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Abstract: Inner product encryption is a powerful cryptographic primitive, where a private key and a ciphertext are both
associated with a predicate vector and an attribute vector, respectively. A successful decryption requires the
inner product of the predicate vector and the attribute vector to be zero. Most of the existing inner product
encryption schemes suffer either long private key or heavy decryption cost. In this manuscript, an efficient
inner product encryption is proposed. The length for a private key is only an element in G and an element in
Zp. Besides, only one pairing computation is needed for decryption. Moreover, both formal security proof and
implementation result are demonstrated in this manuscript. To the best of our knowledge, our scheme is the
most efficient one in terms of the private key length and the number of pairings computation for decryption.

1 INTRODUCTION

Traditional public key encryption provides only
coarse-grained access control. That is, given a cipher-
text encrypted under a public key, only the owner of
the corresponding private key can obtain the plaintext.
However, in many applications, such as distributed
file systems and cloud services, more complex ac-
cess policies may be necessary. Compared with tra-
ditional public key encryption, predicate encryption
Boneh and Waters (2007); Katz et al. (2008) can pro-
vide fine-grained access control over encrypted data.
Such encryption is suitable for various applications,
for instance, searching over encrypted data. In a pred-
icate encryption scheme, the ciphertext for message
M is associated with an attribute x, and the private
key is associated with a predicate f . A successful de-
cryption requires that f (x) = 1.

Katz et al. (2008) first considers the predicate for
the computation of inner product over ZN , where N
is a composite number. They also gave an instance
for inner product predicate, called inner product en-
cryption (IPE). In an IPE scheme, the ciphertext asso-
ciated with an attribute vector x can be decrypted by
the private key associated with a predicate vector y,
if and only if 〈x,y〉= 0 (Here 〈x,y〉 denotes the stan-
dard inner product operation for vectors x,y). Due
to its flexibleness, lots of works on IPE scheme have
been proposed, such as pairing-based IPE schemes
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Okamoto and Takashima (2009, 2015); Kurosawa and
Phong (2017); Chen et al. (2018); Zhang et al. (2019)
and lattice-based IPE schemes Agrawal et al. (2011);
K. Xagawa (2013); Li et al. (2017); Wang et al.
(2018).

Although many IPE schemes have been proposed,
these schemes suffer from either large private key
sizes or heavy computation costs, as described below:

• Pairing-based IPE schemes: existing pairing-
based IPE schemes are generally computationally
inefficient because of the large number of pair-
ings (linear to vector lengths) used during decryp-
tion. In addition, the private key length of most
schemes is also linear to vector lengths, so it is
not practical enough.

• Lattice-based IPE schemes: though lattice-based
IPE schemes are believed to be quantum-resistant,
nearly all of them suffer from either large key size,
or small message space.

All the problems mentioned above will make an IPE
scheme impractical and brings us to the following
open question:

Can we optimize the length of the private key and
reduce the cost of decryption, and further make them

constant in relation to vector lengths?
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1.1 Contributions

In this manuscript, we give a positive answer to the
above question by proposing an effective inner prod-
uct encryption scheme. More preciously, in the pro-
posed scheme, the length of a private key is only an
element in G and an element in Zp, i.e., independent
of the length of the predicate vector. Besides, the
decryption is efficient since only one pairing is nec-
essary (also independent of the length of the predi-
cate vector). We also provide rigours proof to show
that our proposed scheme is co-selective IND-CPA
secure under modified decisional Diffie-Hellman as-
sumption. Furthermore, Table 1 and Table 3 show the
comparison with other state-of-the-art schemes, illus-
trating that our proposed scheme is not only secure,
but also very practical.

2 PRELIMINARIES

2.1 Notations

Given a set S, “choose an element x randomly from

the set S” will be denoted as “x $←− S”. We use x←A to
denote “x is the output of the algorithm A”. The bold
lowercase latter, e.g., s, is used to denote a vector. For
a vector s, si denotes the i-th entry of vector s. Given
two vectors x,y, we denote the inner product of these
two vectors as 〈x,y〉. The set of positive integer and
integer are represented by N and Z, respectively. For
a prime p, Zp denotes the set of integers module p.

2.2 Bilinear Maps

Let G be an additive cyclic group and GT be a mul-
tiplicative cyclic group, where the order of G and GT
is a large prime p (i.e., |G| = |GT | = p). Besides,
let P be a generator of G. A bilinear map (pairing)
e :G×G→GT is a mapping with the following prop-
erties.

• Bilinearity. For a,b ∈ Zp, e(aP,bP) = e(P,P)ab.

• Non-Degeneracy. ∃P ∈ G, such that e(P,P) 6=
1GT .

• Computability. The mapping e is efficiently
computable.

2.3 Complexity Assumption

In this work, we take advantage of the generalized de-
cisional Diffie-Hellman exponent (GDDHE) problem
due to Boneh et al. (2005). The GDDHE problem

is a generic framework to create new complexity as-
sumptions. We first give an overview of the GDDHE
problem. Let

• p be a prime;
• s,n be two positive integers;
• P,Q ∈ Fp[X1, . . . ,Xn]

s be two s-tuple of n-variate
polynomials over Fp;

• f be a n-variate polynomial in Fp[X1, . . . ,Xn].
Note that Q,QT are two ordered sets with multi-
variate polynomials, and thus we denote Q =
(q1,q2, . . . ,qs) and R = (r1,r2, . . . ,rs). As stated in
Boneh et al. (2005), we require p1 = q1 = 1 to be
two constant polynomials. Consider a bilinear map
e : G×G→ GT with the generator P of G and gT =
e(P,P) ∈ GT . For a vector (x1,x2, . . . ,xn) ∈ Fn

p, we
define

Q(x1,x2, . . . ,xn)P
= (q1(x1,x2, . . . ,xn)P, . . . ,qs(x1,x2, . . . ,xn)P) ∈Gs,

and

gR(x1,x2,...,xn)
T

= (gr1(x1,x2,...,xn)
T , . . . ,grs(x1,x2,...,xn)

T ) ∈Gs
T .

By “ f depends on (Q,R)” we mean that there are s2+
s constants {ai, j}s

i, j=1 and {bk}s
k=1 such that

f =
s

∑
i, j=1

ai, jqiq j +
s

∑
k=1

bkrk.

We say that f is independent of (Q,R) if f is not de-
pend on (Q,R).
Definition 1 (The (Q,R, f )-GDDHE Problem).
Given (Q(x1, . . . ,xn)P,g

R(x1,...,xn)
T ,Z)∈Gs×Gs

T ×GT ,

decide if Z ?
= g f (x1,...,xn)

T . For an algorithm A , the ad-
vantage of A in solving the (Q,R, f )-GDDHE prob-
lem is defined as

Adv(Q,R, f )-GDDHE(A)

=
∣∣∣A(Q(x1, . . . ,xn)P,g

R(x1,...,xn)
T ,g f (x1,...,xn)

T )

− A(Q(x1, . . . ,xn)P,g
R(x1,...,xn)
T ,Z $←−GT )

∣∣∣ .
Definition 2 (The Decisional Diffie-Hellman Problem
over GT (DDHGT problem)). Let gT = e(P,P) be a
generator of GT . Given (P,gT ,A = ga

T ,B = gb
T ,C) ∈

G×G4
T , where a,b $←− Zp, decide whether C = gab

T or
an random element from GT .
Definition 3 (The Modified Decisional Diffie-Hell-
man Problem over GT (M-DDHGT problem)). Let
gT = e(P,P) be a generator of GT . Given (P,A′ =

aP,gT ,A = ga
T ,B = gb

T ,C) ∈ G2×G4
T , where a,b $←−

Zp, decide whether C = gab
T or an random element

from GT .
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Theorem 1 (The Modified Decisional Diffie-Hellman
Assumption over GT (M-DDHGT assumption)). We
say that the M-DDHGT assumption holds if there is
no algorithm D solving the M-DDHGT problem with
a non-negligible advantage.

Proof. Due to limited space, we give the proof in the
full version of this paper Tseng et al. (2020).

2.4 Definition of Inner Product
Encryption

An inner product encryption scheme consists of four
algorithms: Setup, KeyGen,Encrypt, and Decrypt.
The details of the algorithms are shown below.

Setup(1λ,1`). Given the security parameters (1λ,1`),
where λ, ` ∈ N, the algorithm outputs the system pa-
rameter params and the master secret key msk. Note
that the description of the attribute vector space A
and the predicate vector space P will be implicitly
included in params. Besides, we require that the in-
ner product operation over A and P should be well-
defined.
Encrypt(params,x,M). Given the system parameter
params, an attribute vector x ∈ A, and a message M,
the algorithm outputs a ciphertext Cx for the attribute
vector x.
KeyGen(params,msk,y). Given the system parame-
ter params, a predicate vector y ∈ P, the algorithm
outputs the private key Ky for the predicate vector y.
Decrypt(params,Cx,Ky). Given the system parame-
ter params, a ciphertext Cx, and the private key Ky,
the algorithm output a message M or a error symbol
⊥.

The correctness is defined as follows. For all λ, `∈
N, let Cx←Encrypt(params,x∈A,M) and let Ky←
KeyGen(params,msk,y ∈P), we have

M← Decrypt(params,Cx,Ky) if 〈x,y〉= 0;
⊥← Decrypt(params,Cx,Ky) if 〈x,y〉 6= 0,

where (params,msk)← Setup(1λ,1`).

2.5 Security Model

Here, we first introduce the IND-CPA security for
inner product encryption. The IND-CPA game of an
inner product encryption for attribute vector space A
and predicate vector space P is defined as an interac-
tive game between a challenger C and an adversary A .

Setup. The challenger C runs Setup(1λ,1`) and
sends the system parameter params to the adversary
A .

Query Phase 1. The challenger answers polynomi-
ally many private key queries for y ∈P for the adver-
sary A by returning Ky←KeyGen(params,msk,y).
Challenge. The adversary A submits an attribute
vector x∗ ∈ A such that 〈x∗,y〉 6= 0 for all y
which has been queried in Query Phase 1, and
two massages M0,M1 with the same length to the
challenger C . Then C randomly chooses β ∈
{0,1} and returns a challenge ciphertext Cx∗ ←
Encrypt(params,x∗,Mβ).
Query Phase 2. This phase is the same as Query
Phase 1, except that the adversary is not allowed to
make a query with y ∈P such that 〈x∗,y〉 6= 0.
Guess. The adversary A outputs a bit β′ and wins the
game if β′ = β. The advantage of an adversary for
winning the IND-CPA game is defined as

AdvIND-CPA(A) =

∣∣∣∣Pr[β′ = β]− 1
2

∣∣∣∣ .
Definition 4 (IND-CPA Security for Inner Product
Encryption). We say that an inner product encryp-
tion is IND-CPA secure if there is no probabilis-
tic polynomial-time adversary A wins the IND-CPA
game with a non-negligible advantage.

We then present the co-selective security Attra-
padung and Libert (2010); Attrapadung (2014) for in-
ner product encryption. The co-selective IND-CPA
(csIND-CPA) game is defined as the same of the IND-
CPA game, except that the adversary A is forced to
commit ahead before Setup phase q predicate vectors
y(1), . . . ,y(q) for the private key queries, where q is a
polynomial in the security parameter λ, and A is re-
quired to invoke Challenge phase with an attribute
vector x∗ ∈ A where 〈x∗,y( j)〉 6= 0 for j = 1, . . . ,q.
Definition 5 (Co-Selective IND-CPA Security for In-
ner Product Encryption). An inner product encryption
scheme is said to be csIND-CPA secure if no prob-
abilistic polynomial-time adversary wins the csIND-
CPA game with non-negligible advantage.

3 THE PROPOSED INNER
PRODUCT ENCRYPTION
SCHEME

Our IPE scheme consists of four algorithms: Setup,
KeyGen, Encrypt, and Decrypt. The details of the
proposed scheme are demonstrated below.

Setup(1λ,1`). Given the security parameters (1λ,1`),
where λ, ` ∈ N, the algorithm performs as follows.
1. Choose bilinear groups G,GT of prime order p >

2λ. Let P and gT = e(P,P) be the generator of G
and GT , respectively.
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2. Set the predicate vector space and the attribute
vector space to Z`

p.

3. Choose s = (s1,s2, . . . ,s`)
$←− Z`

p.

4. Compute ĥ = (gsi
T )

`
i=1 = (ĥ1, . . . , ĥ`).

5. Output the system parameter params= (P,gT , ĥ),
and the master secret key msk= s.

Encrypt(params,x,M). Given the system parameter
params, a vector x = (x1,x2, . . . ,x`) ∈ Z`

p, and a mes-
sage M ∈GT , the algorithm performs as follows.

1. Choose r,δ $←− Zp.

2. Compute C0 = rP, and Ĉ0 = gr
T .

3. Compute Ci = ĥr
i ·g

δxi
T ·M for i = 1 to `.

4. Output the ciphertext Cx = (C0, Ĉ0,C1,C2, . . . ,C`)

KeyGen(params,msk,y). Given the system param-
eter params, a master secret key msk, and a vector
y = (y1,y2, . . . ,y`) ∈ Z`

p, where ∑
`
i=1 yi 6= 0, the algo-

rithm performs as follows.

1. Choose k $←− Zp.

2. Compute K0 = kP, and K1 = 〈s,y〉+ k mod p.

3. Output the private key Ky = (K0,K1).
Decrypt(params,Cx,Ky). Given the system parame-
ter params, a ciphertext Cx, and the private key Ky,
where y = (y1,y2, . . . ,y`) the algorithm performs as
follows.
1. Compute D0 = e(K0,C0).

2. Compute D1 = ∏
`
i=1 C

yi
i .

3. Compute D=
D0 ·D1

Ĉ
K1
0

.

4. Compute d = (∑`
i=1 yi)

−1 mod p.

5. Compute M = Dd .

3.1 Correctness

The correctness of the proposed scheme is shown as
follows.

• D0 = e(K0,C0) = e(kP,rP) = gkr
T .

•

D1 = ∏
`
i=1 C

yi
i

= ∏
`
i=1(ĥ

r
i ·g

δxi
T ·M)yi

= ∏
`
i=1(ĥ

r
i )

yi · (gδxiyi
T ) · (Myi)

= ∏
`
i=1((g

r
T )

si)yi ∏
`
i=1(g

δxiyi
T )∏

`
i=1(M

yi)

= gr〈s,y〉
T ·gδ〈x,y〉

T ·M∑
`
i=1 yi .

• Ĉ
K1
0 = grK1

T = gr〈s,y〉+rk
T

•
D =

D0 ·D1

Ĉ
K1
0

=
gr〈s,y〉

T ·gδ〈x,y〉
T ·M∑

`
i=1 yi ·gkr

T

gr〈s,y〉+rk
T

= gδ〈x,y〉
T ·M∑

`
i=1 yi

• We have that D= M∑
`
i=1 yi iff 〈x,y〉= 0.

• Thus Dd = M∑
`
i=1 yi·((∑`

i=1 yi)
−1 mod p) = M.

3.2 Security Proof

Theorem 2. The proposed scheme is csIND-CPA se-
cure for q private key queries, where q is a polynomial
in the security parameter λ, under the M-DDHGT as-
sumption.

Proof. Due to limited space, we give the proof in the
full version of this paper Tseng et al. (2020).

4 COMPARISON AND
IMPLEMENTATION

In this section, we compare the efficiency of the pro-
posed IPE scheme with the previous works, where the
result is shown in Table 1. The comparison focuses on
two parts, one is the private key length, and another
is the number of pairing operations in the decryption
algorithm. Since the efficiency of composite order bi-
linear groups is much lower than that of prime order
groups, the order types of bilinear groups used in each
scheme are also marked in the comparison table.

We also implement our scheme and the schemes
of Attrapadung and Libert (2012); Kim et al. (2016);
Ramanna (2016), in order to show the efficiency com-
parison. The environment of the implementation is
shown in Table 2 and the implementation result is
shown in Table 3. We note that due to limited space,
please refer to the full version Tseng et al. (2020) for
more comparison details and implementation details.

5 CONCLUSION

This paper propose a practical inner product encryp-
tion scheme with constant-size private keys and con-
stant pairing computations for decryption. More
concretely, the private key of the proposed scheme
has only an element in G and an element in Zp,
and decryption requires only one pairing calculation.
The security proof shows that our proposed scheme
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Table 1: Efficiency Comparison. Here, ` denotes the vector length for an IPE scheme; |Zp| and |G| denote the bit length of
the representations for an element in Zp and G, respectively; m denotes the leakage-resilience parameter.

Private Key Number of Pairings Group
Length for Decryption Order

Katz et al. (2008) (2`+1)|G| 2`+1 Composite
Okamoto and Takashima (2009) (`+3)|G| `+3 Prime
Attrapadung and Libert (2010)-1 (`+1)|G| 2 Prime
Attrapadung and Libert (2010)-2 (`+6)|G|+(`−1)|Zp| 9 Prime

Lewko et al. (2010) (2`+3)|G| 2`+3 Prime
Okamoto and Takashima (2011)-1 (4`+1)|G| 9 Prime
Okamoto and Takashima (2011)-2 9|G| 9 Prime
Okamoto and Takashima (2011)-3 11|G| 11 Prime

Park (2011) (4`+2)|G| 4`+2 Prime
Okamoto and Takashima (2012a) (4`+2)|G| 4`+2 Prime

Okamoto and Takashima (2012b)-1 (15`+5)|G| 15`+5 Prime
Okamoto and Takashima (2012b)-2 (21`+9)|G| 21`+9 Prime

Kawai and Takashima (2014) 6`|G| 6` Prime
Zhenlin and Wei (2015) `|G| ` Composite

Kim et al. (2016) 3|G| 3 Prime
Huang et al. (2016) (4`+2)|G| 4`+4 Prime
Ramanna (2016)-1 (2`+1)|G|+(`−1)|Zp| 3 Prime
Ramanna (2016)-2 5|G| 3 Prime

Kurosawa and Phong (2017) 2m|G| 2m Prime
Xiao et al. (2017) (4`+5)|G| 4`+5 Prime

Chen et al. (2018)-1 5|G| 5 Prime
Chen et al. (2018)-2 7|G| 7 Prime
Zhang et al. (2019) (`+1)|G| `+1 Composite

Ours 1|G|+1|Zp| 1 Prime

Table 3: The Implementation Result.

Encryption Decryption Private Key Ciphertext
Time (ms) Time (ms) Length (kb) Length (kb)

Attrapadung and Libert (2010) 100 100 31.7 0.937
Kim et al. (2016) 170 140 0.955 17.5
Ramanna (2016) 260 140 1.59 25.9

Ours 20 10 0.37 31.3

Table 2: The Environment of the Implementation.

Specification
OS Ubuntu 18.04 LTS
CPU Intel i7-4790 3.6GHz
RAM 8 gb
Language Python 3.6
Library Charm-Crypto v0.50

is co-selective IND-CPA secure under modified de-
cisonal Diffie-Hellman assumption. Experimental re-
sults show that comparing with other schemes, our
proposed scheme can effectively reduce the encryp-
tion and decryption time and private key length.
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