
Image-based Malware Family Detection: An Assessment between
Feature Extraction and Classification Techniques

Giacomo Iadarola1, Fabio Martinelli1, Francesco Mercaldo1,2 and Antonella Santone2

1Institute for Informatics and Telematics, National Research Council of Italy (CNR), Pisa, Italy
2Department of Biosciences and Territory, University of Molise, Pesche (IS), Italy

Keywords: Machine Learning, Mobile Security, Android, Malware Classification, Image Texture Analysis.

Abstract: The increasing number of malware in mobile environment follows the continuous growth of the app stores,
which required constant research in new malware detection approaches, considering also the weaknesses of
signature-based anti-malware software. Fortunately, most of the malware are composed of well-known pieces
of code, thus can be grouped into families sharing the same malicious behaviour. One interesting approach,
which makes use of Image Classification techniques, proposes to convert the malware binaries to images,
extract feature vectors and classifying them with supervised machine learning models. Realizing that re-
searchers usually evaluate their solutions on private datasets, it is difficult to establish whether a model can
be generalized on another dataset, making it difficult to compare the performance of the various models. This
paper presents a comparison between different combination of feature vector extraction methods and machine
learning models. The methodology aimed to evaluate feature extractors and supervised machine learning al-
gorithms, and it was tested on more than 20 thousand images of malware, grouped into 10 different malware
families. The best classifier, a combination of GIST descriptors and Random Forest classifiers, achieved an
accuracy of 0.97 on average.

1 INTRODUCTION

Nowadays, malware classification and detection are
one of the biggest open problems in the cybersecurity
research fields (Canfora et al., 2018). Our PCs and
smartphones handle huge quantity of sensitive data
every day, and many attackers are getting interested
in stealing information and profit from them (Casolare
et al., 2019). Smartphones, laptops and smart devices
in general (the Internet-of-Things) brought all kind of
technologies into our homes and makes them acces-
sible to everyone (Cimino et al., 2020). These de-
vices are powerful, and their usability and easy-to-use
design allow non-tech people to use all their features
without any knowledge of the inner-working: that is
the knowledge gap where most of the attacks reside.
Most of the malware trick the users, the weakest link
in the security chain, to perform unsafe actions, like
opening insecure links or sending sensitive informa-
tion to criminals that act as reliable entities. The mal-
ware performs legitimate actions, but their sequence
leads to a malicious outcome (Iadarola et al., 2019).
Nonetheless, tech people are not safe as well. If an at-
tacker can upload its malware on a trusted app store,

that piece of software will be trusted by everyone, be-
cause no one has the time to examine all the software
acquired on its own. There is a huge need for autom-
atizing the malware detection problems and keep safe
our smart devices.

Among all the Mobile Operating System, An-
droid has the biggest share with almost 80% of
the market (StatCounter, 2020), and also the most
affected by malware. Most of the proposed ap-
proaches for malware detection are signature-based,
thus able to identify signatures of a previously known
attack. This approach is efficient because of the code-
reuse (McLaughlin et al., 2017; Suarez-Tangil et al.,
2017): it is very unlikely to find a completely new
malware, since most of them reuse, at least part of,
code from previous malware. Therefore, we can eas-
ily categorize the malware by groups of families com-
ing from the same source code.

The number of new applications and software up-
loaded on the app stores is growing constantly, around
6100 apps are uploaded in the Google Play store ev-
ery day (Statista platform, 2018). We cannot rely any-
more on manual code inspection for debugging soft-
ware, it is a time-consuming process which requires

Iadarola, G., Martinelli, F., Mercaldo, F. and Santone, A.
Image-based Malware Family Detection: An Assessment between Feature Extraction and Classification Techniques.
DOI: 10.5220/0009817804990506
In Proceedings of the 5th International Conference on Internet of Things, Big Data and Security (IoTBDS 2020), pages 499-506
ISBN: 978-989-758-426-8
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

499



great expertise and high level of concentration, that
makes the process faulty. It follows that designing
efficient classification techniques is the key to keep
as much secure and safe as possible the application
stores.

One good practice in research is to learn the les-
son from other fields, to study recent and interesting
findings in different areas, and applying those intu-
itions and ideas to address different problems. The
computer science field has a wide domain on image
classification. Many methods making use of Machine
Learning and Deep Learning were proposed in the lat-
est year, and they achieved great accuracy in classify-
ing images following similar patterns. As we pointed
out, also the malware in the mobile environment has
a point in common with similar images: they are
grouped by families that share similar code. By fol-
lowing this intuition, we can find works in the liter-
ature that apply image classification models to mal-
ware classification (see Section 2).

This paper introduces a study on some image clas-
sification techniques applied to a malware classifica-
tion problem. We evaluate the effectiveness of a cou-
ple of models proposed in the literature on a collec-
tion of more than 20 thousands malware, split into 10
families (Argus Cyber Security Lab, 2020; Wei et al.,
2017). The aim of the work is being a starting point
for a deeper and complete analysis of all the state-of-
the-art approaches that were adopted for addressing
this classification task.

The paper proceeds as follows: the next section
reports similar works that have a relation with ours;
Section 3 presents the proposed methodology to clas-
sify malware families and the experiments performed
to validate it. Section 4 reports the experimental re-
sults, while Section 5 provides insight discussions
on the strengths and weaknesses of the proposed ap-
proach. Limitations, future works and conclusion are
reported in the last two sections, respectively Sec-
tion 6 and Section 7.

2 RELATED WORK

Malware classification using image processing is a
technique widely adopted in the latest years. Mal-
ware binaries visualized as gray-scale images show
that those belonging to the same malware family ap-
pear very similar in texture and layout, mainly be-
cause code reuse. The first efficient approach was pre-
sented by Nataraj L. et al. (Nataraj et al., 2011), apply-
ing Gabor filter on around 9000 malwares of 25 differ-
ent family and then classifying them using k-nearest
Neighbors approach with Euclidean distance for clas-

sification. They achieved 98% classification accuracy
and demonstrated the feasibility of the methodology.
Moreover, the dataset used in the experiment, called
Malimg, was adopted in many next works as base-
line for comparison. The paper by Ni S. et al. (Ni
et al., 2018) proposes a malware classification algo-
rithm that uses static features extracted by disassem-
ling the malware and encode it by SimHash. Simi-
lar approaches regarding Deep Learning are presented
by Kalash M. et al. (Kalash et al., 2018) and Ka-
banga EK. et al (Kabanga and Kim, 2017), that pro-
pose CNN models for malware image classification
The paper by Agarap AF. and Pepito FJH (Agarap,
2017) presents an interesting comparison between
three different Deep Leaning models (CNN, GRU
and MLP toghether with an SVN) to classify mal-
ware binaries. They adopted the Malimg dataset and
achieved the best result (around 85% accuracy) with
the GRU model. The result presented by Akarsh S.
et al. (Akarsh et al., 2019) improve the accuracy to
94% on the Malimg dataset, by applying an hybrid
cost-sensitive network of one-dimensional CNN and
a Long Short-Term memory model.

3 METHODOLOGY

The methodology proposed is straightforward and
based on papers of similar research (Nataraj et al.,
2011; Ni et al., 2018; Mercaldo and Santone, ).

First of all, the malware are converted into images
by reading malware binaries into matrixes, that can
be seen as a grayscale image. The malware images
analysed came from the AMD dataset (Argus Cyber
Security Lab, 2020; Wei et al., 2017). Following this
conversion, we processed the data by applying differ-
ent filters for static feature extraction and generate a
feature vector for each image. Finally, machine learn-
ing models took the feature vectors as input and per-
form the classification. Figure 1 shows the method
steps, which are explained in the next subsections in
details.

3.1 Dataset Preprocessing

Considering the scope of this work, to compare a cou-
ple of methods and discussing the result, we were not
interested in a complete analysis of the database, but
instead a reliable test on different approaches. There-
fore, we preprocessed the database and selected only
the families with more than 500 example, in order to
have a strong base ground to train the models. By
doing so, we focused the attention on the approaches
instead of the data, and we were able to test different

AI4EIoTs 2020 - Special Session on Artificial Intelligence for Emerging IoT Systems: Open Challenges and Novel Perspectives

500



Figure 1: Steps of the proposed study.

methods with just a few different families but a big
quantity of examples, the key for training Machine
Learning (ML) models. The information regarding
the families selected are shown in Table 1.

3.2 Feature Extraction

We applied 4 different Image filters to the database in
order to extract features from each image and create
feature vectors for the ML models. The next subsec-
tions report information regarding the Image filters.

It is worth noting that this feature extraction step
converts all the images into fixed-size vectors, while
the initial images in the database have different sizes
and dimensions. Indeed, this process modifies the
database, which is not technically composed of im-
ages anymore. The approaches in the literature (see
Section 2) suggest to either resize the images to the
same size, usually a very small one, or convert the
feature vectors to matrices and tract them as images,
in order to apply Deep Learning model on them. We
discuss these solutions in Section 6.

3.2.1 Gabor Filter

The Gabor filters are linear filters used for texture
analysis. They basically look for patterns of specific
frequency content in the image in a localized region
around a point of analysis. We link to reference for
further details on the Gabor filters (Movellan, 2002).

3.2.2 Color Layout Filter

The images in the database did not contain figures
or shapes but basically just different distribution of
colours (grayscales) over different areas. Therefore,
we tested a couple of filters focused on colours, the
Color Layout Filter and the Autocolor Correlogram

Filter (see next subsection), which extract colour lay-
out descriptors capable of capturing the spatial distri-
bution of colour in an image. The Color Layout filter
extracts the MPEG7 features (Kasutani and Yamada,
2001; Cieplinski, 2001), the multimedia content de-
scription standard. The filter divides an image into
several blocks and computes the average colour for
each one, and then features are calculated from the
averages.

3.2.3 Autocolor Correlogram Filter

The Autocolor Correlogram filter focuses on the
colour correlation of an image and encodes the spa-
tial similarities of colours in the image. Briefly, the
colour correlogram merges statistics of amount for
each colour (a traditional colour histogram), with spa-
tial information on the distribution of the colour.

3.2.4 GIST Descriptor

We extract the GIST descriptor (Oliva and Torralba,
2001) for each image. Intuitively, the GIST procedure
summarizes the gradient information (scales, orienta-
tions, edges) of specific areas of the image, to provide
a rough description of the entire image.

3.3 Machine Learning Models

We use Weka 3.8.31 on a Linux environment to as-
sessing different Machine Learning models on the
feature vectors extracted from the malware database.
We decided for standard ML models because we
were interested to test different feature extraction ap-
proaches and combinations. We wanted to focus the
attention on the feature vector generation, instead of
the ML model. Moreover, one more work taking

1https://www.cs.waikato.ac.nz/∼ml/weka/

Image-based Malware Family Detection: An Assessment between Feature Extraction and Classification Techniques

501



into account directly the pictures and applying Deep
Learning models is in progress (see Section 6).

We tried many ML models among the ones avail-
able in the Weka Framework, Table 3 shows the
model assessment experimental results. In details,
we perform experiments with K-nearest neighbours
classifier (Aha et al., 1991) with Euclidean Distance
as distance function, Decision table classifier (Ko-
havi, 1995), the C4.5 (J48) decision tree classi-
fier (Quinlan, 2014), and random decision forest clas-
sifier (Breiman, 2001). We point to the references for
further information regarding these ML models.

4 RESULT

Notations. We compute the metrics of accuracy
(Acc), precision (PR), recall (RC) and F-measure
(Fm) to estimate the performances of our ap-
proach. We considered one specific family at the
time and defined the metrics as follows:

PR =
T P

T P+FP
; RC =

T P
T P+FN

;

Fm =
2PR RC
PR+RC

; Acc =
T P+T N

T P+FN +FP+T N

where T P is the number of malware correctly
identified in that family (True Positives), T N is the
number of malware correctly identified as not be-
longing to that family (True Negatives), FP is the
number of malware incorrectly identified in that
family (False Positives), and FN is the number of
malware incorrectly identified as not belonging to
that family (False Negatives).

As we pointed out in the previous section, we prepro-
cessed the data and resize the database. The original
dataset contained 24549 malware (Argus Cyber Se-
curity Lab, 2020; Wei et al., 2017), divided into 71
families. Each family is also split into several vari-
eties, up to 8 varieties for the same family. Never-
theless, most of the families have just a few malware
as samples. Accordingly, we took into account only
10 families and grouped under the same class all the
varieties for each one. The information regarding the
families selected are shown in Table 1. We removed
60 families up to 71 but this process narrows down
the number of malware only to 20748, by reducing
the size of the dataset just of the 15%. The authors
are planning to take into account the entire dataset in
future works, this point is discussed in Section 6. It
is worth noting that some family have many more ex-
amples than the others, for instance, only the Airpush
family counts for the 38% of the entire database. The

aggregate result of the classification task shown in this
Section refers to the weighted averange.

Table 1: Families selected into the malware database after
preprocessing.

Family No. of Malware
Airpush 7843
BankBot 648
Dowgin 3385

DroidKungFu 545
FakeInst 2172
Fusob 1275
Jisut 560

Kuguo 1199
Mecor 1820
Youmi 1301
Total 20748

We tried different filters and combination of feature
vectors, Table 2 reports information regarding these
databases of vectors, where “Correlogram“ refers to
the Autocolor Correlogram filter (see Section 3.2.3),
“Color“ to the Color Layout filter (see Section 3.2.2),
the Number of Attributes refers to the size of the vec-
tors, and the precision refers to the Random Forest
classifiers.

Table 2: Result of experiments on different feature vectors,
the precision refers to the Random Forest classifiers.

Feature Extraction No. Attributes Precision
GIST 960 91.27%

Correlogram + Color 1058 84.12%
Gabor + Color 93 82.97%
Correlogram 1024 79.93%

Gabor 60 72.26%

We evaluated 4 different ML models: k-nearest neigh-
bours classifier called IBk in Weka (Instance-Based
Learner), Decision Table classifier, J48 classifier and
random forest classifier. The result shows in Table 3
demonstrates that the Random Forest classifier stood
out among all the ML models examined. Therefore,
the following experiments, reported in this Section,
refers to the Random Forest classifiers.

Table 3: Model assessment.

ML model Precision Recall F-Measure
Random Forest 0.91 0.91 0.91

IBk 0.88 0.88 0.88
J48 0.84 0.84 0.84

Decision Table 0.74 0.73 0.71

AI4EIoTs 2020 - Special Session on Artificial Intelligence for Emerging IoT Systems: Open Challenges and Novel Perspectives

502



The confusion matrix for each family is reported in
Table 5, while its graphical normalized representation
is shown in Figure 2. Table 4 summarizes the experi-
ment results achieved by the Random Forest model.

Figure 2: Normalized confusion Matrix with True label on
the y axis and Predicted label on the x one.

5 DISCUSSION

The results in Table 2 and Table 3 demonstrate that the
combination of GIST descriptor and Random Forest
classifier achieves the best performance in the classi-
fication task.

The feature vectors created by the Color layout fil-
ter and Gabor filters may be too small in size for clas-
sifying the malware properly since they have less than
100 attributes each (93 and 60 respectively). Nonethe-
less, the Color Layout filters, which has just 33 at-
tributes, improve considerably the performance of the
classification; the Gabor filter only achieved a pre-
cision of 72%, while the Gabor and Color filters to-
gether jumped up to 83%. This improvement may be
explained with the importance of the colour in this
classification task since the images are essentially a
colour (grayscale) distribution with no shapes, edges
or elements as a standard image classification task
could have.

Probably, the GIST filter outperforms the other
feature extraction approaches because has a suitable
size (960 attributes) to provide variety and richness
information to classify the malware correctly. Also, it
is the one that provides the broader representation of

the image, because it summarizes information regard-
ing orientation, scales and gradients.

As far as the ML models are concerned, the ex-
perimental results prove that the Random Forest clas-
sifier outperforms all the other models. By looking
at Table 4 and the related heat map in Figure 2, the
data confirms that the classifier achieves good perfor-
mance, with accuracy values close to 1 for most of the
families except Airpush, Dowgin, Kuguo and Youmi.
In particular, the performance in the precision evalu-
ation for Dowgin and Kuguo drop down the final re-
sult, indeed, they are the only two families with pre-
cision values under 0.89 (0.79 both of them). This is
clearly displayed in Figure 2, where we can see the
differences in performances between these two fami-
lies and all the others. Moreover, it appears that many
samples of Dowgin malware were wrongly classified
as Kuguo and vice versa. These two families together
count for the 19% of the total number of malware in
the database, thus they considerably influence the fi-
nal result. The anomaly may be explained by looking
at the two family images. Figure 3 reports a compari-
son between two samples of the Dowgin and Kuguo.

Figure 3: Example of malware belonging to Kuguo (left)
and Dowgin (right) family.

The two images look similar, they have comparable
patterns in colour disposition and distribution, which
may have led the classifier to misclassified them.

6 LIMITATIONS AND FUTURE
WORKS

This paper reports preliminary results and the authors
plan to extend the research with further experiments
in the malware classification and detection field.

Image-based Malware Family Detection: An Assessment between Feature Extraction and Classification Techniques

503



Table 4: Summary of experiment result on the malware families.

TP Rate FP Rate Accuracy Precision Recall F-Measure Family
0.964 0.050 0.955 0.922 0.964 0.942 Airpush
0.989 0.000 1.000 0.997 0.989 0.993 BankBot
0.824 0.044 0.934 0.785 0.824 0.804 Dowgin
0.754 0.002 0.992 0.922 0.754 0.829 DroidKungFu
0.995 0.001 0.998 0.989 0.995 0.992 FakeInst
0.994 0.000 1.000 0.999 0.994 0.996 Fusob
0.975 0.000 0.999 0.996 0.975 0.986 Jisut
0.708 0.012 0.972 0.786 0.708 0.745 Kuguo
0.995 0.000 0.999 0.998 0.995 0.996 Mecor
0.693 0.006 0.976 0.894 0.693 0.781 Youmi
0.913 0.027 0.969 0.913 0.913 0.911 Weighted Avg.

Table 5: Summary about confusion matrix per family.

Family TP TN FP FN
Airpush 7561 12263 642 282
BankBot 641 20098 2 7
Dowgin 2788 16600 763 597

DroidKungFu 411 20168 35 134
FakeInst 2161 18552 24 11
Fusob 1267 19472 1 8
Jisut 546 20186 2 14

Kuguo 849 19318 231 350
Mecor 1811 18924 4 9
Youmi 902 19340 107 399

First of all, we plan to include all the families in the
database. By removing the preprocessing step, we are
interested in moving the analysis to a wider investi-
gation, and studies the performances of ML models
when trained with just a few examples.

Moreover, we are interested in applying Deep
Learning models directly on the images. To do so, we
need to adopt new approaches to resize the database.
The images are greatly different in sizes and dimen-
sions, and many of them are also notable big for
grayscale images (more than 4 Mb). The Deep Learn-
ing analysis may be timing and computationally ex-
pensive. This approach needs to be carefully vali-
dated, in order to find the best trade-off between ef-
ficiency and accuracy. One solution could be to ex-
tract features and then convert the vectors to matrices
and then treat them as images. It could be feasible
in terms of time and computational power, but the
analysis would be still on feature vectors instead of
real images. On the other hand, it may be achievable
to apply Deep Learning models on the images them-
self, without a significant efficiency loss, by perform-
ing standardization techniques and applying filters for
compression.

We did not take into account the obfuscation,

which is a serious complication in malware detection,
since it may mislead the classification. However, we
plan to test also the robustness of the approaches ex-
amined by applying adversarial learning approaches
and evaluate whenever the models are still able to de-
tect the malware or not.

7 CONCLUSION

The paper presents a brief analysis of different feature
extraction techniques and machine learning models to
address the problem of classifying malware into fam-
ilies. The experiments were performed on a dataset
of more than 20 thousand malware (Argus Cyber Se-
curity Lab, 2020; Wei et al., 2017), divided into 10
different families. The malware were converted to
grayscale images by reading the binaries into ma-
trixes. We evaluated four different Feature extraction
approaches (Gabor filter, GIST descriptor, Color Lay-
out filter and Autocolor Correlogram filter) and sev-
eral combinations between them. Also, we perform
a model assessment with different machine learning
models. In details, we tested K-nearest neighbours
classifiers, Decision table classifiers, the C4.5 de-
cision tree classifiers, and Random Decision Forest
classifiers. Among all of them, the Random Forest
classifier achieved the best result. It reached 0.97
as accuracy, 0.91 as precision, recall, and f-measure.
The authors aim to extend the paper by adding more
classifiers (Marulli and Visaggio, 2019; Pota et al.,
2019), feature extraction techniques (Amato et al.,
2018; Marulli and Mercaldo, 2017), and making the
entire process robust from potential attacks against
machine learning.

AI4EIoTs 2020 - Special Session on Artificial Intelligence for Emerging IoT Systems: Open Challenges and Novel Perspectives

504



ACKNOWLEDGEMENTS

This work has been partially supported by MIUR -
SecureOpenNets and EU SPARTA contract 830892,
CyberSANE projects, and the EU project CyberSure
734815.

REFERENCES

Agarap, A. F. (2017). Towards building an intelligent anti-
malware system: a deep learning approach using sup-
port vector machine (svm) for malware classification.
arXiv preprint arXiv:1801.00318.

Aha, D. W., Kibler, D., and Albert, M. K. (1991).
Instance-based learning algorithms. Machine learn-
ing, 6(1):37–66.

Akarsh, S., Simran, K., Poornachandran, P., Menon, V. K.,
and Soman, K. (2019). Deep learning framework
and visualization for malware classification. In 2019
5th International Conference on Advanced Computing
& Communication Systems (ICACCS), pages 1059–
1063. IEEE.

Amato, F., Di Martino, B., Marulli, F., and Moscato, F.
(2018). A federation of cognitive cloud services for
trusting data sources. In Conference on Complex,
Intelligent, and Software Intensive Systems, pages
1022–1031. Springer.

Argus Cyber Security Lab (2020). Android malware
dataset. https://amd.arguslab.org. Accessed: 26-02-
2020.

Breiman, L. (2001). Random forests. Machine learning,
45(1):5–32.

Canfora, G., Martinelli, F., Mercaldo, F., Nardone, V., San-
tone, A., and Visaggio, C. A. (2018). Leila: formal
tool for identifying mobile malicious behaviour. IEEE
Transactions on Software Engineering, 45(12):1230–
1252.

Casolare, R., Martinelli, F., Mercaldo, F., and Santone, A.
(2019). A model checking based proposal for mo-
bile colluding attack detection. In 2019 IEEE Inter-
national Conference on Big Data (Big Data), pages
5998–6000. IEEE.

Cieplinski, L. (2001). Mpeg-7 color descriptors and their
applications. In International Conference on Com-
puter Analysis of Images and Patterns, pages 11–20.
Springer.

Cimino, M. G., De Francesco, N., Mercaldo, F., San-
tone, A., and Vaglini, G. (2020). Model checking
for malicious family detection and phylogenetic anal-
ysis in mobile environment. Computers & Security,
90:101691.

Iadarola, G., Martinelli, F., Mercaldo, F., and Santone, A.
(2019). Formal methods for android banking malware
analysis and detection. In 2019 Sixth International
Conference on Internet of Things: Systems, Manage-
ment and Security (IOTSMS), pages 331–336. IEEE.

Kabanga, E. K. and Kim, C. H. (2017). Malware im-
ages classification using convolutional neural net-

work. Journal of Computer and Communications,
6(1):153–158.

Kalash, M., Rochan, M., Mohammed, N., Bruce, N. D.,
Wang, Y., and Iqbal, F. (2018). Malware classification
with deep convolutional neural networks. In 2018 9th
IFIP International Conference on New Technologies,
Mobility and Security (NTMS), pages 1–5. IEEE.

Kasutani, E. and Yamada, A. (2001). The mpeg-7 color
layout descriptor: a compact image feature descrip-
tion for high-speed image/video segment retrieval. In
Proceedings 2001 International Conference on Image
Processing (Cat. No. 01CH37205), volume 1, pages
674–677. IEEE.

Kohavi, R. (1995). The power of decision tables. In Euro-
pean conference on machine learning, pages 174–189.
Springer.

Marulli, F. and Mercaldo, F. (2017). Let’s gossip: Exploring
malware zero-day time windows by social network
analysis. In 2017 31st International Conference on
Advanced Information Networking and Applications
Workshops (WAINA), pages 704–709. IEEE.

Marulli, F. and Visaggio, C. A. (2019). Adversarial deep
learning for energy management in buildings. In Pro-
ceedings of the 2019 Summer Simulation Conference,
page 50. Society for Computer Simulation Interna-
tional.

McLaughlin, N., Martinez del Rincon, J., Kang, B., Yer-
ima, S., Miller, P., Sezer, S., Safaei, Y., Trickel, E.,
Zhao, Z., Doupé, A., et al. (2017). Deep android mal-
ware detection. In Proceedings of the Seventh ACM
on Conference on Data and Application Security and
Privacy, pages 301–308.

Mercaldo, F. and Santone, A. Deep learning for image-
based mobile malware detection. Journal of Computer
Virology and Hacking Techniques, pages 1–15.

Movellan, J. R. (2002). Tutorial on gabor filters. Open
Source Document.

Nataraj, L., Karthikeyan, S., Jacob, G., and Manjunath, B.
(2011). Malware images: visualization and automatic
classification. In Proceedings of the 8th international
symposium on visualization for cyber security, pages
1–7.

Ni, S., Qian, Q., and Zhang, R. (2018). Malware identifi-
cation using visualization images and deep learning.
Computers & Security, 77:871–885.

Oliva, A. and Torralba, A. (2001). Modeling the shape
of the scene: A holistic representation of the spatial
envelope. International journal of computer vision,
42(3):145–175.

Pota, M., Marulli, F., Esposito, M., De Pietro, G., and
Fujita, H. (2019). Multilingual pos tagging by a
composite deep architecture based on character-level
features and on-the-fly enriched word embeddings.
Knowledge-Based Systems, 164:309–323.

Quinlan, J. R. (2014). C4. 5: programs for machine learn-
ing. Elsevier.

StatCounter (2020). Mobile operating system mar-
ket share worldwide. https://gs.statcounter.com/
os-market-share/mobile/worldwide. Accessed: 01-
03-2020.

Image-based Malware Family Detection: An Assessment between Feature Extraction and Classification Techniques

505



Statista platform (2018). Average number of new android
app releases per day from 3rd quarter 2016 to 1st quar-
ter 2018. https://www.statista.com/statistics/276703/
android-app-releases-worldwide/. Accessed: 01-03-
2020.

Suarez-Tangil, G., Dash, S. K., Ahmadi, M., Kinder, J., Gi-
acinto, G., and Cavallaro, L. (2017). Droidsieve: Fast
and accurate classification of obfuscated android mal-
ware. In Proceedings of the Seventh ACM on Confer-
ence on Data and Application Security and Privacy,
pages 309–320.

Wei, F., Li, Y., Roy, S., Ou, X., and Zhou, W. (2017).
Deep ground truth analysis of current android mal-
ware. In International Conference on Detection of
Intrusions and Malware, and Vulnerability Assess-
ment (DIMVA’17), pages 252–276, Bonn, Germany.
Springer.

AI4EIoTs 2020 - Special Session on Artificial Intelligence for Emerging IoT Systems: Open Challenges and Novel Perspectives

506


