
Quantum in the Cloud: Application Potentials and Research 

Opportunities 

Frank Leymann a, Johanna Barzen b, Michael Falkenthal c, Daniel Vietz d, Benjamin Weder e 

and Karoline Wild f 
Institute of Architecture of Application Systems, University of Stuttgart, Universitätsstr. 38, Stuttgart, Germany 

Keywords: Cloud Computing, Quantum Computing, Hybrid Applications. 

Abstract: Quantum computers are becoming real, and they have the inherent potential to significantly impact many 

application domains. We sketch the basics about programming quantum computers, showing that quantum 

programs are typically hybrid consisting of a mixture of classical parts and quantum parts. With the advent of 

quantum computers in the cloud, the cloud is a fine environment for performing quantum programs. The tool 

chain available for creating and running such programs is sketched. As an exemplary problem we discuss 

efforts to implement quantum programs that are hardware independent. A use case from machine learning is 

outlined. Finally, a collaborative platform for solving problems with quantum computers that is currently 

under construction is presented. 

1 INTRODUCTION 

Quantum computing advanced up to a state that urges 

attention to the software community: problems that 

are hard to solve based on classical (hardware and 

software) technology become tractable in the next 

couple of years (National Academies, 2019). 

Quantum computers are offered for commercial use 

(e.g. IBM Q System One), and access to quantum 

computers are offered by various vendors like 

Amazon, IBM, Microsoft, or Rigetti via the cloud. 

However, todays quantum computers are error-

prone. For example, the states they store are volatile 

and decay fast (decoherence), the operations they 

perform are not exact (gate fidelity) etc. 

Concequently, they are “noisy”. And their size 

(measured in Qubits – see section 2.1) is of 

“intermediate scale”. Together, todays quantum 

computers are Noisy Intermediate Scale Quantum 

(NISQ) computers (Preskill, 2019). In order to 

perform a quantum algorithm reliably on a NISQ 

machine, it must be limited in size.  
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Because of this, the overall algorithms are often 

hybrid. They perform parts on a quantum computer, 

other parts on a classical computer. Each part 

performed on a quantum computer is fast enough to 

produce reliable results. The parts executed on a 

classical computer analyze the results, compute new 

parameters for the quantum parts, and pass them on 

to a quantum part. Typically, this is an iteration 

consting of classical pre-processing, quantum 

processing, and classical post-processing.  

This iteration between classical parts and 

quantum parts reveals why the cloud is a solid basis 

for executing quantum applications: it offers classical 

environments as well as quantum computers (see 

before). 

What are viable applications on NISQ computers? 

For example, simulation of molecules in drug 

discovery or material science is very promising 

(Grimsley et al., 2019), many areas of machine 

learning will realize significant improvements 

(Dunjko et al., 2016), as well as solving optimization 

problems (Guerreschi et al., 2017). 
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1.1 Paper Overview 

Section 2 sketches the programming model of 

quantum computers. Quantum computing in the 

cloud is introduced in section 3. How to remove 

hardware dependencies is addressed in section 4. 

Section 5 outlines a use case of quantum machine 

learning. A collaboration platform for developing and 

exploiting quantum applications is subject of section 

6. Section 7 concludes the paper.  

2 PROGRAMMING MODEL 

Next, we introduce the basics of the quantum 

programming model – see (Nielsen et al., 2016). 

2.1 Quantum Registers 

The most fundamental notion of quantum computing 

is the quantum bit or qubit for short. While a classical 

bit can have either the value 0 or 1 at a given time, the 

value of a qubit |x⟩ is any combination of these two 

values: |x⟩=α∙|0⟩+β∙|1⟩ (to distinguish bits from qubits 

we write |x⟩ instead of x for the latter). This so-called 

superposition is one source of the power of quantum 

computing.  

The actual value of a qubit is determined by a so-

called measurement. α2 and β2 are the probabilities 

that – once the qubit is measured – the classical value 

“0” or “1”, respectively, results. Because either “0” or 

“1” will definitively result, the probabilities sum up 

to 1: α2+β2=1.  

Just like bits are combined into registers in a 

classical computer, qubits are combined into quantum 

registers. A quantum register |r⟩ consisting of n qubits 

has a value that is a superposition of the 2n values 

|0…0⟩, |0…01⟩, up to |1…1⟩. A manipulation of the 

quantum register thus modifies these 2n values at the 

same time: this quantum parallelism is another source 

of the power of quantum computing.  

2.2 Quantum Operations 

Figure 1 depicts two qubits α|0⟩+β|1⟩ and γ|0⟩ + δ|1⟩: 
because α2+β2 = γ2+δ2 = 1, each qubit can be 

represented as a point on the unit circle, i.e. as a vector 

of length 1. Manipulating a qubit results in another 

qubit, i.e. a manipulation U of qubits preserves the 

lengths of qubits as vectors. Such manipulations are 

called unitary transformations. A quantum algorithm 

combines such unitary transformations to manipulate 

qubits (or quantum registers in general). Since the 

combination of unitary transformations is again a 

unitary transformation, a quantum algorithm is 

represented by a unitary transformation too.  

 

Figure 1: Depicting a qubit and its manipulation. 

This geometric interpretation of qubits is 

extended to quantum registers: a quantum register 

with n qubits can be perceived as a unit vector in a 2n-

dimensional vector space. A quantum algorithm is 

then a unitary transformation of this vector space. 

A quantum algorithm U takes a quantum register 

|r⟩ as input and produces a quantum register |s⟩=U(|r⟩) 
as output, with 

 (1) 

The actual result of the algorithm U is determined 

by measuring |s⟩. Thus, the result is  

with probability . Obviously, different executions 

of U followed by a measurement to determine U’s 

result will produce different bit-strings according to 

their probability: A single execution of a quantum 

algorithm is like a random experiment. Because of 

this, a quantum algorithm is typically performed 

many times to produce a probability distribution of 

results (see Figure 2 for an example) – and the most 

probable result is taken as “the” result of the quantum 

algorithm.  

 

Figure 2: Depicting a qubit and its manipulation. 
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2.3 Quantum Algorithms 

As shown in Figure 3, the core of a quantum 

algorithm is a unitary transformation – which 

represents the proper logic of the algorithm. Its input 

register |r⟩ is prepared in a separate step (which turns 

out to be surprisingly complex (Plesch et al., 2011; 

Schuld et al, 2019; Schende et al., 2005). Once the 

unitary transformation produced its output |s⟩, a 

separate measurement step determines its result.  

 

Figure 3: Basis structure of a quantum algorithm. 

Optionally, some pre-processing or some post-

processing is performed in a classical environment 

turning the overall algorithm into a hybrid one. 

Especially, many successful algorithms in a NISQ 

environment make use of classical processing to 

reduce the execution time on a quantum computer: 

the goal is to avoid decoherence and gate faults by 

spending only a short amount of time on a noisy 

quantum machine.  

One example is a hybrid algorithm called 

Variational Quantum Eigensolver for determining 

eigenvalues (Peruzzo et al., 2014). This can be done 

by using a parameterized quantum algorithm 

computing and measuring expectation values, which 

are post-processed on a classical computer. The post-

processing consists of a classical optimization step to 

compute new parameters to minimize the measured 

expectation values. The significance of this algorithm 

lies in the meaning of eigenvalues for solving many 

practical problems (see section 5.2.2). 

Another example is the Quantum Approximate 

Optimization Algorithm (Fhari et al., 2014) that is 

used to solve combinatorial optimization problems. It 

computes a state on a quantum machine the 

expectation values of which relate to values of the 

cost function to be maximized. The state is computed 

based on a parameterized quantum algorithm, and 

these parameters are optimized by classical 

algorithms in a post-processing step as before. Since 

many machine learning algorithms require solving 

optimization problems, the importance of this 

algorithm is obvious too (see section 5.2.4).  

An overview on several fundamental (non-hybrid) 

algorithms can be found in (Montanro, 2016). 

2.4 Quantum Software Stack 

Programming a quantum computer is supported by a 

software stack the typical architecture of which is 

shown in Figure 4. (LaRose, 2019) describes 

incarnations of this stack by major vendors. Also, 

section 3 discusses details of some implementations. 

 

Figure 4: Principle architecture of today’s quantum 

software stack. 

The heart of the stack is a quantum assembler: it 

provides a textual rendering for key unitary 

transformations that are used to specify a quantum 

algorithm.  

Since a quantum assembler is very low level, 

quantum programming languages are offered that 

host the elements of the quantum assembler in a 

format more familiar to traditional programmers – but 

still, the assembler flavor is predominant. In addition, 

functions to connect to quantum machines (a.k.a. 

quantum processing unit QPU) and simulators etc. are 

provided. 

Quantum programming languages also come with 

libraries that provide implementations of often used 

quantum algorithms to be used as subroutines.  

A compiler transforms a quantum assembler 

program into an executable that can be run on a 

certain QPU. Alternatively, the compiler can 

transform the quantum assembler into something 

executable by a simulator on a classical CPU.  

2.5 Sample Research Questions 

The most fundamental question is about a proper 

engineering discipline for building (hybrid) quantum 

applications. For example: What development 

approach should be taken? How do quantum experts 

interact with software engineers? How are quantum 

applications tested, debugged?  
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3 QUANTUM AS A SERVICE 

Since quantum algorithms promise to speed up 

known solutions of several hard problems in 

computer science, research in the field of software 

development for quantum computing has increased in 

recent years. In order to achieve speedup against 

classical algorithms, quantum algorithms exploit 

certain quantum-specific features such as 

superposition or entanglement (Jozsa and Linden, 

2003).  The implementation of quantum algorithms is 

supported by the quantum software stack as shown in 

Figure 4. In this section, we give an overview of 

current tools for the development of quantum 

software. We further discuss deployment, different 

service models, and identify open research areas. 

3.1 Tooling 

Several platforms implementing the introduced 
quantum computing stack have been released in 
recent years (LaRose, 2019). This includes platforms 
from quantum computer vendors, such as Qiskit 
(Qiskit, 2020) from IBM or Forest (PyQuil, 2020) 
from Rigetti, as well as platforms from third-party 
vendors such as ProjectQ (Steiger et al., 2018) or 
XACC (McCaskey et al., 2019).  

The quantum algorithms are described by so-
called quantum circuits which are structured 
collections of quantum gates. These gates are unitary 
transformations on the quantum register (see section 
2.3).  Each platform provides a universal set of gates 
that can be used to implement any quantum 
algorithm. Figure 5 shows a simple example of such 
a circuit.  It uses two qubits (each represented as a 
horizontal line), both of which are initialized as |0⟩. A 
classical two-bit register c is used for the results of 
measurement and depicted as one single line. The 
Hadamard gate (H), which creates an equal 
superposition of the two basis states |0⟩ and |1⟩, is 
applied to the qubit at quantum register position 0. 
Then, the Controlled Not gate (CNOT) is applied to 
the qubits at quantum register positions 0 and 1, 
whereby the former acts as control-bit and a NOT 
operation is applied to the second qubit iff the control  

 

Figure 5: Example of a quantum circuit. 

 

Listing 1: Sample code snippet for the creation and 

execution of a quantum circuit. 

1  from SDK import lib 

2  # create circuit and add gates 

3  circuit = lib.Circuit() 

4  circuit.H(0) 

5  circuit.CNOT(0, 1) 

6  ... 

7  # many more 

8  ... 

9  circuit.measure() 

10 # choose QPU 

11 backend = lib.getBackend('...') 

12 # compile circuit and send to QPU 

13 result = lib.execute(circuit, 

   backend, shots) 

qubit is |1⟩. Finally, measurement gates are added to 

both qubits stating that these qubits will be measured 

and the resulting values will be stored in the classical 

bit register. 
The different platforms support different quantum 

programming languages which are embedded in 
classical host languages, such as PyQuil from Forest 
embedded in Python, or Qiskit embedded in Python, 
JavaScript, and Swift. The platforms provide libraries 
with methods for implementing a quantum circuit. 
Listing 1 shows a code snippet example of the 
creation and execution of the circuit from Figure 5. 
The first line imports the library. Then, a circuit 
object is created to accumulate the gates in sequential 
order. Gate H is added to the circuit in line 4 and the 
CNOT gate is added to the circuit in line 5. Finally, 
measurement is added to the circuit in line 9. After 
the circuit is built, a concrete backend is chosen in 
line 11, which can be either a local simulator, a 
simulator in the cloud, or a QPU. The execution of the 
circuit is initiated in line 13. This execute method 
requires the circuit, the chosen backend, and the 
number of shots as input. As stated in section 2.2, a 
quantum algorithm is normally executed multiple 
times and the number of executions can be configured 
using the shots parameter.  

The circuit is then converted to quantum 
assembler language by the complier of the respective 
platform, e.g., to OpenQASM (Cross et al., 2017) for 
QPUs of IBM, or Quil (Smith et al., 2016) for QPUs 
of Rigetti. In section 4.4 quantum compilers are 
introduced in more detail. The compiled code is sent 
to the selected backend. The execution itself normally 
is job-based, meaning that it will be stored in a queue 
before it gets eventually executed. The result, as 
mentioned before, is a probability distribution of all 
measured register states and must be interpreted 
afterwards.  
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Although the vendor-specific libraries are embedded 

in high-level programming languages, the 

implementation of quantum algorithms using the 

universal sets of gates requires in-depth quantum 

computing knowledge. Therefore, libraries 

sometimes already provide subroutines for common 

quantum algorithms, such as the Variational Quantum 

Eigensolver, or Quantum Approximate Optimization 

Algorithm. (LaRose, 2019) compares different 

libraries with regards to their provided subroutines. 

However, these subroutines can often not be called 

without making assumptions about their concrete 

implementation and the used QPU. 
Currently, most platforms are provided by the 

quantum computer vendors and are, thus, vendor-
specific. However, there are also vendor-agnostic 
approaches, such as ProjectQ or XACC that both are 
extensible software platforms allowing to write 
vendor-agnostic source code and run it on different 
QPUs. Section 4 gives more details on the hardware-
agnostic processing of quantum algorithms. 

3.2 Deployment and Quantum 
Application as a Service 

Several quantum computer vendors provide access to 
their quantum computers via the cloud. This cloud 
service model can be called Quantum Computing as 
a Service (QCaaS) (Rahaman et al., 2015). Also cloud 
providers, such as Amazon or 1Qbit, have taken 
QCaaS offerings to their portfolio. The combination 
of quantum and traditional computing infrastructure 
is essential for the realization of quantum 
applications. As already shown in Figure 3, a 
quantum computer is typically not used on its own but 
in combination with classical computers: the latter are 
still needed to store data, pre- and post-process data, 
handle user interaction, etc. Therefore, the resulting 
architecture of a quantum application is hybrid 
consisting of both quantum and classical parts.  

The deployment logic of the quantum part is 
currently included in the source code as shown in 
Listing 1. For running a quantum application (i) the 
respective platform has to be installed on a classical 
computer, (ii) the circuit must be implemented, (iii) 
the backend has to be selected, and (iv) the circuit 
must be executed. Therefore, we propose another 
service model that we call Quantum Application as a 
Service (QaaS), which is depicted in Figure 6. The 
QaaS offering wraps all application and deployment 
logic of a quantum application, including the 
quantum circuit as well as data pre- and post-
processing, and provides an APIs that can then be 
used for integration with traditional application, e.g., 
web applications or workflows.  

 

Figure 6: Quantum Algorithm as a Service (QaaS) and 

Quantum Computing as a Service (QCaaS). 

The traditional application passes input data to the 
API. However, this input data must be properly 
encoded in order to initialize the quantum register for 
the following computation (Leymann, 2019). This 
data encoding, the construction of an appropriate 
quantum circuit, its compilation, and the deployment 
is all handled by the service. For the execution of the 
circuit itself a QCaaS offering can be used. A 
hardware-agnostic processing of quantum algorithms 
would also enable the dynamical selection of different 
QCaaS as further discussed in section 4. The result of 
this execution is interpreted by the quantum 
application and finally returned to the traditional 
application.  

This concept would enable to separate quantum 
applications from traditional applications, 
particularly with regard to their deployment. 
Furthermore, the integration of quantum computing 
features can be eased since QaaS enables to use 
common technologies of service-based architectures. 

3.3 Sample Research Questions 

To realize the proposed concept, the driving question 
is: How are hybrid quantum-classical applications 
deployed? In addition, the integration of quantum 
applications with traditional applications must be 
considered. This raises further questions. For 
example: What are the details of quantum algorithms, 
and especially their input and output formats? What 
are efficient encodings of input data? And for which 
parts of an application can a speedup be achieved? 
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Figure 7: Processing of hardware-independent quantum algorithms.

4 REMOVING HARDWARE 

DEPENDENCIES 

In this section, we motivate the need for removing the 

dependencies of quantum algorithms from quantum 

hardware and vendor-specific quantum programming 

languages. Afterwards, we present a method for the 

processing of hardware-independent quantum 

algorithms. Further, we sketch existing approaches to 

compile quantum algorithms to executables, optimize 

them, and show open research questions for selecting 

and distributing the quantum algorithms over suitable 

quantum and classical hardware. 

4.1 Problem 

Due to the rapid development and improvement of 

quantum computers (National Academies, 2019), it is 

important to keep implementations of quantum 

algorithms as hardware-independent and portable as 

possible, to enable the easy exchange of utilized 

quantum machines. Novel quantum algorithms are 

mostly specified and published in the abstract 

quantum circuit representation (Svore et al., 2006). 

Therefore, to execute them, they must be 

implemented using the quantum programming 

language of a specific vendor (see section 3.1). 

However, the quantum programming languages are 

not standardized and are usually only supported by a 

small subset or even only one quantum hardware 

vendor (LaRose, 2019). Therefore, the 

implementation of a quantum algorithm utilizing a 

specific quantum programming language can lead to 

a vendor lock-in. To circumvent this problem, a 

standardized, machine-readable, and vendor-agnostic 

representation for quantum circuits is required, which 

can be automatically translated into the 

representations of the different vendor-specific 

quantum programming languages (see section 2.4).  

Furthermore, after specifying a quantum algorithm 

using a certain quantum programming language, the 

utilized qubits and gates must be automatically 

mapped to qubits, gates, and measurements that are 

provided by the quantum machine to keep them 

independent of different quantum machines of a 

specific vendor (Booth Jr, 2012). 

4.2 Hardware-independent Processing 

In this section, we present a method for the processing 

of hardware-independent quantum algorithms, which 

is based on the works of (Häner et al., 2018) and 

(McCaskey et al., 2020). First, the required steps are 

presented and afterwards the following sections 

introduce available research works that can be 

integrated into the approach and provide an overview 

of open research questions for the different steps. 
The required processing steps for hardware-

independent quantum algorithms are sketched in 
Figure 7. The inputs and outputs of the different steps 
are depicted by the arrows connecting them. First, the 
quantum algorithm is defined utilizing a vendor-
agnostic quantum programming language, which 
should be standardized and comprise all relevant parts 
of quantum algorithms (McCaskey et al., 2020). 
Then, a hardware-independent optimization can be 
performed (see section 4.5), which, e.g., deletes 
unnecessary qubits or gates (Häner et al., 2018). 

Based on the optimized quantum algorithm, 
suitable quantum hardware is selected in the next 
step. For this, important properties characterizing the 
quantum algorithm, such as the required number of 
qubits or the utilized gate set, are retrieved (Suchara 
et al., 2013). Due to the limited quantum hardware in 
the NISQ era (Preskill, 2019), this information is 
important and can be used to select a quantum 
computer that can successfully execute the quantum 
algorithm. Furthermore, this selection can be based 
on different metrics, such as the error-probability, the 
occurring costs, or the set of vendors that are trusted 
by the user (McCaskey et al., 2020). 

After the selection of the quantum hardware to 
execute an algorithm, the algorithm must be 
translated from the vendor-agnostic quantum 
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programming language to the quantum assembler of 
a vendor that supports the execution on the selected 
quantum hardware (McCaskey et al., 2020). Next, it 
can be compiled to an executable for the selected 
quantum hardware. For this, the available vendors 
usually provide suitable compilers (see section 4.4) 
(LaRose, 2019).  During the compilation process, 
hardware-dependent optimizations are performed. 
Finally, the executable can be deployed and executed 
on the selected quantum machine (see section 3.2).  

4.3 NISQ Analyzer 

The NISQ Analyzer is a component which analyzes 

quantum algorithms and extracts the important 

details, such as the number of required qubits or the 

utilized gate set (Suchara et al., 2013). Therefore, the 

quantum algorithm specified in the hardware-

independent quantum programming language can be 

used as an input for the NISQ Analyzer. However, the 

analysis of quantum algorithms and the precise 

estimation of resource requirements are difficult 

problems (Scherer et al., 2017). For example, the 

required gates for the initial data encoding (Leymann, 

2019) or the overhead due to required error correction 

codes (Laflamme et al., 1996) must be considered. 

Additionally, the resource requirements for oracle 

implementations are often ignored but lead to a large 

overhead that should be noted (Scherer et al., 2017). 

Thus, tooling support is required that extracts all 

relevant characteristics of quantum algorithms and 

provides them to the other components, such as the 

quantum compiler.  

4.4 Quantum Compiler 

The quantum compiler is in charge of performing the 

mapping from the quantum assembler representing a 

quantum algorithm to an executable for a concrete 

quantum computer (Booth Jr, 2012; Heyfron and 

Campbell, 2018). The mapping of gates and 

measurements that are physically implemented by a 

quantum computer can be performed directly. 

However, gates and measurements that are not 

physically available have to be mapped to a 

“subroutine” consisting of physical gates and 

measurements (Heyfron and Campbell, 2018). For 

example, if a measurement using a certain basis is not 

implemented, the quantum state must be transferred 

into a basis for which a measurement is provided by 

the quantum hardware and the measurement must be 

done in this basis. The utilized subroutines strongly 

influence the execution time and error probability of 

the calculation, as they add additional gates and 

measurements (Steiger et al., 2018). Hence, suited 

metrics and algorithms to select the required 

subroutines are important to reduce the overhead of 

the mapping (see section 4.5). Additionally, the 

qubits must be mapped to available physical qubits, 

which influences the quantum algorithm execution as 

well, due to different characteristics of the qubits, 

such as decoherence time or connectivity (Zhang et 

al., 2019). However, the available quantum compilers 

are mostly vendor-specific (LaRose, 2019), and 

therefore, compile the quantum algorithm 

implementations defined in the quantum assembler of 

a certain vendor to the executable for concrete 

quantum hardware that is provided by this vendor. 

Other quantum compilers define their own quantum 

assembler language to specify quantum algorithms 

and map them to executables for a certain quantum 

computer as well (Javadi-Abhari et al., 2015). Thus, 

the dependency on the vendor- or compiler-specific 

quantum assembler language cannot be removed by 

these kinds of quantum compilers. Hence, quantum 

compilers must be integrated into the approach for 

processing hardware-independent quantum 

algorithms (see Figure 7). 

4.5 Optimization of Quantum 
Algorithms 

Quantum algorithms can be optimized in two ways: 

(i) hardware-independent or (ii) hardware-dependent 

(Häner et al., 2018). For the hardware-independent 

optimization, general optimizations at the quantum 

circuit level are performed, according to a cost 

function, such as the circuit size or the circuit depth 

(Svore et al., 2006). In contrast, hardware-dependent 

optimization takes hardware-specific characteristics, 

such as the available gate set of the target quantum 

computer or the decoherence time of different qubits, 

into account (Itoko et al., 2020). Hence, this 

optimization is often combined with the compilation 

to an executable for a certain quantum computer.  
In the following, we sketch some existing works 

regarding the optimization of quantum algorithms. 
(Heyfron and Campbell, 2018) propose a quantum 
compiler that reduces the number of T gates, while 
using the Clifford + T gate set. They show that the 
cost of the T gate is much higher than for the other 
Clifford gates, and therefore, they improve the circuit 
costs by decreasing the T count. (Itoko et al., 2020) 
present an approach to improve the hardware-
dependent mapping from the utilized qubits and gates 
in the quantum algorithm to the provided qubits and 
gates of the quantum computer during the 
compilation process. (Maslov et al., 2008) propose an 
approach that is based on templates to reduce the 
circuit depth, which means the number of gates that 
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are executed in sequence on the qubits. A template is 
a subroutine that can be used to replace functionally 
equivalent circuit parts by more efficient ones in 
terms of different metrics like cost or error 
probability. Hence, they introduce a method to detect 
and replace suitable circuit parts with templates. 

4.6 Sample Research Questions 

For the definition and processing of hardware-
independent quantum algorithms and the selection of 
suitable quantum hardware, different research 
questions must be solved, some of which are 
presented in the following.  

The definition of an abstract hardware-

independent quantum programming language is 

important to remove the hardware dependencies of 

quantum algorithms. Therefore, sample research 

questions are: What elements are required to define 

quantum algorithms? How should suited modeling 

tooling support look like? What subroutines are 

important and should be provided as libraries?  

To automatically select the best available 

quantum hardware for a quantum algorithm, suited 

tooling support must be developed. Hence, open 

research questions are: What characteristics of 

quantum algorithms are important for the hardware 

selection? How can these characteristics be retrieved 

automatically? What are suited metrics and 

algorithms for the hardware selection? What are the 

interesting optimization goals? 

The hardware-dependent and -independent 

optimization of quantum algorithms are especially 

important in the NISQ era. Therefore, interesting 

research questions are: What are new or improved 

optimization algorithms? What data about quantum 

hardware is relevant for the optimization and how can 

it be obtained? 

By comparing the performance of different 

quantum compilers, the compiler with the best 

optimization result or best execution time can be 

selected.  Hence, sample research questions are: What 

are suited benchmarks for the comparison of quantum 

compilers? How can the optimality of the compiled 

executable be verified with respect to different 

optimization goals, like the number of required gates 

or the number of fault paths?  

5 QUANTUM MACHINE 

LEARING: A USE CASE 

Determining how quantum computing can solve 

problems in machine learning is an active and fast-

growing field called quantum machine learning 

(Schuld, 2015). In this section we give a use case from 

the digital humanities (Berry, 2012) that shows how 

quantum machine learning can be applied.   

5.1 MUSE 

The use case presented is from our digital humanities 
project MUSE (Barzen et al., 2018; MUSE, 2020). It 
aims at identifying costume patterns in films. 
Costume patterns are abstract solutions of how to 
communicate certain stereotypes or character traits by 
e.g. the use of specific clothes, materials, colors, 
shapes, or ways of wearing. To determine the 
conventions that have been developed to 
communicate for example a sheriff or an outlaw, 
MUSE developed a method and a corresponding 
implementation to support the method to capture and 
analyze costumes occurring in films.  

The method consists of five main steps: (1) 

defining the domain by an ontology, (2) identifying – 

based on strict criteria – the films having most impact 

within the domain, (3) capturing all detailed 

information about costumes in films in the MUSE 

repository, (4) analyzing this information to 

determine costumes that achieve a similar effect in 

communicating with the recipient, and (5) abstracting 

these similarities to costume patterns (Barzen et al., 

2018; Barzen, 2018). This method has been proven to 

be generic by applying it in our parallel project 

MUSE4Music (Barzen et al., 2016).  

5.1.1 Ontology 

To structure costume parameters that have a potential 

effect on the recipient of a film a detailed ontology 

was developed (Barzen, 2013). This ontology brings 

together several taxonomies structuring subparts like 

types of clothes, materials, function, or condition, as 

well as relations (e.g. worn above, tucked inside, 

wrapped around, etc.) on how base elements (e.g. 

trousers, shirts, boots, etc.) are combined into an 

overall outfit. The 3151 nodes of the ontology induces 

the schema of the MUSE repository. The repository 

facilitates the structured capturing of all relevant 

information about the films, their characters and their 

costumes. 

5.1.2 Data Set 

The MUSE data set currently (February 2020) 
contains more than 4.700 costumes out of 57 films, 
consisting of more than 26.00 base elements, 57,000 
primitives (e.g. collar, sleeves, buttons, etc.), 145.000 
colors and 165.000 material selections.  
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Being part of the open data initiative, this data set 

is freely available to be used and analyzed (MUSE 

GitHub, 2020). It provides a well-structured and 

labelled data set that allows several analysis 

techniques to be applied. Especially promising are 

techniques from machine learning like feature 

extraction, clustering, or classification.  

5.1.3 Data Analysis 

As a first approach to analyze the data to identify 

those significant elements a costume designer uses to 

achieve a certain effect, a two-step analysis process 

was introduced (Falkenthal et al., 2016). The first step 

applies data mining techniques – mainly association 

rule mining – to determine hypotheses about which 

elements are used to communicate a certain 

stereotype, for example. The second step aims at 

refining and verifying such hypotheses by using 

online analytical processing (OLAP) techniques 

(Falkenthal et al., 2015) to identify indicators for 

costume patters.  

To improve the process of building hypotheses 

that hint to potential costume patterns we are 

currently extending the analysis of the MUSE data by 

various techniques from machine learning. Each 

costume has several properties that describe it in 

detail. Simply mapping each property of a costume to 

a feature, the resulting feature space would be of huge 

dimension. Therefore, feature extraction, namely 

principle component analysis (PCA), is applied to 

reduce the dimension of the feature space without 

losing important information (see section 5.2.2). To 

group those costumes together that achieve the same 

effect different cluster algorithms are applied and 

evaluated (see section 5.2.4). As there are new 

costumes stored at the database frequently the usage 

of classification algorithms is investigated (see 

section 5.2.5) to enable that these costumes get 

classified as part of the right pattern identified before. 

Currently, this approach is implemented on a 

classical computer with classical machine learning 

algorithms. But since quantum computing can 

contribute to solve several problems in machine 

learning – as shown in the following section – it is 

promising to improve the approach by not only using 

classical computer but to also use the potentials 

offered by quantum computers (Barzen et al., 2020). 

5.2 Potential Improvements 

Several machine learning algorithms require the 

computation of eigenvalues or apply kernel functions: 

these algorithms should benefit from improvements 

in the quantum domain. Many machine learning 

algorithms are based on optimization, i.e. 

improvements in this area like Quantum Approximate 

Optimization Algorithm QAOA should imply 

improvements of those machine learning algorithms.  

Whether or not such improvements materialize is 

discussed in several papers that compare sample 

classical and quantum machine learning algorithms, 

e.g. (Biamonte et al., 2017; Ciliberto et al., 2018; 

Havenstein et al., 2018). 

5.2.1 Data Preparation 

The data captured in MUSE are categorical data 

mostly. Since most machine learning algorithms 

assume numerical data, such categorical data must be 

transformed accordingly: this is a complex problem. 

For example, the different colors of pieces of 

clothes could be assigned to integer numbers. But the 

resulting integers have no metrical meaning as 

required by several machine learning algorithms. 

Instead of this, we exploited the taxonomy that 

structures all of our categorical data by applying the 

Wu and Palmer metric (Wu et al., 1994) to derive 

distances between categorial data. In addition, we 

used word embeddings based on restricted Boltzmann 

machines (Hinton, 2012).  

As described above, costumes have a large 

number of features, thus, this number must be 

reduced to become tractable. We experiment with 

feature extraction based on restricted Boltzmann 

machines (Hinton et al., 2006) as well as with 

principal component analysis (see section 5.2.2). 

Feature selection based on deep Boltzmann machines 

(Taherkhania et al., 2018) may also be used.  

5.2.2 Eigenvalues 

Principal component analysis strives towards 

combining several features into a single feature with 

high variance, thus, reducing the number of features. 

For example, in Figure 8 the data set shown has high 

variance in the A axis, but low variance in the B axis, 

i.e. A is a principal component. Consequently, the X 

and Y features of the data points are used to compute 

A values as a new feature, reducing the two features 

X and Y into a single feature A.  

The heart of this analysis is the calculation of the 

half axes and their lengths of the ellipse “best” 

surrounding the data set. This is done by determining 

the eigenvalues of the matrix representing the ellipse. 

Computing eigenvalues can be done on a quantum 

computer much faster than classically by means of 

quantum phase estimation and variational quantum 

eigensolvers. Thus, Quantum principal component 
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Figure 8: Principal component of a data set. 

analysis (Lloyd et al., 2014) is an algorithm we will 

use in our use case. 

5.2.3 Quantum Boltzmann Machines 

(Zhang et al., 2015) provided a quantum algorithm of 

a quantum restricted Boltzmann machine. In a use 

case, it has shown performance superior to a classical 

restricted Boltzmann machine.  

Similarly, (Amin et al., 2018) described an 

approach for both, quantum Boltzmann machines as 

well as quantum restricted Boltzmann machines. 

They report that the quantum restricted Boltzmann 

machine outperforms the classical restricted 

Boltzmann machine for small size examples.  

Thus, quantum Boltzmann machines are 

candidates for our use case, especially because they 

can be exploited in clustering and classification tasks. 

5.2.4 Clustering 

Several quantum clustering algorithms and their 

improvements over classical algorithms are presented 

in (Aimeur et al., 2007). Since clustering can be 

achieved by solving Maximum Cut problems, some 

attention has been paid to solve MaxCut on quantum 

computers.   

For example, (Crooks, 2018) as well as (Zhou et 

al., 2019) use QAOA to solve MaxCut problems on 

NISQ machines. A similar implementation on a 

Rigetti quantum computer has been described by 

(Otterbach et al., 2017) 

Thus, quantum clustering is promising.  

5.2.5 Classification 

Support vector machines (SVM) are established 

classifiers. (Rebentrost et al., 2014) introduce 

quantum support vector machines and show an 

exponential speedup in many situations.  

(Schuld et al., 2014) present a quantum version of 

the k-nearest neighbour algorithm, and an 

implementation of a classifier on IBM Quantum 

Experience (Schuld et al., 2017). A hybrid classifier 

has been introduced by (Schuld et al., 2018). 

The use of kernels in machine learning is well-

established (Hofman et al., 2008), and kernels are 

used in case non-linear separable data must be 

classified. A hybrid classifier that makes use of 

kernels is given in (Schuld et al., 2019). (Ghobadi et 

al., 2019) describe classically intractable kernels for 

use even on NISQ machines.  

Thus, quantum classifiers are promising. 

5.3 Quantum Humanities 

As stressed by the presented use case there are 

promising application areas for quantum computing 

not only in industry or natural science but also in the 

humanities. We coined the term quantum humanities 

for using quantum computing to solve problems in 

this domain (Barzen et al., 2019). It aims at exploiting 

the potentials offered by quantum computers in the 

digital humanities and raise research questions and 

describe problems that may benefit from applying 

quantum computers.  

 

Figure 9: MUSE data analysis. 

Figure 9 shows the process and algorithms used to 

analyze the MUSE data. Its application provides a 

first feasibility study in the domain of quantum 

humanities. Furthermore, it derives knowledge for 

researchers as well as components reusable in other 

domains. Sharing knowledge with other researchers 

about solving problems with quantum computers is 

right at the core of the vision of quantum humanities. 

Therefore, a pattern language for quantum computing 

as introduced in (Leymann, 2019) can provide 

reusable knowledge that enables interested parties 

that are not too familiar with the algorithmic or 

mathematical aspects of quantum computing to also 

participate at the potentials offered by quantum 

computers. In order to provide not only reusable 

knowledge, but also an advanced platform that 

supports several steps in the work with quantum 

computers (Leymann et al., 2019), section 6 outlines 
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the collaborative quantum platform we are currently 

building. 

5.4 Sample Research Questions 

The most essential and fundamental question for 
quantum humanities is to evaluate which existing and 
new problems from the humanities can be addressed 
by quantum computers. Especially, which problems 
are best solved by classical, hybrid, or quantum 
algorithms? Beside speedup, which algorithms result 
in higher precision?  

Which language allows to communicate between 

many disciplines (e.g. mathematics, physics, 

computer science, and the different areas from the 

humanities)? Are there completely new questions 

from the humanities that are only addressable based 

on a quantum computer?  

6 COLABORATIVE QUANTUM 

APPLICATION PLATFORM 

Driven by the continuous improvement of quantum 
hardware, specialists in various fields have developed 
new quantum algorithms and applications in recent 
years. The use of these quantum applications requires 
in-depth knowledge of theory and practice, which is 
often lacking in small and medium-sized companies. 
A major challenge today is to facilitate the transfer of 
knowledge between research and practice to identify 
and fully exploit the potential of new emerging 
technologies. To prepare a body of knowledge for 
quantum computing reasonably and make it usable 
for different stakeholders, a collaborative platform 
where all participants come together is essential 
(Leymann et al., 2019). For this purpose, the quantum 
application platform must cover the entire process 
from the development of quantum algorithms to their 
implementation and execution. The diversity of 
stakeholders and their different objectives lead to a 
variety of requirements for such a quantum platform.  

Building upon the stakeholders identified by 

(Leymann et al., 2019), we firstly identify key 

entities, which serve as an anchor for the knowledge 

on a quantum platform, secondly identify essential 

requirements for their expedient implementation and, 

finally, show a general extendable architecture for a 

collaborative quantum software platform. 

6.1 Key Entities 

To foster a clear structuring of the knowledge created 
on a quantum software platform the following key 
entities can be used. They allow different experts to 

hook into the platform and enables to share and 
contribute knowledge. 

Quantum Algorithm: As mentioned before, 

quantum algorithms are developed and specified 

typically by experts with in-depth quantum physics 

background. Thus, for a quantum software platform it 

is essential to capture quantum algorithms as artifacts. 

Besides generally sharing them, further valuable 

information can be attached to quantum algorithms, 

such as discussion among experts regarding resource 

consumption of an algorithm, its speedup against 

classical algorithms, or its applicability to NISQ 

computers. 

Algorithm Implementation: Besides the 

representation of quantum algorithms in their 

conceptual form, i.e., as mathematical formulas or 

abstract circuits, the heterogeneous field of quantum 

hardware demands to capture vendor- and even 

hardware-specific implementations of quantum 

algorithms. This is because, implementations for a 

particular quantum computer offering of a vendor 

requires the use of a vendor-specific SDK. Thus, 

implementations of an algorithm for quantum 

computers offered by different vendors ends up in 

different code or even the usage of completely 

different quantum programming languages. Thus, 

enabling sharing of different algorithm 

implementations on a quantum software platform 

stimulates knowledge transfer and reduces ramp-up 

especially for unexperienced users. 

Data Transformator: Since quantum algorithms 

rely on the manipulation of quantum states they do 

not operate directly on data as represented in classical 

software. Instead, the data to be processed must be 

encoded in such a way that they can be prepared into 

a quantum register. Different problem classes such as 

clustering or classification of data have specific 

requirements for the data to be processed. It can be of 

great benefit to identify general transformation and 

coding strategies for relevant problem classes. Such 

strategies can then be represented and discussed on 

the platform as data transformators. 

Hybrid Quantum Application: Since only the 

quantum parts of an algorithm are executed on a 

quantum computer, they must be delivered together 

with classical software parts that run on classical 

computers. To exploit the full potential of quantum 

algorithms, they often have to be properly integrated 

into an already running system landscape, which 

includes proper data preparation and transformation. 

This is why solutions that are rolled out in practice are 

typically hybrid quantum applications (see section 

3.2). Therefore, knowledge transfer about applicable 
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software solutions for particular use cases at hand is 

bound to hybrid quantum applications. 

Quantum Pattern: Software patterns are widely 

used to capture proven solution principles for 

recurring problems in many fields in computer 

science. Thus, quantum patterns seem to be a 

promising approach to also capture proven solutions 

regarding the design of quantum algorithms, their 

implementation and integration in existing systems. 

First patterns for developing quantum algorithms 

have already been published (Leymann, 2019). 

6.2 Requirements 

The essential challenge to create and provide a 
reasonable body of knowledge on quantum 
algorithms and applications involves the 
collaboration among several stakeholders. In contrast 
to traditional software engineering, quantum 
algorithms are typically not specified by computer 
scientist rather than by quantum physicists. 
Furthermore, to understand and implement those 
algorithms a different mindset is required because the 
key buildings blocks of algorithms are no longer 
loops, conditions, or procedure calls but quantum 
states and their manipulation via unitary operators.  

 By involving all participants identified by 

(Leymann et al., 2019) in the platform, added value 

can be created, both for experienced quantum 

specialists and inexperienced customers. For this the 

following listed requirements must be met. 

Knowledge Access: Often only certain specialists 

and scientists have the required expertise for 

developing quantum algorithms and their 

implementation. To identify and exploit the use cases 

of quantum computing in practice, companies must 

be empowered to gather knowledge and to exchange 

with experts (developer, service provider, 

consultants, and so on) (Mohseni et al., 2017). 

Additionally, due to the high level of research 

activities in this area, the exchange between experts 

is important in order to share and discuss new 

findings with the community at an early stage. 

Best Practices for Quantum Algorithm 

Development: The development of new algorithms 

requires in-depth knowledge and expertise in theory 

and practice. Documented, reusable best practices for 

recurring problems, i.e. patterns, can support and 

guide people in the development of new quantum 

algorithms. 

Decision-support for Quantum Applications and 

Vendors: A two-stage decision-support is required to 

identify appropriate solutions for real-world use 

cases. First, quantum algorithms that prove to provide 

a solution for a given problem have to be identified. 

Second, the appropriate implementation and quantum 

hardware have to be selected for integration and 

execution. For the second stage the resource 

consumption of algorithms and implementations on 

different quantum hardware are of main interest (see 

section 4.2). 

Vendor-agnostic Usage of Quantum Hardware: 

Currently, various algorithm implementations from 

different vendors are available via proprietary SDKs 

that have been developed specifically for their 

hardware. To avoid vendor lock-in the quantum 

algorithm must be portable between different vendors 

which can be achieved by a standardized quantum 

programming language (see section 3.1 and 4.2).  

Data Transformation for Quantum Algorithms: 

Especially for machine learning and artificial 

intelligence data of sufficient quality is essential. This 

applies to both, classical and quantum algorithms. 

Such data have to be made available and respectively 

encoded for the quantum algorithm (Mitarai et al., 

2019).  

Quantum Application as a Service (QaaS): The 

hybrid architecture of quantum applications 

consisting of classical and quantum parts increases 

the complexity of their deployment. Quantum 

applications provided “as a Service” via a self-service 

portal ease the utilization of the new technology (see 

section 3.2). 

6.3 Architecture 

In Figure 10 the architecture of the collaborative 

quantum software platform is depicted. In essence, 

the platform consists of two parts: The analysis and 

development platform as depicted on the left of the 

figure for collecting, discussing, analyzing, and 

sharing knowledge, and the marketplace as depicted 

on the right that offers solutions in the form of 

quantum applications and consulting services. 

The analysis and development platform addresses 

the needs of specialists and researchers in the field of 

quantum computing and software engineering. In a 

first step, knowledge in the form of publications, 

software artifacts, datasets, or web content can be 

placed on the platform – either manually via a user 

interface or automatically using a crawler. This 

knowledge can originate from various sources, such 

as arXiv.org or github.com. In a first step it can be 

stored as raw data in the QAlgo & data content store. 

Content of interest has to be extracted from these raw 

data, such as a quantum algorithm described in a 

journal article. To facilitate collaboration among 

different disciplines and to create a common 

understanding, the representation of quantum circuits 
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Figure 10: Architecture for a collaborative quantum software platform.

and mathematical expressions must be normalized. A 

qualified description of the knowledge artifact with 

metadata is also essential to find and link relevant 

knowledge. Therefore, metadata formats must be 

normalized and enriched. The knowledge artifacts are 

then stored and provided via an expert portal to 

specialists and scientists and via a customer portal to 

users looking for solutions for their use cases and the 

community of interested people. 

Specialists and scientists can discuss, evaluate, 

and improve the different key entities on the platform. 

Algorithms and their implementations can be linked 

and evaluated based on defined metrics using the 

NISQ-Analyzer (see section 4.3). Identified best 

practices, e.g., for creating entanglement, can then be 

stored as quantum patterns in a Quantum Computing 

Pattern Repository. These patterns ease the 

development of new algorithms as they provide 

proven solutions for frequently occurring problems at 

the design of quantum algorithms. Patterns solving 

specific problems can then be combine and applied 

for realizing a broader use case (Falkenthal et al., 

2014; Falkenthal et al., 2017). However, best 

practices are not only relevant for the development, 

but also for data preparation as input for quantum 

algorithms and the integration of quantum algorithms 

with classical applications. Data preparation is 

essential, and must especially be considered in the 

NISQ era. 

Since most quantum algorithms are hybrid 

algorithms, execution of quantum applications means 

a distributed deployment of hybrid quantum 

applications among classical and quantum hardware. 

Such applications can be stored for reuse in the 

Hybrid-App-Repository. For the quantum part, the 

quantum computer vendor and more specific a single 

QPU has to be selected, depending on the QPU 

properties, the algorithm implementation, and the 

input data. The platform automates this selection and 

provides a vendor-agnostic access to quantum 

hardware. For the deployment, technologies for 

classical computing are evaluated to provide an 

integrated deployment automation toolchain. 

Standards such as the Topology and Orchestration 

Specification for Cloud Applications (TOSCA) 

(OASIS, 2019) have been developed precisely for this 

purpose to enable portability, interoperability, and the 

distribution across different environments (Saatkamp 

et al., 2017; Saatkamp et al., 2019). Thus, TOSCA as 

an international standard offers good foundation for 

an integration of classical and quantum deployment. 

While the expert portal is tailored to provide a 

sufficient user interface and toolchain addressing the 

needs of quantum computing experts the marketplace 

on the right of Figure 10 enables service providers 

and further stakeholders, such as consultants, to offer 

solutions. Customers can place requests for solutions 

for certain problems or use cases at hand. It is further 

intended to also allow consulting services to be 

offered in addition to hybrid quantum applications 

and their deployments. This means that also business 

models besides the development and distribution is 
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enabled by the interplay of the marketplace and the 

analysis and development platform. For example, 

hybrid quantum applications can be provided as a 

Service, which is enabled through the automated 

deployment capabilities by means of a TOSCA 

orchestrator such as OpenTOSCA (Binz et al, 2013; 

OpenTOSCA, 2020) or Cloudify (Cloudify, 2020). 

Further, the selection of quantum algorithms fitting to 

specific constraints of quantum hardware can be 

supported by the NISQ-Analyzer and the discussions 

of experts. With the help of the marketplace, 

knowledge and software artifacts such as quantum 

algorithm implementations and hybrid quantum 

applications can be monetized. Every turnover on the 

platform leads to incentives for participating experts 

to make further knowledge available on the platform. 

6.4 Sample Research Questions 

The platform provides the basis for the technical 

realization of the research questions already 

discussed. However, further questions are raised: 

What are best practices for data preparation as input 

for quantum algorithms? What are best practices for 

integrating quantum algorithms with classical 

applications? How to combine the best practices in 

quantum computing with other domains such as cloud 

computing? Which metadata is required to adequately 

describe the key entities on the platform? 

7 CONCLUSIONS 

New possibilities to solve classically intractable 

problems based on quantum computing is at the 

horizon. Quantum computers appear as part of the 

cloud infrastructure, and based on the hybrid nature 

of quantum-based applications, cloud computing 

techniques will contribute to the discipline of building 

them. Lots of new research questions appeared. 

 We are about to build the collaborative quantum 

application platform, and exploit it for several use 

cases, especially in the area of machine learning. A 

pattern language for quantum computing is under 

construction. Research on the removal of hardware 

dependencies including deployment of hybrid 

quantum applications is ongoing.   
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