
Classification of Products in Retail using Partially Abbreviated 
Product Names Only 

Oliver Allweyer1, Christian Schorr2, Rolf Krieger2 and Andreas Mohr1 
1retailsolutions GmbH, Campus, Saarbruecken, Germany 

2Institute for Software Systems, Trier University of Applied Sciences, Environmental Campus Birkenfeld,  
Birkenfeld, Germany 

Keywords: Machine Learning, Automatic Product Classification, Product Data. 

Abstract: The management of product data in ERP systems is a big challenge for most retail companies. The reason lies 
in the large amount of data and its complexity.  There are companies having millions of product data records. 
Sometimes more than one thousand data records are created daily. Because data entry and maintenance 
processes are linked with considerable manual effort, costs - both in time and money - for data management 
are high. In many systems, the product name and product category must be specified before the product data 
can be entered manually. Based on the product category many default values are proposed to simplify the 
manual data entry process. Consequently, classification is essential for error-free and efficient data entry. In 
this paper, we show how to classify products automatically and compare different machine learning 
approaches to this end. In order to minimize the effort for the manual data entry and due to the severely limited 
length of the product name field the classification algorithms are based on shortened names of the products. 
In particular, we analyse the benefits of different pre-processing strategies and compare the quality of 
classification models on different hierarchy levels. Our results show that, even in this special case, machine 
learning can considerably simplify the process of data input. 

1 INTRODUCTION 

Product data is of central importance in retail 
companies. A product data record in a enterprise 
resource plannig (ERP) system consists of a large 
number of descriptive and process-controlling 
attributes. There are companies having millions of 
product data records.  Sometimes more than one 
thousand data records are created daily. Hence, the 
management of product data is associated with 
considerable effort and high costs and many 
companies do research for automating the data entry 
and maintenance. 

An essential step in the entry of product data in 
every ERP system - like in SAP for Retail for example 
- is the classification of the product which assigns the 
product to a product category. Correct classification 
has a decisive influence on data quality, the execution 
of follow-up business processes and on a seamless 
data exchange between business partners. There may 
even be health risks if a food product is missclassified 
in a group containing no allergens when in fact it does 
for example. 

In addition, many attributes of a product depend 
on its product category. Food products differ in many 
attributes from electronic devices, clothing from 
music instruments and beverages from body care 
products. Hence, it is of utmost importance to know 
the membership of a product to a specific category at 
the time of data entry. The very first step in this 
process is entering the product name, which is often 
abbreviated due to system limitations to a certain 
number of characters. Predicting the product 
classification at this step is a crucial time and cost 
saving task. In our application scenario the 
classification is done semi-automatically, meaning 
the user has to confirm the classification proposed by 
the algorithm. 

The categories and the hierarchical relations 
between them are defined by classification systems. 
A well-known product classification standard is the 
Global Product Classification (GPC) described in 
GS1 (2018). This standard defines a hierarchical 
classification system consisting of hundreds to 
thousands of product categories and is often used by 
retail companies. In many cases standard 
classification systems coexists with company-
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specific ones that have a similar number of categories 
and hierarchical levels. Consequently, consistent 
classification is a complex, time-consuming and 
error-prone task. Wrong product classification 
reduces data quality causing additional costs as 
mentioned above. Much research is undertaken to 
solve this problem using machine learning (Sun 
(2014), Cevahir (2016), Kozareva (2015)). 

The challenge of product data classification has 
multiple aspects. If a product is created in an ERP-
system and is not assigned to a category initially, the 
user has to decide to which category it should belong 
to. As explained before, this decision depends on 
different criteria like the set-up of the classification 
system in use, the nature of the product or certain 
business processes. Often, little information is 
available at the time of data entry. The information 
available depends on the business processes. In 
general, however, at least the product name is known. 
Usually, it is shortened to the number of characters 
permitted by the system during data entry. The main 
contribution of our paper is an analysis and discussion 
of the problem of classifying food products based on 
short product names using different approaches of 
machine learning. In our experiments the length of 
almost all product names is less than 36 characters.  

This paper is organised as follows: We start with 
a brief review of the related work for product 
classification based on machine learning and explain 
the differences to the classification problem 
considered in this paper. Section 3 describes the 
product data set that we use in our experiments and 
the structure of the hierarchical Global Product Data 
Classification (GPC). Subsequently, we present the 
results of a descriptive analysis of our data set. 
Section 4 describes our experimental results, 
introducing the feature engineering and related pre-
processing steps performed for the text attributes of 
our product data set. Then, we describe the 
experiments for analysing the impact of these pre-
processing steps on classification results. Afterwards 
we compare different machine learning algorithms 
for multi-class product classification at different 
hierarchical classification levels. Section 5 
summarizes our conclusions and suggests some 
avenues for further research. 

2 RELATED WORK 

In the following, we give an overview of current 
approaches to multi-class product classification.  
Most algorithms use the name of the products and 
their description. Sometimes additional text, 

categorical or numeric attributes or even product 
images are also considered. A recent and 
comprehensive comparison of classification 
algorithms for product data can be found in 
Chavaltada (2017). A framework for product 
description classification especially for e-commerce 
is suggested by Vandic (2018). In Yu (2012) the 
authors propose to separate the classification of 
products names from the classification of texts. They 
focus on the effects of text pre-processing on the 
classification of categories with less than 100 classes. 
Stemming and removing stopping words have a 
negative influence on the classification of product 
names and should not be used. Bigrams and feature 
transformation with a polynomial kernel work better 
for text classification than expected, probably due to 
the shorter length of product names compared to full 
texts. A similar problem is investigated by Shankar 
(2011). Two data sets with 21 and 24 categories of 
different vendors are classified using naïve Bayes and 
a bag-of-words model. The analysis of pre-processing 
steps shows that the removal of stopping words using 
the Porter stemmer and cleaning punctuation marks 
result in the biggest positive influence on accuracy. 
Lower-casing, stemming and the removal of numerals 
show no or negative influence. 

Several classification methods on a UNSPSC-
categorised data set of product descriptions are 
studied by Ding (2002). A naïve approach transforms 
both the product names and the descriptions of the 
UNSPSC categories into word vectors and computes 
the combination with the highest cosine similarity. A 
hierarchical classification approach using the 
UNSPSC categories leads to a significantly worse 
result, contrary to intuition. Cevahir and Murakami 
(2016) propose a classification model assigning 
products to one of 28.338 possible categories on a 
five-tier taxonomy using 172 million Japanese and 
English product names and descriptions. The model 
combines deep belief nets, deep auto-encoders and k-
Nearest Neighbour-classification (kNN). Yu (2018) 
also employs a hierarchical taxonomy and Deep 
Learning. They use fasttext to represent product 
names with 100-dimensional word embeddings based 
on bigrams and observe that any pre-processing like 
stemming, removing stopping words and extracting 
substantives has a negative impact on the 
classification results.  

An overview of short text classification can be 
found in Song (2014). The authors state the 
sparseness of short texts as a main challenge, making 
them difficult to standardize also due to spelling 
mistakes and noise. Their definition of short text 
includes online chat records, mobile short messages 
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Table 1: GPC Classification Hierarchy Levels. 

Hierarchy level Description Example 
Segment Industry segmentation or vertical Food, beverages, clothing 
Family Broad division of a segment Milk, butter, cream 
Class Group of like categories Milk, Milk substitutes 
Brick Categories of like products Milk (perishables) 

 

and news titles, all with up to 200 characters and 
following a certain grammatical and syntactical 
structure lacking in our product names and thus not 
applicable to our task. Kozareva (2015) has worked 
on product classification with Yahoo! product data. 
They compared several classifiers and 5 kinds of 
features, and showed that a neural network 
embedding representation performed best for their 
data with over 300 categories in their category 
taxonomy. Chen (2013) uses multi-class-SVM with a 
cost-sensitive function and 1073 categories from the 
UNSPSC taxonomy. To predict these categories over 
one million products with product name, description 
and manufacturer are utilized. Ha (2016) propose a 
deep learning-based strategy for product 
classification utilizing multiple recurrent neural 
networks (RNNs). Beside product names they use 
brand, manufacturer and the top level category among 
other attributes. Their data encompasses more than 94 
million products with 4016 low-level categories. The 
length of product names – which are in Korean 
characters - is not given in the paper. Sun (2014) 
suggests an interesting hybrid approach called 
Chimera. It uses a mixture of crowd outsourced 
manual classification, machine learning and data 
quality rules formulated by in-house analysts. They use 
it to classify several tens of millions of products into 
more than 5000 categories based on product name, 
product description and several other attributes. 

All these approaches share the assumption that 
both product names and product descriptions in more 
or less natural language are available. In our case, the 
classification has to be computed on very short and 
partially abbreviated product names without further 
detailed product descriptions. Consequently, we 
expect that models based on the exploitation of syntax 
and structure of natural language like most deep 
learning approaches are not suited for our task. 

3 PRODUCT DATA SET 

3.1 Product Data Specification 

Product data is modelled in different ways. Generally, 
a product is uniquely identified by its product ID and 

assigned to a product category of a multi-level 
hierarchy. Furthermore, there are many additional 
descriptive and process-related attributes. Mostly, 
product attributes are classified in ERP systems 
thematically. The basic data record of a product 
includes the product description, packaging units, 
dimensions, volumes, gross and net weights, hazardous 
substance codes etc. Logistic data include safety stock, 
service level, delivery time, etc. Purchasing and sales 
data include prices, minimum order quantities, delivery 
periods etc. These product attributes are referenced by 
many processes in purchasing, material requirements 
planning, inventory management and sales. The 
attributes that have to be maintained for a specific 
product item depend on its category mainly. 

Usually the classification of the product has to be 
done before the attribute of a specific product can be 
maintained. Especially in case of a manual data entry 
process the classification of a product should be done 
based on a minimal data input, e.g.  the product name. 
For that reason, we investigate different classification 
algorithms based on the product name as a single 
feature.  

3.2 Global Product Classification 

Beside company-specific classification systems there 
are general standards for product classification like 
eCl@ss, UNSPSC or eOTD as described by Hepp 
(2007). One such standard is the Global Product 
Classification (GPC) which is maintained by the GS1 
organization. It is used by 60.000 German companies 
and over 1.5 million companies world-wide. GPC is 
four-layer hierarchy consisting of segment, family, 
class  and  brick  codes to  describe  products as shown 
in Table 1. Every product can be assigned to exactly 
one brick which is uniquely identified by an 8 digit 
brick code. A brick identifies a category incorporat-
ing products “that serve a common purpose, are of a 
similar form and material, and share the same set of 
category attributes“ (GS (2018)). The product Farmer 
Milk 1,5% for example is assigned the brick Milk 
(Perishable) with code 10000025. This brick is 
situated in the GPC hierarchy below the class 
Milk/Milk Substitutes  which in turn is filed under the 
family Milk/Butter/Cream/Yogurts/Cheese/Eggs/  
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Table 2: Descriptive analysis of product name and tokens. 

 Min Q0.25 Median Q0.75 Max Mean 

Tokens per product name 1 3 4 5 18 4.42 

Product name length 4 24 28 31 61 27.74 

Token length 1 4 6 9 30 6.74 

 

Substitutes in the segment Milk/Butter/ 
Cream/Yogurts/ Cheese/Eggs/Substitutes. 

The GPC hierarchy and its underlying logic are 
intended to be conclusive and comprehensive. All 
products of the supply chain should be covered and 
the hierarchy should be as balanced as possible. In the 
brick category, products which can be described by 
the same attribute, are grouped by their physical 
nature. Their intended use should not be a grouping 
criterion. Their naming follows standardised 
conventions and definitions are formulated 
comprehensively. The GPC system in version 2018 
consists of 38 different segments, 118 families, 823 
classes and 4226 bricks. The bricks themselves may 
also have attributes in the GPC specification, but 
these are not considered in this paper. 

3.3 Data Set Statistics 

The data set we tested our algorithms on was provided 
by a major German retail company with over 1000 
stores throughout the country. It only contains 
products from the food sector with product name and 
additional textual and numeric attributes as well a the 
corresponding Global Product codes (GPC). Of 
further interest is the product brand which is given for 
9.8% of the data and the product description - a much 
more detailed and longer version of the product name 
- which is maintained for 21.3% of the data. This 
information is only used to generate a normalization 
dictionary as described in section 4.1, though. Prior 
to classification we conducted an explorative data 
analysis to determine necessary pre-processing steps. 
Our data set consists of product names with a length 
of 4 to 61 characters, as depicted in Figure 1. Most of 
the names encompass 20 to 36 characters with only a 
few deviant names with more. In our experiments we 
assume the separator symbols in our data set to be 
spaces. Splitting the product name into separate 
tokens, we see that most product names are made of 
2 to 7 tokens, as shown in Figure 2. This suggests that 
each product name is built of only a few words. 
Figure 3 depicts the distribution of the token length in 
characters. It varies between 1 and 30 characters with 
a typical length of 2 to 9 characters. Abbreviations are 

determined heuristically by using dots as signifiers. A 
representative sampling of our data set has shown this 
to be a sensible approach. As a result 21% of all 
product names contain one abbreviation. The nature 
of our product names means that there is no natural 
language as such to process, only agglomerations of 
partially abbreviated nouns without syntax or 
grammar. Therefore we assume that algorithms which 
 

 

Figure 1: Product name (text) length in characters. 

 

Figure 2: Tokens per product name (text). 

 

Figure 3: Token length in characters. 
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heavily exploit the structure of natural language as 
occurring in coherent sentences - like most deep 
learning approaches - are not suited to our data. The 
available data set exhibits an unbalanced distribution 
of products to categories, as can be seen in detail in 
Figure 3 and Table 3. Very small categories like 
Nuts/Seeds – Unprepared/Unprocessed (Perishable) 
with only 36 products are therefore excluded from 
classification, because the probability of predicting 
them correctly is tiny due to the miniscule amount of 
corresponding training data. A category is excluded if 
it contains less than 0.1% of the entries of the biggest 
category - in our data set 48 products. The choice of 
the 0.1% threshold was chosen based on the goal to 

exclude as few categories as possible with as few 
products as possible. This leads to the exclusion of 3 
GPC families containing only 82 of the entire 144.000 
products of the data set and is thus of no significant 
concern. 

4 EXPERIMENTS 

First, we introduce pre-processing algorithms and text 
representations (4.1) as well as the metrics and 
classification algorithms (4.2) we use in the 
subsequent experiments. We investigate the impact of  
 

 

Figure 4: Number of products per family level in final data set. 

Table 3: Product to hierarchy level distribution in final data set. 

 Min Q0.25 Median Q0.75 Max Mean
Products / family 17 239.25 1480 6776.25 48092 6557.77
Products / class 1 17.75 207.50 1170 28922 1442.71
Products / brick 1 6 37 228.50 13661 366.17

Table 4: Final data set size. 

Level Categories Test data Training data 
Family 19 9930 134256 
Class 72 10008 134067 
Brick 245 9829 133728 
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Table 5: Used machine learning algorithms and hyper-parameter settings. 

Algorithm Parameter 1 Parameter 2 Parameter 3 

Naïve Bayes alpha = 0.1 - - 
Single-Layer Perceptron alpha = 0.001 max_iter = 500 - 
Multi-Layer Perceptron alpha = 0.001 max_iter = 500 layer_size = 25
Logarithmic Regression alpha = 0.001 max_iter = 500 - 
Support Vector Machine C = 1.0 max_iter = 500 - 
Decision Tree max_depth = 1000 max_leaf_nodes = 1000 - 
Random Forest max_depth = 1000 max_leaf_nodes = 1000 n_estimators = 100

 

text pre-processing on classification quality (4.3). 
Then we use these results and classify the produc 
names according to GPC family with different 
classification algorithms and text-representations 
(section 4.4). Using the best model we subsequently 
predict all three hierarchy levels – family, class and 
brick code (section 4.5). 

4.1 Pre-processing and Representation 
of Text Attributes 

The product name and brand contain a high amount 
of information. It is often intuitively possible to 
assign a product to the correct category using only its 
name and brand. The baseline is given by the 
classification based on product names that are 
maintained for all data using Naïve Bayes. Texts can 
be represented in a multitude ways. We compare the 
bag-of-words representation and the TF-IDF (term 
frequency - inverse document frequency) developed 
by Jones (1972) with the Word2vec model by 
Mikolov (2013) and measure their impact on the 
classification. The impact of lower casing and the 
cleaning of interpunctions, numerals, special 
characters and umlauts is investigated in section 4.3. 
Using all cleaning steps the short description 
VEGETBL.M.MIREPOIX 2,5KG ONIO.DCD/- 
CEL.DCD/CAROT.DCD. is transformed to “vegetb 
m mirepoix kg onio dcd cel dcd carot dcd“ for 
example. 

Product names often contain abbreviations as 
already mentioned. To get a uniform representation a 
normalisation dictionary based on brand and product 
descriptions is required. In case of our data set, 
product descriptions are only available for 21.3% of 
the products. This means that for the majority of 
products, no direct correspondences between 
abbreviated product name and full product 
description are given. Since most abbreviations are 
not limited to a single product, normalisation is still 
possible, though. A simple approach is to assign the 
full brand name to each abbreviated token or to search 
for a corresponding description in the product 

description and use this pair as a dictionary entry. 
Depending on the specific abbreviation, multiple 
meanings are possible, though. The common German 
abbreviation gem. can represent gemahlen (ground), 
gemischt (mixed), Gemenge (mixture) or Gemüse 
(vegetables) for example. In order to differentiate 
between these cases, the context of the abbreviation 
has to be included. We implemented a method using 
3-grams to create the normalisation dictionary 
automatically. The result contains 24.807 entries with 
6.666 normalisations. 

4.2 Metrics and Algorithms 

In the case of imbalanced classes in a classification 
problem, special consideration has to be given to the 
choice of meaningful metrics. Accuracy is not a 
reasonable metric in this case. If there are two classes 
with a 98% to 2% ratio of members for example, a 
model predicting the prevalent class in every case 
would reach an impressive but meaningless accuracy 
of 98%. Precision, recall and especially the F1 score 
are better suited in this case. Since we consider a 
multi-class classification task with several thousand 
possible classes we compute micro- and macro-
averaged metrics and combine them into a weighted 
metric to measure the results of our algorithms. 
Micro-averaged methods sum up the individual true 
positives and true negatives for all different sets and 
then divide the sum by the total number of samples. 
This approach weights individual decisions equally, 
therefore large classes will dominate small ones. 
Macro-average methods, on the other hand, calculate 
the metrics separately for each class, and then average 
them to get a single number. Thus equal weight is 
given to every class, which measures the 
effectiveness on small classes. By using weighted 
metrics we can judge the performance of our 
algorithms for multi-class classification. We use the 
implementation of the Python library Scikit-Learn 
(2019) which defines the weighted metrics as follows: 

Be 𝑦 the set of predicted tuples (label,sample), 𝑦ො 
the set of true tuples (label,sample), L the set of all  
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Table 6: Results of classification (feature: product name / label: family code) depending on text pre-processing strategies, 
Naïve Bayes (NB), CV x5. 

Pre-processing algorithm PrWg PrMa ReWg ReMa F1Mi F1Wg F1Ma

no_text_preprocessing 0.918 0.766 0.920 0.627 0.920 0.918 0.656
conversion_to_lowercase 0.921 0.770 0.923 0.631 0.923 0.920 0.659
removal_specials 0.919 0.768 0.920 0.629 0.920 0.918 0.659
removal_umlauts 0.919 0.766 0.920 0.629 0.920 0.918 0.658
removal_numerals 0.916 0.761 0.918 0.629 0.918 0.915 0.658
lowercase_removal_specials 0.921 0.771 0.923 0.634 0.923 0.921 0.661 
lowercase_removal_specials_umlauts 0.921 0.768 0.923 0.634 0.923 0.921 0.661 
lowercase_removal_non_letters 0.919 0.767 0.921 0.633 0.921 0.919 0.661 
lowercase_removal_non_letters+normalize 0.918 0.764 0.919 0.632 0.919 0.917 0.659

 

labels and 𝑦௟  ⊆ 𝑦 with label 𝑙 ∈ 𝐿 and  𝑦௟ෝ ⊆ 𝑦ො with 
label 𝑙 ∈ 𝐿 . Then the weighted metric MWg (1) is 
defined as follows:  

𝑀ௐ௚ ൌ
ଵ

∑ |௬೗ෞ|೗∈ಽ
∑ |𝑦௟ෝ |௟∈௅ 𝑀ሺ𝑦௟, 𝑦௟ෝ ሻ             (1) 

Substituting the general metric M with the binary 
classification problem definition of precision, recall 
or F1 score leads to weighted versions PrWg, ReWg and  
F1Wg suitable for multi-class classification. 

All steps from data pre-processing to the 
evaluation of the classifiers are implemented in 
Python 3.6.6. Apart from the usual standard modules 
several specialized libraries are used: Pandas and 
NumPy for data processing and Scikit-Learn for the 
machine learning algorithms. The Scikit-Learn class 
Pipeline is used as a framework for the classification 
pipelines. It allows to encapsulate multiple 
transformers and one estimator in order to run all 
transformations on both training and test data 
automatically.  

We use several popular easy-to-use classification 
algorithms for the actual prediction. The baseline 
standard method is a simple Naïve Bayes estimator 
(NB) (Maron (1961)). In addition to logistic 
regression with stochastic gradient descent  
(SGD_log) (Taddy ( 2019)), support vector machines 
(SVM) (Cortes (1995)), a single-layer perceptron 
(Rosenblatt (1958)) (SLP) and a simple multi-layer 
perceptron with a hidden layer of 25 neurons (MLP) 
are tested on the data. Both a basic decision tree 
(Tree) as well as the ensemble method RandomForest 
(RandForest) (Ho (1995)) are also used for the 
classification. The choice of hyper-parameters for 
each algorithm was optimized using grid search. The 
resulting parameters are given in Table 5. We set 
aside 20% of our data set containing a balanced class 
representation for evaluation purposes and used the 
remaining data for training and testing to determine 
the best text pre-processing and classification 
algorithm combination. All computations were run 

with five-fold cross-validation (CV x5) using a 
stratified k-fold strategy after prior shuffling (Kohavi 
(1995)). Tests with finer partitioning did not improve 
the results significantly, increasing computation time 
only. 

4.3 Impact of Text Pre-Processing on 
Classification 

In order to determine the best text pre-processing 
strategy, several options and combinations thereof are 
compared. A useful overview can be found in Song 
(2005) or Uysal (2014). A common feature of text 
pre-processing is the removal of stop-words. Since 
our data does not consist of grammatically correct 
sentences but only of names, stop-words are not 
present and thus not considered. Likewise pre-
processing by stemming (Porter (1980)) is not 
applicable since no inflected verbs are contained in 
the data and many words are already abbreviated. 

The text is represented as a bag-of-words model 
consisting of unigrams. Metrics are computed on the 
classification of family code with a Naïve Bayes 
algorithm using only the product name as a feature. 
Other classification algorithms were not used because 
we want to focus on the text pre-processing first in 
order to reduce the number of possible pre-processing 
/ classification algorithm combinations in the actual 
experiments to a manageable level. We assume that 
the results of the pre-processing step analysis with 
Naïve Bayes are also valid for other classifiersWe 
consider the following pre-processing algorithms: 

 no_text_preprocessing: use of the original 
product names without any changes 

 conversion_to_lowercase: conversion of all 
uppercase to lowercase letters 

 removal_specials: remove all special characters   
 removal_ umlauts: remove all German umlauts 
 removal_numerals: remove all numerals  
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 lowercase_removal_specials_umlauts: 
lowercase and remove of all special characters 
and umlauts 

 lowercase_removal_non_letters: lowercase 
and remove of all non letters including umlauts 

 lowercase_removal_non_letters+normalize: a 
more sophisticated pre-processing strategy 
implementing the normalization dictionary 
introduced in section 4.1  

Our baseline is using the original product names 
without any changes. The best values for each metric 
are highlighted in bold script. The results in Table 6 
show almost no difference in quality regarding pre-
processing. Removing special characters (and 
umlauts) combined with the conversion to lowercase 
letters returns the highest weighted F1 score of 0.921. 
Normalization even minimally worsens the results 
compared to the baseline approach without pre-
processing. This can probably be explained by our 
heuristic normalization procedure and the quality of 
the normalization dictionary that was generated 
automatically. Adding more entries and checking 
them manually could improve the results but would 
require considerable effort due to the very large 
amount of possible abbreviations and varities thereof. 
The normalization method also eliminates numerals 
which has a detrimental effect on the classification 
quality. Hence, in the following experiments we make 
no use of the normalization procedure. Of note is the 

much lower macro F1 score in comparison with the 
weighted F1 score. This is caused by the imbalance of 
the data set which causes small categories with only a 
few products to be predicted less succesfully than large 
categories containing many products. Experiments in 
sections 4.4 and 4.5 confirm this discrepancy. 

4.4 Evaluation of Classification 
Algorithms 

To determine the best text representation method the 
bag-of-words (BoW) model is compared to the TF-
IDF representation and the Word2vec (Mikolov, 
2013) embedding. Different parameters were used for 
all three text representations. For bag-of-words and 
TD-IDF n-grams from (1,2) – using 1- and 2-grams - 
to (4,4) – using only 4-grams - were investigated. 
Regarding the distribution of tokens in Figure 1 with 
a typical token amount of at most 6 for the majority 
of products, we deemed 4-grams to be a reasonable 
upper limit. For the Word2vec representation we used 
dimensions 100, 200 and 300. Mikolov (2013) 
compared 50, 100, 300 and 600 and found only a very 
small difference between using 300 and 600 with a 
data set of 24 million words. Since our data set is 
significantly smaller we chose to set the upper limit 
at 300. The data was pre-processed by lower casing 
and removal of all special characters and umlauts, 
then classified on family level by different machine 
 

Table 7: Results of classification of products (feature: product name / label: family code) depending on machine learning 
algorithms, CV x5. 

Text Representation Algorithm PrWg PrMa ReWg ReMa F1Mi F1Wg F1Ma

BoW, ngrams=(1, 2) NB 0.927 0.829 0.928 0.623 0.928 0.926 0.665
TF-IDF, ngrams=(1, 2)  NB 0.918 0.687 0.920 0.516 0.920 0.913 0.554
Word2vec, dim=300  NB 0.676 0.385 0.672 0.381 0.672 0.667 0.369
BoW, ngrams=(1, 2)  SLP 0.934 0.657 0.917 0.684 0.917 0.925 0.648
TF-IDF, ngrams=(1, 2)  SLP 0.929 0.709 0.930 0.704 0.930 0.930 0.702
Word2vec, dim=300  SLP 0.761 0.523 0.721 0.430 0.721 0.709 0.433
BoW, ngrams=(1, 2) MLP 0.931 0.800 0.933 0.665 0.933 0.931 0.708
TF-IDF, ngrams=(1, 2) MLP 0.934 0.784 0.936 0.690 0.936 0.934 0.721
Word2vec, dim=300 MLP 0.807 0.579 0.813 0.468 0.813 0.806 0.492
BoW, ngrams=(1, 2)  SGD log  0.749 0.474 0.728 0.256 0.728 0.690 0.278
TF-IDF, ngrams=(1, 2)   SGD log  0.449 0.143 0.371 0.060 0.371 0.220 0.040
Word2vec, dim=300 SGD log  0.747 0.485 0.757 0.335 0.757 0.739 0.365
BoW, ngrams=(1, 2) SVM 0.933 0.797 0.935 0.697 0.938 0.934 0.734
TF-IDF, ngrams=(1, 2)  SVM 0.938 0.803 0.939 0.692 0.938 0.938 0.730
Word2vec, dim=300  SVM 0.779 0.609 0.787 0.444 0.791 0.776 0.482
BoW, ngrams=(1, 2) Tree 0.936 0.605 0.938 0.445 0.790 0.937 0.492
TF-IDF, ngrams=(1, 2)  Tree 0.936 0.596 0.938 0.446 0.788 0.936 0.487
Word2vec, dim=300  Tree 0.779 0.419 0.791 0.325 0.720 0.780 0.349
BoW, ngrams=(1, 2) RandForest 0.824 0.621 0.790 0.450 0.833 0.794 0.497
TF-IDF, ngrams=(1,2) RandForest 0.821 0.625 0.788 0.452 0.830 0.792 0.498
Word2vec, dim=300 RandForest 0.710 0.581 0.720 0.352 0.784 0.709 0.389
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Table 8: Classification of products (feature: product name / label: family, class and brick code), SVM with TF-IDF, 
ngrams=(1,2), CV x5. 

Label PrWg PrMa ReWg ReMa F1Wg F1Ma 
Family code 0.938 0.803 0.939 0.692 0.938 0.730 
Class code 0.911 0.697 0.914 0.602 0.912 0.631 
Brick code 0.860 0.664 0.865 0.545 0.860 0.580 

 

learning algorithms using only the product name as a 
feature. Entries with null values, meaning without 
product names, were not present in the data. 

The bag-of-words and TF-IDF representation do 
not differ perceptibly regarding the results. The 
impact of n-grams is likewise similar for most 
algorithms. Using intervals (1,2), (1,3) or (1,4) leads 
to the best results for both bag-of-words and TF-IDF. 
Omitting unigrams causes a significant reduction of 
prediction quality, though. To improve readability, 
only the figures for the n-gram choice of (1,2) giving 
the best results are displayed in Table 7. In general, 
the Word2vec embedding is worse than the bag-of-
words and TD-IDF. Using higher embedding 
dimensions increases the classification quality greatly. 
Again, only the parameter choice of 300 giving the best 
results is shown to improve readability.  

The results show that both linear and decision-tree 
based models perform better on simpler text 
representations than on Word2vec. In summary the 
model with the highest weighted F1 score of 0.938 
uses support vector machine algorithms combined 
with a TF-IDF model using uni- and bigrams. 

4.5 Classification on Different 
Hierarchical Levels 

After determining the best text representation strategy 
in section 4.3 and the highest scoring machine 
learning algorithm on family level in section 4.4 we 
now apply the resulting method combination on the 
lower hierarchy levels class and brick. We use the 
entire data set for training and testing with five-fold 
cross validation. Compared to the balanced validation 
data set used in sections 4.3 and 4.4, the full data set 
is partially unbalanced regarding the families and 
classes as shown in figure 3 and table 3.. As can be 
expected the metrics are decreasing with each 
hierarchy level as depicted in Table 8. The step from 
family to class level increases the possible codes from 
19 to 72 as can be seen in Table 4, reducing the 
weighted F1 score slightly by 0.026. On the lowest 
level there are 245 brick codes leading to a total 
decrease of 0.078 from the weighted F1 score of the 
family code level. 

5 DISCUSSION AND OUTLOOK 

As our experiments show, our approach leads to a 
model based on support vector machines which is 
able to classify the given company data set with 
weighted F1 scores of 0.860 on GPC brick, 0.912 on 
GPC class and 0.938 on family level. Further 
experiments not reported here have shown that if the 
top 3 prediction is considered - meaning that the 
correct GPC code is among the three predictions with 
the highest confidence - our model can achieve 95% 
precision on brick level (Allweyer (2019)). For text-
based classification a simple learning algorithm 
(SVM) with text representation (TF-IDF) was found 
to be better than more complex algorithms and 
representations. Lowercasing and removing special 
characters improves the result, while omitting 
numerals has a detrimental impact. Note that text pre-
processing has to be customer-specific, though. 
Separator and abbreviation symbols may differ or 
even overlap for other product data thus causing 
additional challenges. The greatest potential for 
increasing classification quality lies in using a bigger 
set of training data. In this paper the data set consists 
of about 150.000 products with a rather 
heterogeneous structure which is not much compared 
to most natural language processing approaches in 
literature. Special consideration should be paid to 
balancing categories regarding their member product 
amount. Extracting attributes from product names 
using named entity recognition and the impact of their 
use as additional features is another avenue of 
research which should be followed. Adding an 
improved abbreviation dictionary in order to expand 
abbreviations into full words could also help. 

For the embedding of an automated classifier in a 
retail environment, other factors such as training and 
test duration, memory demands, maintainability and 
interpretability are also aspects to consider. In order 
to provide a reliable and comprehensible software, 
the classifier should not be used as a black box but 
rather be integrated in a system containing a reference 
data base with verified products, a list of known 
exceptions and special cases and a quality monitor. 
Another point is the question which level of precision 
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the customer requires and whether omitting 
categories with only a few member products is 
acceptable. In order to investigate the real-world 
relevance more closely, we suggest using the model 
first in a semi-automated process where categories are 
proposed to the user. Based on the user decisions, the 
model can then be further optimized and the degree 
of automation can be increased. Apart from 
classifying new products, our approach can also be 
used for reclassification an already classified product 
data base into a different classification system. 

In summary, our results have shown that the 
classification of food products can be carried out 
during the initial product data generation step using 
only the product name. Standard algorithms are 
capable of achieving satisfying results without the 
need for hyper-specialized and difficult to optimize 
models. Our work can be extended to products from 
other segments like clothing or consumer electronics. 
Further research is needed to answer the question 
whether a model covering products from all segments 
is better than a compartmentalized approach with one 
separate model for each segment. 
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