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Abstract: An important issue of secure multi-party computation (MPC) is to improve the efficiency of communication.
Non-interactive MPC (NIMPC) introduced by Beimel et al. in Crypto 2014 completely avoids interaction in
the information theoretical setting by allowing a correlated randomness setup where the parties get correlated
random strings beforehand and locally compute their messages sent to an external output server. Existing
studies have been devoted to constructing NIMPC with small communication complexity, and many NIMPC
have been presented so far. In this paper, we present a new generic construction of NIMPC for arbitrary func-
tions from a class of functions called indicator functions. We employ pairwise independent hash functions to
construct the proposed NIMPC, which results in smallest communication complexity compared to the existing
generic constructions. We further present a concrete construction of NIMPC for the set of indicator functions
with smallest communication complexity known so far. The construction also employs pairwise independent
hash functions. It will be of independent interest to see how pairwise independent hash functions helps in
constructing NIMPC.

1 INTRODUCTION

Since the seminal paper by Yao (Yao, 1982), secure
multiparty computation (MPC for short) have been
a central topic in the area of cryptographic research.
The work is followed by a large number of literatures
(Ben-Or et al., 1988; Chaum et al., 1988; Data et al.,
2014; Hirt and Tschudi, 2013), and some of efficient
implementations even possess a potential to deal with
real-world application. Though, such efficient im-
plementations are attractive, they demand high speed
network connection (i.e., 10Gbps network) among
parties for achieving high-throughput computation,
and do not work well in poor network environment.

Beimel et al. have introduced a novel type of
MPC called non-interactive multiparty computation
(NIMPC for short). In NIMPC for a function f : X1×
·· ·×Xn → {0,1}L, each party Pi receives correlated
randomness ri, and outputs mi computed from ri and
a private input xi so that f (x1, ..,xn) is computed only
from m1,m2, . . . ,mn. The notable feature of NIMPC
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is that it completely gets rid of interaction among par-
ties since the message mi is locally computed by Pi.
The security model presented by Beimel et al. guar-
antees information-theoretic security against honest-
but-curious adversaries. More precisely, it guarantees
any set of corrupted parties learns nothing about in-
puts of uncorrupted parties and the function they aim
to evaluate other than the information inferred from
their inputs and output. Beimel et al. also showed
NIMPC for various classes of functions. In particu-
lar, they showed that NIMPC for arbitrary functions
is possible by showing an exact construction of an
NIMPC for arbitrary functions. Though, since the
communication complexity of their NIMPC is very
large (exponential in the input length), their construc-
tion is valuable only in the sense it shows the possi-
bility of realizing NIMPC for arbitrary functions.

Since the seminal work by Beimel et al., the the-
ory of NIMPC has been further developed by litera-
tures (Yoshida and Obana, 2016; Obana and Yoshida,
2016; Halevi et al., 2016; Halevi et al., 2017; Agar-
wal et al., 2019). In Eurocrypt 2019, Agarwal et
al. present elegant construction of NIMPC for arbi-
trary functions (Agarwal et al., 2019). In their con-
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Table 1: The communication complexity of n-player NIMPC protocols for arbitrary functions h : X →{0,1}L where d ≤ |Xi|,
and δind is the communication complexity of NIMPC for the set of indicator functions.

The communication complexity
Construction in (Agarwal et al., 2019) dlog2 de+L · |X |
Construction in (Beimel et al., 2014) δind ·L · |X |
Construction in (Obana and Yoshida, 2016) (δind +L · dlog2(d +1)e) · |X |
Our construction (generic) (δind +max(2L,L+ dlog2 de)) · |X |
Our construction (concrete) (4 · dlog2 de ·n+max(2L,L+ dlog2 de)) · |X |

Table 2: The communication complexity of n-player NIMPC protocols for the set of indicator functions.

The communication complexity
Construction in (Beimel et al., 2014) d2 ·n
Construction in (Yoshida and Obana, 2016) dlog2(d +1)e2 ·n
Our construction 4 · dlog2 de ·n

struction, the correlated randomness ri consists of ad-
ditively shared output table of the target function f
where input and output are masked with random val-
ues, and the message mi consists of masked output ta-
ble of f (x1, . . . ,xi−1,ai,xi+1, . . . ,xn), together with the
masked value of ai. Such direct construction is very
efficient in the sense that the communication com-
plexity of the scheme is as small as dlog2 de+L · |X |
where d = maxi∈[n]{|Xi|} and X = X1×·· ·×Xn. The
communication complexity of their NIMPC is close
to the lower bound on the communication complexity
shown by Yoshida and Obana in (Yoshida and Obana,
2016), though, there is still a gap between the lower
bound and the most efficient scheme known so far.

To deepen understanding of theory and practice
of NIMPC, it is important to clarify to what extent
we can construct a scheme with the communication
complexity close to the lower bound. To answer the
question, we must try various approaches to construct
efficient NIMPCs. One of major and prominent ap-
proaches is generic construction. Generic construc-
tion of NIMPC is methodology to construct complex
classes of function (e.g., arbitrary functions) based
on simple classes of function. All the generic con-
structions known so far employ indicator function as
a simple class of function, where indicator function
ha(x) : X → {0,1} equals 1 if and only if the input x
is identical to a. There is line of research that tries
to construct an efficient NIMPC with small commu-
nication complexity based on NIMPC for the set of
indicator functions (Beimel et al., 2014; Yoshida and
Obana, 2016; Obana and Yoshida, 2016).

The contribution of the paper is twofold. First, we
presents an efficient generic construction of NIMPC
for arbitrary functions based on any NIMPC for the
set of indicator functions. Second, we presents an
efficient construction of NIMPC for the set of indi-

cator functions. Combining the first and the second
contributions, we obtain a concrete construction of
NIMPC for arbitrary functions with the smallest com-
munication complexity compared to existing generic
constructions of NIMPC for arbitrary functions. Ta-
bles 1 and 2 summarize the communication complex-
ity of existing NIMPC for arbitrary functions with L-
bit output, and that of existing NIMPC for the set of
indicator functions, respectively.

We see that the proposed NIMPC for the set of
indicator function is the most efficient one, and the
proposed generic construction is most efficient among
generic constructions based on NIMPC for the set of
indicator functions. Let δind be the communication
complexity of underlying NIMPC for set of indicator
functions, and let log2 d = L for simplicity. Then the
communication complexity of the proposed NIMPC
for arbitrary functions is (δind + 2L) · |X | while that
of (Obana and Yoshida, 2016) is (δind + L2) · |X |.
Compared to the most efficient NIMPC presented in
(Agarwal et al., 2019), proposed NIMPC is less effi-
cient, though, the overhead is not so large. Again, let
dlog2 de= L for the sake of simplicity, then the com-
munication complexity of the proposed NIMPC for
arbitrary functions becomes L ·(4n+2) · |X |, which is
about 4n+2 times larger than that of (Agarwal et al.,
2019).

2 PRELIMINARIES

For an integer n, let [n] be the set {1,2, . . . ,n}. For
a set X = X1 × ·· · × Xn and T ⊆ [n], we denote
XT 4= ∏i∈T Xi. For x ∈ X , we denote by xT the re-
striction of x to XT , and for a function h : X → Ω, a
subset T ⊆ [n], its complement T ⊆ [n], and xT ∈ XT ,
we denote by h|T ,xT

: X →Ω the function h where the
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inputs of T are fixed to xT . For a set S, let |S| denote
its size (i.e., cardinality of S).

An NIMPC protocol for a family of functions H
is defined by three algorithms: (1) a randomness gen-
eration function GEN, which given a description of
a function h ∈ H generates n correlated random in-
puts R1, . . . ,Rn, (2) a local encoding function ENCi
(1≤ i≤ n), which takes an input xi and a random in-
put Ri and outputs a message, and (3) a decoding al-
gorithm DEC that reconstructs h(x1, . . . ,xn) from the
n messages. The formal definition given in (Beimel
et al., 2014) is given as follows.

Definition 1 (Syntax and Correctness) . Let
X1, . . . ,Xn, R1, . . ., Rn, M1, . . . ,Mn and Ω be finite
domains. Let X 4= X1×·· ·×Xn and let H be a family
of functions h : X → Ω. A non-interactive secure
multi-party computation (NIMPC) protocol for H is
a triplet Π = (GEN,ENC,DEC) where
GEN : H → R1×·· ·×Rn is a random function,
ENC is an n-tuple deterministic functions
(ENC1, . . . ,ENCn), where ENCi : Xi×Ri→Mi,
DEC : M1×·· ·×Mn→Ω is a deterministic function
satisfying the following correctness requirement: for
any x = (x1, . . . ,xn) ∈ X and h ∈H ,

Pr[R = (R1, . . . ,Rn)← GEN(h) :
DEC(ENC(x,R)) = h(x)] = 1, (1)

where ENC(x,R) 4= (ENC1(x1,R1), . . . ,ENCn(xn,
Rn)).

The communication complexity of NIMPC
Π is defined to be the maximum value of
log2 |R1|, . . . , log2 |Rn|, log2 |M1|, . . . , log2 |Mn|.

We next show the definition of robustness for
NIMPC (Beimel et al., 2014), which states that a
coalition can only learn the information they should.
In the above setting, a coalition T can repeatedly en-
code any inputs for T and decode h with the new en-
coded inputs and the original encoded inputs of T .
Thus, the following robustness requires that they learn
no other information than the information obtained
from oracle access to h|T ,xT

.

Definition 2 (Robustness) . For a subset T ⊆ [n], we
say that an NIMPC protocol Π for H is T -robust if
there exists a randomized function SimT (a “simula-
tor”) such that, for every h∈H and xT ∈XT , we have
SimT (h|T ,xT

)≡ (MT ,RT ), where R and M are the joint
randomness and messages defined by R ← GEN(h)
and Mi← ENCi(xi,Ri).

For an integer 0≤ t ≤ n, we say that Π is t-robust
if it is T -robust for every T ⊆ [n] of size |T | ≤ t. We
say that Π is fully robust (or simply refer to Π as an

NIMPC for H ) if Π is n-robust. Finally, given a con-
crete function h : X →Ω, we say that Π is a (t-robust)
NIMPC protocol for h if it is a (t-robust) NIMPC for
H = {h}.
As the same simulator SimT is used for every h ∈ H
and the simulator has only access to h|T ,xT

, NIMPC
hides both h and the inputs of T . An NIMPC proto-
col is 0-robust if it is /0-robust. In this case, the only
requirement is that the messages (M1, . . . ,Mn) reveal
h(x) and nothing else.

An NIMPC protocol is also described in the lan-
guage of protocols in (Beimel et al., 2014). Such a
protocol involves n players P1, . . . ,Pn, each holding an
input xi ∈ Xi, and an external “output server,” a player
P0 with no input. The protocol may have an additional
input, a function h ∈H .

Definition 3 (Protocol Description) . For an NIMPC
protocol Π for H , let P(Π) denote the protocol that
may have an additional input, a function h ∈ H , and
proceeds as follows.
Protocol P(Π)(h)

Offline Preprocessing. Each player Pi, 1 ≤ i ≤ n,
receives the random input Ri 4= GEN(h)i ∈ Ri.

Online Messages. On input Ri, each player Pi, 1 ≤
i ≤ n, sends the message Mi 4= ENCi(xi,Ri) ∈ Mi to
P0.

Output. P0 computes and outputs DEC(M1, . . . ,Mn).

Informally, the relevant properties of protocol P(Π)
are given as follows:

• For any h ∈ H and x ∈ X , the output server P0
outputs, with probability 1, the value h(x1, . . . ,xn).

• Fix T ⊆ [n]. Then, Π is T -robust if in P(Π) the set
of players {Pi}i∈T ∪{P0} can simulate their view
of the protocol (i.e., the random inputs {Ri}i∈T
and the messages {Mi}i∈T ) given oracle access to
the function h restricted by the other inputs (i.e.,
h|T ,xT

).

• Π is 0-robust if and only if in P(Π) the output
server P0 learns nothing but h(x1, . . . ,xn).

A lower bound on the communication complexity for
any finite set of functions including the set of arbitrary
functions was derived in (Yoshida and Obana, 2016).
The result states that the communication complexity
cannot be smaller than the logarithm of the size of the
target class.

Proposition 1 (Lower Bound) . Fix finite domains
X1, . . . ,Xn and Ω. Let X 4= X1, . . . ,Xn and H a set of
functions h : X → Ω. Then, any fully robust NIMPC
protocol Π for H satisfies ∑

n
i=1 log |Ri| ≥ log |H |, and

∑
n
i=1 log |Mi| ≥ log |Ω|.
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Proposition 2 (Lower Bound) . Fix finite domains
X1, . . ., Xn. Let X 4= X1 × ·· · × Xn and H L

all the set
of all functions h : X → {0,1}L. Any NIMPC pro-
tocol Π for H L

all satisfies ∑
n
i=1 log |Ri| ≥ L · |X |, and

∑
n
i=1 log |Mi| ≥ L.

Here, we give definitions of indicator functions
(Beimel et al., 2014), and generalized indicator func-
tions (Obana and Yoshida, 2016) which are important
classes of functions for our proposed construction.

Definition 4 (Indicator Functions) . Let X be a fi-
nite domain. For n-tuple a = (a1, . . . ,an) ∈ X , let
ha : X → {0,1} be the function defined by ha(a) = 1,
and ha(x) = 0 for all a 6= x ∈ X . Let h0 : X → {0,1}
be the function that is identically zero on X . Let
Hind 4= {ha}a∈X ∪{h0} be the set of all indicator func-
tions together with h0.

Definition 5 (Generalized Indicator Func.) . Let L
be a positive integer L > 0. For v ∈ {0,1}L \ {0L}
and a = (a1, . . . ,an) ∈ X , we define the generalized
indicator function ha,v as follows.

ha,v(x) =

{
v if x = a
0L otherwise

Let hL
0 : X →{0,1}L be the function that is identically

0L on X . We define the family of functions H L
ind =

{ha,v}a∈X ,v∈{0,1}L\{0L}∪{h0}.
In the next section, we will presents a generic con-
struction of NIMPC for arbitrary set of functions.
We employ pairwise independent hash functions to
construct NIMPC for the set of generalized indica-
tor functions. We note that pairwise independent hash
function plays an important role in constructing vari-
ous cryptographic protocols.

Definition 6 . A family of functions G = {g | g : X →
Y} is pairwise independent if the following two condi-
tions hold when g ∈ G is a function chosen uniformly
at random from G:

1. For any x ∈ X, the random variable g(x) is uni-
formly distributed in Y .

2. For any distinct x1,x2 ∈ X, the random variables
g(x1) and g(x2) are independent.

When the function g is chosen uniformly at random
from G, we can guarantee g(x) does not reveal any
information about x. Further, the value g(x) does not
reveal any information about the value g(x′) such that
x′ 6= x. These properties of pairwise independent hash
family help us in constructing NIMPC.

The following proposition gives a well-known
fact about pairwise independent hash functions (e.g.,
(Vadhan, 2012)).

Proposition 3 . For every positive integer n,m, there
is an family of pairwise independent functions Gn,m =
{g : {0,1}n → {0,1}m} where a random function
function from Gn,m can be selected using max(m,n)+
m random bits.

Let Gn,m,≥ and Gn,m,< be function families defined as
follows where ‖ denotes concatenation of bit strings,
and φn,m : F2n → F2m denotes any surjective linear
mapping:

Gn,m,≥ =

{
g′a,b

∣∣∣∣g′a,b(x) = a · (0m−n‖x)+b,
a,b ∈ F2n

}
Gn,m,< =

{
g′′a,b

∣∣∣∣g′′a,b(x) = φn,m(a · x)+b,
a ∈ F2n ,b ∈ F2m

}
Then pairwise independent function family is con-
structed as follows

Gn,m =

{
Gn,m,≥ if m≥ n
Gn,m,< if m < n

We note that any function in Gn,m can be described
by max(m,n) + m bits (i.e., (a,b)) which we call
description of the function ga,b, and denote it by
desc(ga,b). We also note some pairwise independent
function families (including Gn,m described above)
possess such an extra property that desc(g) can be
sampled efficiently even when an output of g(a) is
fixed to some value b for a single input a. We will use
such function family in our constructions.

3 PROPOSED CONSTRUCTION

In this section, we presents NIMPC for H L
all, arbitrary

functions with L-bit output from any NIMPC for Hind.
The communication complexity of the proposed con-
struction is (δind +max(2L,L+ dlog2 de)) · |X | where
δind denotes the communication complexity of under-
lying NIMPC for Hind.

3.1 Overview of the Protocol

Historically, there two different approaches to con-
struct NIMPC for arbitrary functions from NIMPC
for the set of indicator functions. The first approach
adopted in (Beimel et al., 2014; Yoshida and Obana,
2016) makes use of the fact that every function h :
X → {0,1} can be expressed as the sum of indi-
cator functions h = ∑a∈X ,h(a)=1 ha. They construct
NIMPC for arbitrary function h : X → {0,1} by |X |
independent invocation of NIMPC for Hind, and re-
alize NIMPC for H L

ind by L independent invocation
of NIMPC for Hind. Let δind be the communication
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complexity of underlying NIMPC for indicator func-
tion. Then the communication complexity of result-
ing NIMPC for arbitrary functions is δind ·L · |X |.

In (Obana and Yoshida, 2016), Obana and Yoshida
present the second approach to construct NIMPC for
arbitrary functions. While the first approach sepa-
rately compute each output bit, the second approach
simultaneously computes all output bits. The key idea
of the second approach is to introduce generalized
indicator functions ha,v(x) outputting v ∈ {0,1}L if
x = a holds, and otherwise 0L. Their construction
is based on the observation that arbitrary function h :
X → {0,1}L is represented by the sum of ha,v ∈ H L

ind
(i.e., h = ∑a∈X ,h(a)6=0L ha,h(a)), and use the fact to con-
struct NIMPC for H L

all. The generic construction of
(Obana and Yoshida, 2016) reduces the communica-
tion complexity to δind·L

δind+L·dlog2 |X |e
times smaller than

that of the first approach.
In the proposed construction, we adopt the same

approach as in (Obana and Yoshida, 2016), that is,
starting from an NIMPC for the set of indicator func-
tion, we construct an NIMPC for the set of gener-
alized indicator function, which is used to construct
NIMPC for the set of arbitrary function. The main dif-
ference between our construction and that in (Obana
and Yoshida, 2016) is in the building block to con-
struct an NIMPC for the set of generalized indicator
functions. The construction in (Obana and Yoshida,
2016) employs binary vectors to extend the range of
indicator function. On the other hands, we employ
pairwise independent hash functions to extend the
range, which results in NIMPC for arbitrary functions
with smaller communication complexity.

3.2 NIMPC Hind⇒ NIMPC H L
ind

Here, we will give a generic construction of NIMPC
for H L

ind from any NIMPC for Hind. The basic idea be-
hind the proposed generic construction is as follows.
We will use an NIMPC Πind = (GEN′,ENC′,DEC′)
for Hind to check whether the function h ∈ H L

ind out-
puts non-zero value with the input (x1, . . . ,xn) ∈ X .
To obtain the actual output value (i.e., h(x1, . . . ,xn)),
we employ functions gi from pairwise independent
hash family Gi : Xi → F2L for i ∈ [n]. Functions
gi ∈ Gi are chosen in such a way that ∑

n
i=1 gi(xi) =

h(x1, . . . ,xn) holds if the input (x1, . . . ,xn) is identical
to the input with which DEC′ outputs 1.

Let Πind = (GEN′,ENC′,DEC′) be any NIMPC
for Hind. Then the concrete description of the pro-
posed construction of NIMPC for H L

ind, denoted by
Πgind = (GEN,ENC,DEC), is given as follows. For
i ∈ [n], let gi be an element of pairwise independent
hash family Gi : Xi→{0,1}L.

Fix a function h ∈H L
ind that we want to compute.

Offline Preprocessing. First, define a function h′ ∈
Hind as follows,

h′ =

{
h0 if h = hL

0

ha otherwise
(

i.e.,∃a∈X ,v∈{0,1}L\{0L}
s.t. h = ha,v

)
and let R′ = (R′1, . . . ,R

′
n)← GEN(h′). Next, if h = hL

0
then choose n random functions gi ∈ Gi. If h = ha,v
for some a = (a1, . . . ,an) ∈ X and v ∈ {0,1}L \{0L},
choose n− 1 functions gi uniformly and randomly
from Gi for i ∈ [n− 1] and choose a function gn ∈
Gn such that ∑

n
i=1 gi(ai) = v holds, which can be

done by choosing gn from the function family {gn |
gn ∈ Gn,gn(an) = v−∑

n−1
i=1 g(ai)} uniformly and ran-

domly. Define GEN(h) , R = (R1, . . . ,Rn) where
Ri = (R′i,desc(gi))

Online Messages. For Ri = (R′i,desci) and an in-
put xi, we first evaluate (M′1, . . . ,M

′
n)← ENC(x,R′).

Next, we evaluate vi = gi(xi) where gi is an element
of Gi described by desci. Finally, let ENC(x,R) ,
(M1, . . . ,Mn) where Mi = (M′i ,vi).

Output h(x1, . . . ,xn). DEC(M1, . . . ,Mn) = ∑
n
i=1 vi

if DEC(M′1, . . . ,M
′
n) = 1 holds. Otherwise

DEC(M1, . . . ,Mn) = 0L.

Theorem 1 . Fix finite domains X1, . . . ,Xn, and let
X 4= X1 × ·· · × Xn. If there exists a robust NIMPC
for Hind : X →{0,1} with communication complexity
δind, then there is an NIMPC protocol for H L

ind with
the communication complexity δind + max(2L,L +
dlog2 de).
Proof: First, we will show the correctness. Let Mi =
(M′i ,vi). It holds that ∑

n
i=1 vi = ∑

n
i=1 gi(xi). If h =

ha,v, then DEC′(M′1, . . . ,M
′
n) = 1 holds if and only if

a = x. In this case ∑
n
i=1 vi = ∑

n
i=1 gi(ai) = v holds.

This means DEC(M1, . . . ,Mn) = v if and only if x = a.
If h = h0, then DEC(M′1, . . . ,M

′
n) = 1 never happens

because of the correctness of the underlying NIMPC
for Hind. This means DEC(M1, . . . ,Mn)= 0L holds for
any x ∈ X .

To prove robustness, fix a subset T ⊆ [n] and
xT ∈ XT . The encodings MT of T consist of
{(M′i ,vi)}i∈T . The randomness RT consists of
{(R′i,desc(gi))}i∈T . Now we will construct a simu-
lator SimT which queries h|T ,xT

on all possible in-
puts in XT . First we will simulate (R′T ,M

′
T ). Since

R′ =GEN′(h′) and M′ = ENC′(R′,x) hold, and Πind =
(GEN′,ENC′,DEC′) is robust, it is possible to simu-
lates (R′T ,M

′
T ) if we can answer to a query to h′|T ,xT

,
which is easily computed from h|T ,xT

as follows.
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h′|T ,xT
(xT ) =

{
0 if h|T ,xT

(xT ) = 0L

1 otherwise

Next, we will simulate desc(gi) for i ∈ T and vi(=
gi(xi)) for i ∈ T . If h|T ,xT

≡ 0L, there are two pos-
sible cases. The first case is h = h0. In this case
desc(gi) (i∈ T ) and vi (i∈ T ) are uniformly and inde-
pendently distributed since all gi are uniformly and in-
dependently distributed. The second case to consider
is h = ha,v for some a,v and aT 6= xT . In this case,
gi (and therefore desc(gi)) for i ∈ [n] are uniformly
and independently distributed under the constraint
∑i∈[n] gi(ai) = v. In this case, from the properties of
pairwise independent hash functions, gi (i ∈ T ) and
vi(= gi(xi)) (i ∈ T ) are uniformly and independently
distributed. From the above argument, we conclude
that the desc(gi) for i ∈ T and vi for i ∈ T are uni-
formly and independently distributed in both cases.
Therefore, if h|T ,xT

≡ 0 then desc(gi) (i∈ T ) and vi(=

gi(xi)) are simulated simply by assigning uniformly
distributed random strings to them. On the other hand,
if h|T ,xT

(xT ) = v(6= 0L) holds for some xT ∈ XT , then

∑i∈[n] g(ai) = v holds. Let î ∈ T , then desc(gi) (i ∈ T )
and gi(xi) (i ∈ T ) are simulated by assigning uniform
random strings to desc(gi) (i ∈ T ) and vi (i ∈ T \{î})
and by assigning v+(∑i∈T gi(ai))+(∑i∈T\{î} vi) to vî.

Now, we will evaluate the communication com-
plexity of the resulting NIMPC. Let δind be the com-
munication complexity of the underlying NIMPC for
Hind. The correlated randomness Ri is composed of
R′i and L + max(L,dlog2 de) binary string, whereas
the encoding Mi is composed of M′i and L-bit binary
string. Therefore, the communication complexity is
at most δind +max(2L,L+ dlog2 de). 2

3.3 NIMPC H L
ind⇒ NIMPC H L

all

In this section, we present a generic construction of
NIMPC for all L-bit boolean functions H L

all with input
domain X = X1×·· ·×Xn from any NIMPC for H L

ind
with the same input domain. The idea is to express
any h : X → {0,1}L as a sum of generalized indica-
tor functions H L

ind with L-bit output. The communica-
tion complexity of the resulting construction is much
smaller than the existing constructions since a single
invocation of the proposed NIMPC for H L

ind given in
§3.2 is much more efficient than L invocation of the
existing NIMPC for Hind for most L.

The detailed description of the compiler to
construct Hall from H L

ind is identical to that pre-
sented in (Obana and Yoshida, 2016). Let ΠL

ind =

(GEN′,ENC′,DEC′) be any NIMPC for H L
ind and let

h : X → {0,1}L that we want to compute. We con-

struct a protocol P(Π)(h) for Hall, whose algorithms
are denoted by (GEN,ENC,DEC), as follows.

Offline Preprocessing. Let I ⊆ X be the set of in-
puts x ∈ X such that h(x) 6= 0L. For each a ∈ I, let
Ra = (Ra

1, . . . ,R
a
n)← GEN′(ha,v). For a ∈ X \ I, let

Ra ← GEN′(h0). Then, choose random permutation
π of X and let Ri,b = Rπ(b)

i for i ∈ [n],b ∈ X . Define
GEN(h), R = (R1, . . . ,Rn), where Ri = {Ri,b}b∈X .

Online Messages. For an input xi, Pi computes Mi,b ,
ENC′i(xi,Ri,b) for every b ∈ X . Define ENC(x,R) ,
(M1, . . . ,Mn) where Mi = {Mi,b}b∈X .

Output h(x1, . . . ,xn). DEC(M1, . . . ,Mn) = v
if and only if there exists b ∈ X such
that DEC′(M1,b, . . . ,Mn,b) = v. Otherwise
DEC(M1, . . . ,Mn) = 0L.

Theorem 2 . Fix finite domains X1, . . . ,Xn, and let
X 4= X1×·· ·×Xn. Let Hall be the set of all functions
h : X → {0,1}L. If there exists a robust NIMPC for
H L

ind : X → {0,1}L with communication complexity
δgind, then there is an NIMPC protocol for Hall with
the communication complexity δgind · |X |.
The proof is almost identical to that of Theorem 2 of
(Obana and Yoshida, 2016), and is omitted here.

By combining Theorem 1 and Theorem 2, we ob-
tain the following corollary.

Corollary 1 Fix finite domains X1, . . . ,Xn, and let
X 4= X1 × ·· · × Xn. Let Hall be the set of all func-
tions h : X → {0,1}L. If there exists a robust NIMPC
for Hind : X →{0,1} with communication complexity
δind, then there is an NIMPC protocol for Hall with
the communication complexity (δind + max(2L,L +
dlog2 de)) · |X |.

4 EFFICIENT NIMPC for Hind

In this section, we present a construction of NIMPC
for Hind, which results in H L

all via generic construc-
tion given in the previous section. As the generic
construction to construct H L

ind, we also employ pair-
wise independent hash family to construct Hind. It
should be noted that, if d ≥ 4 (i.e., if the maximum
bit length of input is larger then 1), the proposed
construction of NIMPC for Hind offers smallest com-
munication complexity known so far. Namely, the
communication complexity of the proposed construc-
tion is 4 · dlog2 de · n whereas that of the best known
construction (i.e., the construction in (Yoshida and
Obana, 2016)) is (dlog2(d +1)e)2 ·n.
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The detailed description of the protocol is as fol-
lows. For i ∈ [n], let φi be a one-to-one mapping from
Xi to a finite field F with the order lager than maxi |Xi|.
Fix a function h ∈Hind that we want to compute.

The proposed NIMPC Πind(h)

Offline Preprocessing. If h = h0, then choose 2n
linearly independent random vectors {vi,v′i}i∈[n] in
F2n. If h = ha for some a = (a1, . . . ,an) ∈ X , then
choose 2n random vectors {vi,v′i}i∈[n] in F2n such that
∑

n
i=1(vi + φ(ai)v′i) = 0, and there are no other linear

relations other than ∑
n
i=1 c ·(vi+φ(ai)v′i)= 0 for c∈F.

Let GEN(h) = R = (R1, . . . ,Rn), where Ri = {vi,v′i}.

Online Messages. For an input xi, let ENC(x,R) =
(M1, . . . ,Mn) where Mi = vi +φi(xi)v′i.

Output h(x1, . . . ,xn). DEC(M1, . . . ,Mn) = 1 if
∑

n
i=1 Mi = 0.

Theorem 3 . Fix finite domains X1, . . . ,Xn Then, there
is an NIMPC protocol Πind for Hind with the commu-
nication complexity 4 · dlog2 de ·n.

Proof: The correctness is obvious from the
description of Offline preprocessing. Namely,
∑

n
i=1(vi + x′iv

′
i) = 0 never happen with (x′1, . . . ,x

′
n) 6=

(a1, . . . ,an). In fact, ∑
n
i=1(vi + aiv′i) = 0 is the only

possible solution since coefficient of vi is fixed to
1. Moreover, ∑

n
i=1(vi + x′iv

′
i) = 0 never happen when

h = h0 since all vi,v′i are linearly independent in this
case.

To prove the robustness, we describe a simulator
SimT : the simulator queries h|T ,xT

on all possible in-
puts in XT . If all answers are zero, this simulator gen-
erates random independent vectors vi,v′i (for i ∈ T )
and mi (for i∈ T ). Otherwise, there is an x̂T ∈XT such
that h|T ,xT

(x̂T ) = 1, and the simulator outputs ran-
dom vectors such that ∑i∈T mi+∑i∈T (vi+φi(x̂i)v′i) =
0, and there are no other linear relations other than
∑

n
i=1 c · (vi +φ(x̂i)v′i) = 0 for c ∈ F.

The communication complexity of the resulting
protocol is 4 · dlog2 de · n since Ri consists of 2 · 2n
elements of finite field F with |F| ≤ d. 2

By combining Theorem 3 and Corollary 2, we obtain
the following corollary.

Corollary 2 Fix finite domains X1, . . . ,Xn with |Xi| ≤
d for all 1 ≤ i ≤ n and let X 4= X1× ·· ·×Xn. Then,
there is an NIMPC protocol for Hall : X → {0,1}L

with communication complexity at most (4 · dlog2 de ·
n+max(2L,L+ dlog2 de)) · |X |.

Let δind be the communication complexity of un-
derlying NIMPC for Hind, and suppose, for the sake of
simplicity, |Xi|= 2L for any i ∈ [n]. Then the commu-
nication complexity of the proposed NIMPC for H L

all

becomes (δind + 2L)|X |, which is the most efficient
construction among existing NIMPCs for arbitrary
functions constructed based on NIMPC for the set of
indicator functions since the best known communica-
tion complexity of such NIMPC is (δind +L2)|X |.

5 CONCLUSION

In this paper, we have presented a novel generic con-
struction of NIMPC for the set of arbitrary functions
H L

all from NIMPC for the set of indicator functions
Hind. The communication complexity of the result-
ing scheme is the most efficient compared to that of
NIMPC for arbitrary functions constructed based on
NIMPC for the set of indicator functions. Further,
we have presented an NIMPC for the set of indica-
tor functions with the smallest communication com-
plexity known so far. By combining the proposed
generic construction and the proposed NIMPC for
Hind, we have obtained a concrete NIMPC for arbi-
trary functions with the communication complexity
(4 · dlog2 de · n+max(2L,L+ dlog2 de)) · |X |. Com-
pared to the most efficient NIMPC known so far (i.e.,
NIMPC presented in (Agarwal et al., 2019), the pro-
posed NIMPC is less efficient, though, the gap is as
small as 4n+2.

Though the proposed construction is pretty effi-
cient with respect to the communication complexity,
there still remains a gap between the lower bound
in (Yoshida and Obana, 2016) and our upper bound.
Therefore, reducing the gap will be a challenging fu-
ture work.
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