the devices to alter their config-
urations. This violates properties non-invasiveness,
transparency, and safety. Our approach avoids this,
by adding several configurations on top of a standard
VPN setup.

4.2 VPN-based Solution

Figure 2 presents the VPN-based solution at the ba-
sis of our assurance framework. This solution is
composed of two main parts: i) the mapping be-
tween the assurance framework and the private target

(framework-to-system mapping), ii) the management
of IP conflicts between the framework network and
the private networks (conflict-resolution protocol).

4.2.1 Framework-to-System Mapping

The mapping between the assurance framework and
the private target builds on two components: VPN
Client and VPN Server.

VPN Client establishes a VPN connection with the
server, exposing its network to the framework. It re-
alizes a Client-side NAT that avoids setting up routing
rules on the target network. The issue is that packets
generated by the framework and injected by the VPN
Client into the target network have a source IP address
belonging to the framework network. As such, re-
sponses to such packets would be routed to the target
network default gateway (because they appertain to a
different network than the current one) instead of the
VPN Client. To address this, we propose a lightweight
approach based on network address translation (NAT),
which does not require to configure default gateways.
Once packets are received by the VPN Client from the
framework through the VPN, it translates their source
IP address in the VPN Client IP address. Since this be-
longs to the same subnet of the target hosts, no routes
need to be configured. Responses can directly reach
the VPN Client, where the destination IP address of
the packets is translated back. We implemented this
address translation with nftables, available in Linux-
based operating systems.

VPN Server handles VPN tunnels with several
clients; each tunnel is isolated to each other. It imple-
ments a Server-side NAT, to provide higher dynam-
ics. There are two problems behind Server-side NAT,
both involving routing configuration. On one side,
VPN Clients need to know the network IP address
of the framework (Section 4.1), on the other side,
these routes must be known a priori, an assumption
not trivial in our scenario. The network IP address
of the framework, in fact, can change, for example,
if the framework moves to a different cloud provider
or for security reasons. We address the aforemen-
tioned problems by setting up different NAT rules on

SECRYPT 2020 - 17th International Conference on Security and Cryptography

102



INPUT
s ∈ S: VPN Server
nO: network to map

OUTPUT
nM : mapped version of nO

MAP NET
available nets← db query select(s);
if length(available nets) != 0 then

pair← 〈available nets[0], nO〉;
db query insert(pair);

else Error();
return pair;

INPUT
nO. j: j-th IP address ∈ network nO

OUTPUT
nM . j: j-th corresponding

IP address ∈ network nM

MAP IP
nO ← net id(nO. j);
host id← host id(nO, nO. j);
nM ← get corresponding net(nO);
nM . j← build address(nM , host id);
return nM . j;

INPUT
nM .k: k-th IP address ∈ network nM

OUTPUT
nO.k: k-th corresponding

IP address ∈ network nO

REMAP IP
nM ← net id(nM .k);
host id← host id(nM , nM .k);
nO ← get corresponding net(nM);
nO.k← build address(nO, host id);
return nO.k;

Figure 3: IP Mapping: Pseudocode.

the VPN Server. They modify packets coming from
the framework just before being received by the vir-
tual NIC of the VPN software. These rules change
the source IP address of packets by replacing it with
the virtual NIC IP address of the server. Thus, packets
received by a VPN Client have a source IP address be-
longing to the current VPN subnet. Then, correspond-
ing responses generated by the target hosts, after the
application of Client-side NAT, have a destination IP
address appertaining to the VPN subnet. Recalling
that a VPN Client knows how to handle packets gen-
erated – or appearing to be generated – directly from
the VPN subnet, the VPN Client OS can route those
packets to the local virtual NIC, without additional
configurations. They are then received by the VPN
software and finally sent to the server. Server-side
NAT is implemented as a set of nftables rules on the
VPN Servers.

4.2.2 Conflict-resolution Protocol

A mandatory requirement for a Site-to-Site VPN is
that the network IP addresses of each participating
network must be non-conflicting. Guaranteeing this
assumption is necessary to allow a single VPN server
to connect multiple networks together – in our case
to allow a single VPN Server to handle several tar-
get networks. In corporate VPNs, it is trivial to assert
this property, since the networks are under the con-
trol of the same organization. This assumption is not
valid in our scenario, where two target networks could
have the same network IP address, or a target network
could conflict with the framework one. We propose
an approach called IP Mapping to solve this issue.

IP Mapping is based on the the concept of map-
ping the original network to a new one, called mapped
network and guaranteed to be unique. Each IP ad-
dress of the original network is translated into a new

one, belonging to the corresponding mapped net-
work. This translation is reversible, and the mapped
address is specified by the framework as the target
when executing a new evaluation. IP Mapping is re-
alized through three functions whose pseudocode is
described in Figure 3. The overall protocol is com-
pletely transparent to the final user and works as fol-
lows. For simplicity, we consider an evaluation com-
posed of a single test case.

First, when a new target network is being regis-
tered, the function map net is invoked by the frame-
work, to obtain a non-conflicting version of the orig-
inal target network. The pair 〈original, mapped〉
is saved into the database. This function is offered
through a REST API by VPN Manager.

When a user issues a new evaluation, it enters
the original target IP address. The framework calls
map ip to obtain its mapped version, and builds the
corresponding test case using this IP address as des-
tination. The test packets are then sent through the
VPN. Function map ip is offered by VPN Manager.

The VPN Client receives the packets and calls
remap ip to get the original version of the destina-
tion IP address of the packets. This address is then set
as the destination address: packets can now be sent to
the target.

When corresponding responses reach back the
VPN Client, the latter invokes map ip to obtain the
mapped version of the current IP source address; the
result is set as the new IP source address. This sec-
ond translation is issued in order to re-apply IP Map-
ping and let packets becoming correct responses to
the ones generated by the framework. Finally, they
are sent along the VPN and reach the framework.

Functions map ip and remap ip are implemented
by a set of NAT rules using nftables.

The soundness of the overall VPN setup passes
from IP Mapping, which, using the terminology in

Stay Thrifty, Stay Secure: A VPN-based Assurance Framework for Hybrid Systems

103



Table 1: Comparison of a standard layer-3 VPN and a layer-3 VPN with our modifications on top.

Standard layer-3 VPN Our approach
Client-side requiring configuration Yes No (Client-side NAT)
Server network known a priori Yes No (Server-side NAT)
Conflicting networks Not allowed Allowed (IP Mapping)
Address conflict resolution Manual Automatic (VPN Manager)
Plug-and-play integration No Yes

Figure 3, must support the following properties.

1. Mapping uniqueness: let A ⊆ nM × S; ∀ ai, a j ∈
A, (ai.s = a j.s ∧ ai 6= a j)⇒ (ai.n 6= a j.n)

2. Mapping correctness: ∀ nO ∀ address
∈ nO remap ip(map ip(address)) =
map ip(address)−1

3. Implementation correspondence: ∀ nO, ∀ address
∈ nO, map ip′(address) = map ip′′(address)

The first property expresses that no conflicts can
happen, that is, two mapped networks with the same
network IP address attached to the same VPN Server
cannot exist. The second property expresses the re-
versibility of the translation process. It guarantees
that a response to mapped packets generated by the
framework is correct, that is, the source IP address of
a response is equal to the destination IP address of a
request. The third property expresses the need of hav-
ing two implementations of map ip (as a REST API
or NAT rule) with the same behavior. We note that
the pseudocode shown in Figure 3 is a possible im-
plementation of the three functions.

Table 1 summarizes the differences between a
standard VPN and the one described in this paper.
Our solution does not require any configurations on
the target network, thanks to Client-side NAT; it also
does not require to know the network IP address of
the framework, thanks to Server-side NAT. Moreover,
the networks participating in the VPN can have con-
flicting IP addresses, which are automatically disam-
biguated by IP Mapping and VPN Manager. To con-
clude, our solution allows a plug-and-play integration
between the framework and the target network.

5 ASSURANCE PROCESS

The overall assurance process is composed of three
phases: i) connection setup, ii) assurance request
(Figure 4(a)), iii) assurance response (Figure 4(b)).
We note that, in Figure 4, we denote Mapped Address
and Original Address as MA and OA, respectively.

Connection Setup. It starts with the user register-
ing the net ID of a new network in the framework.

The framework calls the REST API map net and re-
trieves the mapped version of the input network. As
described in Section 4.2.2, this mapping is stored in
the framework database and triggers the creation of
a new VPN Client. VPN Manager also configures
VPN Server to support connections from that client.
The client device is then moved into the correct loca-
tion and connected to the server. For the sake of dis-
cussion, we consider the following sample network
configuration: framework net ID 192.168.1.0/24,
target net ID 192.168.50.0/24, mapped target net
ID 192.168.200.0/24, and VPN subnet net ID
10.7.0.0/24; we also consider an evaluation with a
single test case.

Assurance Request. The assurance request in Fig-
ure 4(a) starts with the user submitting an evaluation
request to the framework (Step (1) in Figure 4(a)),
specifying the IP address of the target
(192.168.50.100 in our example). The frame-
work then calls the VPN Manager REST API map ip
(Step (2)), obtaining the mapped version of target ad-
dress (192.168.200.100). Private Execution Man-
ager executes the probe corresponding to the re-
quested test case against the mapped IP address. The
packets generated by the probe are then sent to the
VPN Server. Upon receiving them, VPN Server ap-
plies Server-side NAT (Step (3)), which changes the
source IP address of the packets to its virtual NIC
address (10.7.0.1). Modified packets are then sent
through the VPN, finally reaching VPN Client. At
this point, VPN Client executes function remap ip
(Step (4)), which replaces the destination IP address
of the packets with their original version. It then ap-
plies Client-side NAT (Step (5)), which changes the
source IP address from the VPN Server virtual NIC
address to its IP address (192.168.50.30). Finally,
test packets reach their target.

Assurance Response. The assurance response pro-
cess in Figure 4(b) starts when the test target sends
back response packets to the VPN Client. This phase
applies the assurance request steps in the reverse or-
der, to correctly forward responses to the probe. VPN
Client first executes the reverse of Client-side NAT,
by replacing the destination IP address of the pack-
ets with the VPN Server virtual NIC (Step (1) in Fig-

SECRYPT 2020 - 17th International Conference on Security and Cryptography

104



Framework network: 192.168.1.0/24
Target network: 192.168.50.0/24

Mapped target network: 192.168.200.0/24
VPN subnet: 10.7.0.0/24

Execution Manager
192.168.1.25

IP PACKET
SRC:192.168.1.25

DST:192.168.200.100

NEW TEST
TO: 192.168.50.100

NEW TEST
TO: 192.168.200.100

(2) map_ip(192.168.50.100)

IP PACKET
SRC:10.7.0.1

DST:192.168.200.100

(1) Test creation

IP PACKET
SRC:10.7.0.1

DST:192.168.200.100

IP PACKET
SRC:10.7.0.1

DST:192.168.50.100

IP PACKET
SRC:192.168.50.30
DST:192.168.50.100

TEST TARGET
OA: 192.168.50.100

MA: 192.168.200.100

192.168.1.30
Virtual NIC: 10.7.0.1

(4)remap_ip(192.168.200.100)(5)client-side NAT

Target network

Framework network
(3) server-side NAT

VPN Server

VPN Client

OA: 192.168.50.30, MA:192.168.200.30, Virtual NIC: 10.7.0.2 

(a) Assurance request

Execution Manager
192.168.1.25

IP PACKET
SRC:192.168.200.100

DST:192.168.1.25

IP PACKET
SRC:192.168.200.100

DST: 192.168.1.25

IP PACKET
SRC:192.168.200.100

DST:10.7.0.1

IP PACKET
SRC:192.168.50.100

DST:10.7.0.1

IP PACKET
SRC:192.168.50.100
DST:192.168.50.30

TEST TARGET
OA: 192.168.50.100

MA: 192.168.200.100

192.168.1.30
Virtual NIC: 10.7.0.1

(2)map_ip(192.168.50.100)(1)reverse client-
side NAT

Target network

Framework network
(3) reverse server-side

NAT

VPN Server

VPN Client

OA: 192.168.50.30, MA: 192.168.200.30, Virtual NIC: 10.7.0.2 

(4) evaluate, save
and show results

(b) Assurance response

Figure 4: Packet flow: (a) assurance request, (b) assurance response.

ure 4(b)). It then applies map ip to change the source
IP address (192.168.50.100) with the correspond-
ing mapped version (192.168.200.100) (Step (2)).
Next, packets are forwarded to the VPN Server. Upon
their reception, VPN Server applies the reverse of
Server-side NAT (Step (3)). This step changes the des-
tination address of the packets from the address of the
VPN Server virtual NIC (10.7.0.1) to the address
of the Execution Manager (192.168.1.25). Finally,
packets reach the probe, and results are evaluated and
stored (Step (4)).

It is important to note that the involvement of users
in this process is very limited; users need only to pro-
vide the IP address of the target. The framework then
manages IP Mapping and performs every step in a

transparent way, guaranteeing transparency and non-
invasiveness of the process, avoiding any configura-
tions on the target system.

6 EXPERIMENTAL EVALUATION

We provide a performance evaluation of our frame-
work and corresponding assurance process.

6.1 Settings

Our framework has been realized on top of Open-
VPN, a flexible and open-source VPN solution that

Stay Thrifty, Stay Secure: A VPN-based Assurance Framework for Hybrid Systems

105



permits to tune every aspect of a VPN tunnel. In par-
ticular, we configured a layer-3 VPN, using TCP as
the encapsulating protocol, to maximize the probabil-
ity of traversing firewalls in the path from the frame-
work to the target system. Client-side NAT, Server-
side NAT and IP Mapping have been implemented
as NAT rules with nftables. Execution Manager and
VPN Server have been installed in two virtual ma-
chines (VMs) running the operating system CentOS 7
x64, both equipped with 1 CPU and 4 GBs of RAM.
VPN Server runs OpenVPN version 2.4.6 and nfta-
bles version 0.8. Both VMs have been deployed on a
Dell PowerEdge M360 physical host that features 16
CPUs Intel R© Xeon R© CPU E5-2620 v4 @ 2.10 GHz
and 191 GBs of RAM.

The target system has been deployed on AWS EC2
and was composed of two virtual machines t2.micro,
both with 1 vCPU and 1 GB of RAM. The first one,
VPN Client, with operating system Ubuntu 18.04 x64,
OpenVPN version 2.4.7, and nftables version 0.8. The
second one, test target, with operating system Ubuntu
16.04 x64 offering WordPress version 5.2.2.

We finally setup two experiments with the goal of
computing the overhead of our solution, which vary
the target system deployment: i) public deployment
exposing the target on the public network, ii) private
deployment using the approach in Section 4.2. We
run the same evaluations measuring the overhead our
approach adds on top of public deployment verifica-
tion.

6.2 Performance and Discussion

We executed the following evaluations against the two
deployments of the target system.

• Infowebsite that extracts as much information as
possible from a target website. It is denoted as E1
in Figure 5.

• Observatory-Compliance that checks whether a
website has implemented common best prac-
tices, such as HTTPS redirection and cross-site-
scripting countermeasures. It is denoted as E2 in
Figure 5.

• SSH-Compliance that checks the compliance of
a SSH configuration against Mozilla SSH guide-
lines. It is denoted as E3 in Figure 5.

• TLS-strength that evaluates whether the TLS
channel has been properly configured, such as
avoiding weak ciphers and older versions of the
protocol. It is denoted as E4 in Figure 5.

• WordPress-scan that scans the target WordPress-
based website looking for WordPress-specific vul-
nerabilities. It is denoted as E5 in Figure 5.

 0

 2

 4

 6

 8

 10

 12

 14

E1 E2 E3 E4 E5

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
)

Evaluation

Public Target
Private Target

Figure 5: Execution times of evaluations E1 – Infowebsite,
E2 – Observatory-Compliance, E3 – SSH-Compliance, E4 –
TLS-strength, E5 – WordPress-scan.

We chose these evaluations to maximize test cov-
erage and diversity, from the evaluation of web re-
sources (Infowebsite, Observatory-Compliance), to
the evaluation of protocol configurations (SSH-
Compliance, TLS-strength) and specific applications
(WordPress-scan). Each evaluation was executed 10
times and the average time was computed. Figure 5
presents the average execution time of evaluations
E1–E5. It shows that, as expected, the execution time
in the private scenario is higher than the same in the
public scenario, with an overhead varying between
≈0.3s and 2s.

More in detail, evaluation E1 (Infowebsite) experi-
enced a very low overhead, less than a second. Eval-
uation E2 (Observatory-Compliance) experienced an
overhead of approximately 1 second. Evaluations
E3, E4 and E5 (SSH-Compliance, TLS-strength, Word-
Press-scan, resp.) experienced a higher overhead,
approximately 2 seconds, increasing execution time
from ≈2s to ≈4s for E3, from ≈8s to ≈10s for E4
and from ≈12s to ≈14s. Overall, the increase in the
execution time was globally under control, never ex-
ceeding 2 seconds. This overhead can be tolerated in
all scenarios supporting requirements in Section 2.

To conclude, there is a subtlety to consider when
an assurance process for hybrid systems is concerned:
the accuracy of the retrieved results. There could be
some cases in which the evidence collected by a probe
on a public endpoint is different from the one col-
lected by the same probe on a private endpoint. For
instance, evaluation E1 (Infowebsite), in the private
scenario, failed to discover the version of the target
WordPress website. This was due to a partial incom-
patibility between the probe implementation and our
VPN-based solution. Being our approach probe-inde-
pendent, this issue can be solved by refining the probe
associated with Infowebsite. In our experiments, eval-

SECRYPT 2020 - 17th International Conference on Security and Cryptography

106



Table 2: Comparison of frameworks for security assurance with the one in this paper.

References Transparency Non Invasiveness Safety Continuity Lightness Adaptivity
(Alcaraz Calero and Aguado, 2015) 3 ∼ ∼ 3 7 3
(Cheah et al., 2018) ∼ 7 ∼ 7 7 7
(Ciuffoletti, 2016) 3 ∼ 3 3 3 ∼
(De Chaves et al., 2011) ∼ ∼ 3 3 7 ∼
(Elsayed and Zulkernine, 2018) ∼ 3 ∼ 3 7 ∼
(Jahan et al., 2019) 7 7 ∼ 3 7 3
(Ouedraogo et al., 2010) 7 7 7 3 7 7
(Povedano-Molina et al., 2013) 3 ∼ 7 ∼ ∼ 7
(Wu and Marotta, 2013) 7 7 7 7 3 3
(Anisetti et al., 2018) 3 ∼ ∼ 3 ∼ ∼
This paper 3 3 ∼ 3 ∼ 3

(a) Process requirements

Reference Evidence-based verification Extensibility Multi-layer Scalability
(Alcaraz Calero and Aguado, 2015) ∼ 7 3 ∼
(Cheah et al., 2018) 3 7 ∼ 7
(Ciuffoletti, 2016) ∼ 7 ∼ 3
(De Chaves et al., 2011) ∼ ∼ ∼ ∼
(Elsayed and Zulkernine, 2018) ∼ 7 ∼ 3
(Jahan et al., 2019) 7 7 7 7
(Ouedraogo et al., 2010) 7 ∼ ∼ ∼
(Povedano-Molina et al., 2013) ∼ 7 3 3
(Wu and Marotta, 2013) 7 ∼ ∼ 7
(Anisetti et al., 2018) 3 7 3 ∼
This paper 3 ∼ 3 ∼

(b) Framework requirements

uation E1 was the only experiencing such problem,
while the other evaluations have been able to collect
the same evidence in both private and public deploy-
ments. We leave the analysis of this issue for our fu-
ture work.

7 COMPARISON WITH
EXISTING SOLUTIONS

Many solutions for security assurance have been pre-
sented in literature, moving from software-based sys-
tems (Herrmann, 2002) to service-based environ-
ments (Ardagna et al., 2015), providing certification,
compliance, and audit solutions based on testing and
monitoring. We analyzed the main assurance frame-
works and processes, which can be classified accord-
ing to the following categories: monitoring-based,
test-based and domain-specific. Table 2 provides a
comparison of these frameworks, including the one in
this paper, with respect to requirements in Section 2.

Monitoring-based Frameworks. (Aceto et al.,
2013) provided a comprehensive survey of assurance
solutions based on monitoring. They first consid-
ered property intrusiveness, which is similar to our
requirements transparency and non-invasiveness, and
found that many commercial monitoring tools do not

address such property. They then considered require-
ment lightness, because monitoring tends to be ex-
pensive in term of resource consumption. Two mon-
itoring frameworks have been presented in (Alcaraz
Calero and Aguado, 2015; De Chaves et al., 2011),
both building on monitoring tool Nagios. Due to the
intrinsic nature of monitoring, these frameworks can
easily satisfy the requirement continuity. Moreover,
the work in (Alcaraz Calero and Aguado, 2015) can
achieve a very good adaptivity and offers a monitor-
ing platform both for cloud providers and users. Nev-
ertheless, they require a significant effort in terms of
setting up the monitoring infrastructure and resources
for maintaining it, thus violating requirements non-
invasiveness and lightness. Framework in (De Chaves
et al., 2011) has also proven to suffer of extensibil-
ity and scalability issues (Taherizadeh et al., 2018).
(Povedano-Molina et al., 2013) described a monitor-
ing framework called DARGOS, built with scalabil-
ity and flexibility in mind. Being fully distributed, it
supports scalability and can be enriched with more
sensors. However, being specifically tailored for the
cloud, it cannot be easily adapted to other scenarios.
(Ciuffoletti, 2016) presented a novel approach, where
a simple, cloud-independent API-based solution has
been used to configure monitoring. Such cloud-ag-
nosticism is realized through an OCCI (Open Cloud
Computing Interface) extension, designed towards

Stay Thrifty, Stay Secure: A VPN-based Assurance Framework for Hybrid Systems

107



Monitoring-as-a-Service. The author also proposed
how the cloud providers should implement such func-
tionalities in their backends.

Test-based Frameworks. (Wu and Marotta, 2013)
presented a work-in-progress testing-based frame-
work that instruments client binaries to perform cloud
testing. The main issue is that binaries instrumen-
tation may not be always feasible, and might also
introduce undesired behavior in modified programs.
As such, the framework fails to satisfy requirements
transparency, non-invasiveness, and safety. (Oue-
draogo et al., 2010) presented a framework that uses
agents to perform security assurance, although agents
themselves need to be properly secured. (Green-
berg et al., 1998) claimed that, to protect hosts from
agent misuse or attacks, several techniques need to
be properly employed. Agents also pose a mainte-
nance problem: they have to be kept updated, and
things can only become worse as the number of
agents increases. Also, they introduce substantial
costs since they need to be physically installed on
each host/device to be assessed and coordinated, in-
troducing not-negligible network traffic. For these
reasons, the agent-based framework in (Ouedraogo
et al., 2010) does not satisfy requirements trans-
parency, non-invasiveness and safety. (Jahan et al.,
2019) discussed MAPE-SAC, a conceptual approach
for security assurance of self-adaptive systems, where
the system itself changes, and security requirements
must adapt to these changes. While it is not possi-
ble to completely evaluate our requirements due to
the lack of a real, implemented framework, MAPE-
SAC fulfills requirements adaptivity and continuity.
A different solution has been given in our work
in (Anisetti et al., 2018), where we described the
cloud-ready framework briefly summarized at the be-
ginning of Section 3. As already discussed, the pro-
posed approach is based on probes and meta-probes,
and fails to address requirements extensibility, non-
invasiveness, and partially, safety.

Domain-specific Frameworks. The most recent cat-
egory of assurance frameworks. (Elsayed and Zulk-
ernine, 2018) described a distributed framework for
monitoring cloud analytics applications, based on an-
alyzing logs produced by such applications. The
proposed approach requires very few configurations
at the cloud side, and can be offered through the
Security-as-a-Service paradigm. (Cheah et al., 2018)
considered the automotive world, where cases are
generated after evaluating the severity of threats.
Threats are found through threat modeling and con-
firmed with a penetration testing. The usage of pene-
tration testing violates requirement non-invasiveness.
Often, being tailored for a specific domain, solutions

in this category cannot claim property extensibility.

To conclude, the comparison in Table 2 shows
that the existing frameworks (and corresponding pro-
cesses) do not even come close to addressing the re-
quirements in Section 2. In general, existing solutions
mainly target continuous evaluation and multi-layer
infrastructures, as well as transparency and adaptiv-
ity, failing to achieve non-invasiveness, safety, light-
ness, and extensibility. The framework in this paper,
instead, provides a first boost in this direction ad-
dressing, at least partially all requirements in Table 2.
Following the comparison therein, this paper leaves
space for future work. We will first aim to extend our
framework towards Big Data and IoT environments,
further improving extensibility, lightness, and scala-
bility. We will also focus on strengthening the safety
of the framework and its components, for example the
Execution Manager that can easily become a single
point of failure/attack.

8 CONCLUSIONS

Security assurance is increasingly adopted as the solu-
tion to verify whether a distributed system holds some
security properties and behaves as expected. Cur-
rent approaches and, when available, frameworks of-
ten target a specific system lacking extensibility and
have a not-negligible impact on the functioning of the
system target of the verification. These issues rep-
resent big hurdles towards assurance adoption, espe-
cially when hybrid systems are considered. In this
paper, we presented a VPN-based assurance frame-
work that smoothly integrates with hybrid systems,
from private networks to public clouds. The frame-
work implemented an assurance process with limited
impact and costs on the target system, while provid-
ing a safe and scalable approach. The present work
leaves space for further work. First, our VPN-based
approach can be extended to increase extensibility, ad-
dressing more domains and their peculiarities (e.g.,
IoT). Second, it can be refined to increase the safety
of the framework and its core components (i.e., Exe-
cution Manager, VPN Server).

ACKNOWLEDGMENTS

Research supported, in parts, by EC H2020 Project
CONCORDIA GA 830927 and Università degli Studi
di Milano under the program “Piano sostegno alla
ricerca”.

SECRYPT 2020 - 17th International Conference on Security and Cryptography

108



REFERENCES

Aceto, G., Botta, A., de Donato, W., and Pescapè, A.
(2013). Cloud monitoring: A survey. Computer Net-
works, 57(9):2093 – 2115.

Alcaraz Calero, J. M. and Aguado, J. G. (2015). Monpaas:
An adaptive monitoring platformas a service for cloud
computing infrastructures and services. IEEE TSC,
8(1):65–78.

Alshalan, A., Pisharody, S., and Huang, D. (2016). A
survey of mobile vpn technologies. IEEE COMST,
18(2):1177–1196.

Anisetti, M., Ardagna, C., Damiani, E., and Gaudenzi, F.
(2016). A certification framework for cloud-based ser-
vices. In Proc. of ACM SAC, Pisa, Italy.

Anisetti, M., Ardagna, C., Damiani, E., and Gaudenzi, F.
(2017). A semi-automatic and trustworthy scheme for
continuous cloud service certification. IEEE TSC.

Anisetti, M., Ardagna, C., Damiani, E., Ioini, N. E., and
Gaudenzi, F. (2018). Modeling time, probability, and
configuration constraints for continuous cloud service
certification. Computers & Security, 72:234 – 254.

Ardagna, C., Asal, R., Damiani, E., and Vu, Q. (2015).
From security to assurance in the cloud: A survey.
ACM CSUR, 48(1):2:1–2:50.

Baldini, G., Skarmeta, A., Fourneret, E., Neisse, R., Leg-
eard, B., and Le Gall, F. (2016). Security certification
and labelling in internet of things. In 2016 IEEE 3rd
World Forum on Internet of Things (WF-IoT).

Cheah, M., Shaikh, S. A., Bryans, J., and Wooderson, P.
(2018). Building an automotive security assurance
case using systematic security evaluations. COSE,
77:360 – 379.

Ciuffoletti, A. (2016). Application level interface for a
cloud monitoring service. CS&I, 46:15 – 22.

De Chaves, S. A., Uriarte, R. B., and Westphall, C. B.
(2011). Toward an architecture for monitoring private
clouds. IEEE Comm. Mag., 49(12):130–137.

Elsayed, M. and Zulkernine, M. (2018). Towards security
monitoring for cloud analytic applications. In Proc. of
IEEE BigDataSecurity/HPSC/IDS 2018, Omaha, NE,
USA.

Greenberg, M. S., Byington, J. C., and Harper, D. G.
(1998). Mobile agents and security. IEEE Comm.
Mag., 36(7):76–85.

Herrmann, D. (2002). Using the Common Criteria for IT
security evaluation. Auerbach Publications.

Jahan, S., Marshall, A., and Gamble, R. (2018). Self-
adaptation strategies to maintain security assurance
cases. In Proc. of IEEE SASO 2018, Trento, Italy.

Jahan, S., Pasco, M., Gamble, R., McKinley, P., and Cheng,
B. (2019). Mape-sac: A framework to dynamically
manage security assurance cases. In Proc. of IEEE
FAS*W 2019.

Ouedraogo, M., Mouratidis, H., Khadraoui, D., and Dubois,
E. (2010). An agent-based system to support assur-
ance of security requirements. In Proc. of SSIRI 2010,
Singapore.

Povedano-Molina, J., Lopez-Vega, J. M., Lopez-Soler,
J. M., Corradi, A., and Foschini, L. (2013). Dargos: A
highly adaptable and scalable monitoring architecture
for multi-tenant clouds. FGCS, 29(8):2041–2056.

Saltzer, J. H. and Schroeder, M. D. (1975). The protection
of information in computer systems. Proceedings of
the IEEE, 63(9):1278–1308.

Taherizadeh, S., Jones, A. C., Taylor, I., Zhao, Z., and
Stankovski, V. (2018). Monitoring self-adaptive appli-
cations within edge computing frameworks: A state-
of-the-art review. JSS, 136:19 – 38.

Teigeler, H., Lins, S., and Sunyaev, A. (2017). Chicken
and egg problem: What drives cloud service providers
and certification authorities to adopt continuous ser-
vice certification? In Proc. of WISP 2017, Seoul,
South Korea.

West, R. (2008). The psychology of security. Commun.
ACM, 51(4):34–40.

Wu, C. and Marotta, S. (2013). Framework for assess-
ing cloud trustworthiness. In Proc. of IEEE CLOUD
2013, Santa Clara, CA, USA.

Stay Thrifty, Stay Secure: A VPN-based Assurance Framework for Hybrid Systems

109


