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Abstract: Achieving states of high focus (i.e., Flow, Immersion) in learning situations is linked with the motivation to 
learn. Developing a tool to measure such states could potentially be used to evaluate and improve learning 
system potential and thus learning effect. With this purpose in mind, correlations between physiological data 
and states of high focus were tried to be discovered in a prior study. Physiological data from over 40 
participants was recorded and analyzed for correlations with states of high focus. However, no significant 
correlations between physiological data and elicited states of high focus have been found yet. Revisiting the 
results, it was concluded that especially the quality and density of emotion recognition data, elicited by a 
video-based approach might have potentially been insufficient. In this work in progress paper, a method with 
the intention of improving the quality and density of video data by way of implementing a high frame rate 
video approach is outlined, thus enabling the search for correlations of physiological data and states of high 
focus. 

1 INTRODUCTION 

Serious Games – games, which do not exclusively 
focus on entertainment value, but rather on achieving 
learning experiences in players – are successful tools 
to improve education (Girard, Écalle and Magnan, 
2013). In this field of technology, the biggest question 
is: How might the learning effect be improved even 
further?   

Previous studies have found that the learning 
effect is linked to the fun games provide to players 
(Deci and Ryan, 1985; Krapp, 2009), thus, raising the 
level of fun and measuring its increase becomes more 
and more important.  

Similar to the definition of Flow – as the state of 
optimal enjoyment of an activity (Csikszentmihalyi, 
1991) and Immersion as the sub-optimal state of an 
experience (Cairns, 2006), fun is defined as the 
process of becoming voluntarily engrossed in an 
activity. As such, measuring these states of high focus 
becomes interesting when analyzing the fun 
experienced during gameplay (Beume et al., 2008).  

Both Flow and Immersion are currently measured 
using questionnaires (Nordin, Denisova and Cairns, 
2014). The questionnaires can be elicited either 

during the game – disrupting the player’s 
concentration – or after the game, leading to 
imprecise results. Additionally, questionnaires can 
only elicit subjective measurements, further 
degrading the quality of the data gathered.  

For this reason, the development of a system for 
automatic measurement of Immersion and Flow 
becomes increasingly interesting. Instead of using 
questionnaires filled out by participants, in previous 
work (Atorf et al., 2016; Kannegieser et al., 2018) a 
study was introduced, which aimed to further the 
understanding of how Flow and Immersion are linked 
together and to ease future work towards a new 
measurement method using physiological data to 
determine their current Flow or Immersion state.  

Such a measurement method would provide 
Serious Game developers with better, more objective 
insight about how much fun, and respectively, how 
much learning value is provided by their games.  

In a previous study, first steps had been taken in 
in the direction of developing such a method. Based 
on the measured data, no correlations between states 
of high focus and physiological signals were found. 
However, this does not yet prove that no such 
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correlation exists and better data quality and density 
might deliver different results.  

The next Chapter explores relevant concepts by 
reviewing related research and outlines the study 
preceding this one, in which no correlations had been 
found. Then, Chapter 3 delineates a new 
measurement method that to be integrated into the 
existing experiment setup with the intention of 
improving data quality and density, as suggested 
above. 

2 RELATED WORK 

Flow was first described by Csikszentmihalyi as the 
state of the optimal experience of an activity 
(Csikszentmihalyi, 1991). When entering a state of 
Flow, even taxing activities like work no longer feel 
taxing, but rather feel enjoyable. However, the Flow 
state cannot be achieved for every activity. 
Csikszentmihalyi bases flow on the model of extrinsic 
and intrinsic motivation. Only intrinsically motivated 
actions, which are not motivated by external factors, 
can reach the Flow state. Flow is reachable when the 
challenge presented by such an intrinsically 
motivated action is balanced with the skill of the 
person performing the task. All this makes Flow an 
interesting point of research concerning games, as 
playing games is usually intrinsically motivated. 
Flow is mapped to games in the GameFlow 
questionnaire (Sweetser et al., 2005). 

There exist two concurrent definitions of 
Immersion. The first definition is called presence-
based Immersion and refers to the feeling of being 
physically present in a virtual location. The second 
definition is known as engagement-based Immersion. 
It defines Immersion based on the strength of a 
player’s interaction with the game. The model given 
by Cairns et al. in their series of papers (Cairns et al., 
2006; Jenett et al., 2008), defines Immersion as a 
hierarchical structure, with different barriers of entry. 
The lowest level, Engagement, is reached by 
interacting with the game and spending time with it. 
Engrossment is reached by becoming emotionally 
involved with the game. During this state, feelings of 
temporal and spatial dissociation are starting to 
appear. The final state, Total Immersion, is reached 
by players having their feelings completely focused 
on the game. Cheng et al. improved upon this 
hierarchical model by adding dimensions to the three 
levels of the hierarchy (Cheng et al., 2015). The 
Engagement level is split into the three dimensions: 
Attraction, Time Investment and Usability. The 
second level, Engrossment, is split into Emotional 

Attachment, which refers to attachment to the game 
itself, and Decreased Perceptions. Finally, Total 
Immersion is defined by the terms Presence and 
Empathy.  

Table 1: Comparison of similarities in Flow and Immersion 
definitions. 

Flow Immersion 
Task The Game 
Concentration Cognitive 

Involvement 
Skill/Challenge 
Balance 

Challenge 

Sense of Control Control 
Clear Goals Emotional 

Involvement 
Immediate Feedback - 
Reduced Sense of 
Self and of Time 

Real World 
Dissociation 

 
Flow and Immersion share many similarities. 

Both have similar effects, such as decreased 
perceptions of both time and the environment, and 
refer to a state of focus (see Table 1.). 

Georgiou and Kyza even take the empathy 
dimension in the immersion model by Cheng et al. 
and replace it with Flow (Georgiou and Kyza, 2017). 

There are two main differences between the two 
definitions: First, Flow does not define an emotional 
component, while Immersion is focused heavily on 
the emotional attachment of players to the game. 
Second, while Flow refers to a final state of complete 
concentration, Immersion refers to a range of 
experiences, ranging from minimal engagement to 
complete focus on the game. 

The model used in previous work (Kannegieser et 
al., 2018) is based on the Flow model presented by 
Csikszentmihalyi (Csikszentmihalyi, 1991) and the 
Immersion model by Cheng et al. (Cheng et al., 
2015), which itself is a refinement of the hierarchical 
model presented by Cairns et al.. Flow, as the optimal 
experience of an action, is considered the highest 
point in the Immersion hierarchy, which implies that 
Total Immersion and Flow are regularly experienced 
together. Figure 1 presents the Immersion hierarchy 
imposed on top of the three-channel model by 
Csikszentmihalyi. As Immersion grows the 
possibility to reach the Flow state increases. It must 
be noted that the diagram is only meant to be a 
qualitative visualization, as Immersion is not 
dependent on the challenge/skill balance. 
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Figure 1: Combined model of Flow and Immersion. 
Qualitative view, the skill/challenge balance does not 
influence Immersion. 

2.1 Experiment 

The mentioned study of Kannegieser et al. 
(Kannegieser et al., 2019) was designed to both 
gather data to link physiological measurements with 
Flow and Immersion, as well as validate the 
Flow/Immersion model presented in section 2.  
About forty participants took part in the study. The 
number of participants chosen for the experiment is 
similar to the number of participants used in other 
experiments in this area (Cairns et al. 2006, Jennett et 
al., 2008). There were no requirements for 
participants, which were self-selected as the 
experiment was aiming for as close to a random 
selection as possible and to observe higher levels of 
Immersion and Flow.  

The study was split into three phases. During the 
Setup Phase, a game was selected. Free choice of 
game makes finding links between physiological 
measurements harder, but was chosen to help 
participants reaching the Flow state more easily. 
During the Gaming Phase, participants played the 
game for 30 minutes. After the Gaming Phase had 
concluded, participants entered the Assessment Phase 
and watched their previous gaming session, while 
answering questionnaires about Immersion and Flow 
periodically. This setup was chosen to get more exact 
results and because it does not interrupt the Flow 
experience.  

Three questionnaires were used during the study. 
The first questionnaire used was the Immersion 
questionnaire described by Cheng et al (Cheng et al., 

2015). As the questionnaire was too long to be 
measured multiple times without worsening the 
results, it was split into an Immersive Tendency 
questionnaire asked at the beginning of playback and 
an iterative questionnaire asked every three minutes 
during playback. For Flow, the Flow Short Scale 
questionnaire by Rheinberg et al. was used 
(Rheinberg et al., 2003). It was originally designed 
for being used multiple times in a row, making it 
perfect for this iterative approach. During playback, 
it is asked every six minutes. The final questionnaire 
used is the Game Experience Questionnaire 
(IJsselsteijn, de Kort and Poels, 2013). It measures a 
more general set of questions and was asked once 
after playback is over. Figure 2 shows the three 
phases of the experiment as well as the activities of 
each phase. 

 

Figure 2: Three phases of the experiment. 

2.1.1 Physiological Measurements 

For 30 minutes, physiological measurements were 
taken. The physiological measurements used in this 
study were used due to being non-intrusive and not 
hindering the immersion of players. Galvanic skin 
response, Electrocardiography, gaze tracking and 
web cam footage for emotion analysis were used. A 
facial EMG would be more precise for analyzing 
displayed emotions, however, placing electrodes on 
the face of the player would distract from the game 
play experience and make it harder to reach the flow 
state. For the same reasons, sensors for EEG 
measurement were not chosen for the study. 

Aside from Galvanic Skin Response (GSR), 
Electrocardiography (ECG), Eye-tracking and screen 
game play recordings, web cam footage of the player 
and was obtained with a resolution of 960x720 and a 
frame rate of 15 fps. From this web cam footage, the 
facial portion of the still images were selected and 
emotion recognition was performed on this extraction 
Convolutional Neural Networks (CNN) with the 
method proposed by Levi and Hassner (Levi and 
Hassner, 2015). 
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2.1.2 Analysis and Results 

In the first step of the analysis, the data was checked 
for correlations between Flow and Immersion. As the 
results from both the Flow and Immersion 
questionnaires did not follow a normal distribution, 
Spearman correlation was chosen. The correlation 
analysis found a strong correlation between all three 
levels of Immersion and Flow. The strongest 
correlation was found between Engagement and Flow 
(R = 0.69, p = 8.536e-30), which made sense, 
knowing that Flow encompasses all features making 
up Engagement. The second strongest correlation 
exists between Total Immersion and Flow (R = 0.652, 
p = 1.91e-25) (see Figure 3). This is caused by the fact 
that players who played games without clear avatars, 
such as strategy games, found it difficult to emphasize 
with their avatar in the game, leading to reduced Total 
Immersion. The least correlated level of the three was 
Engrossment (R = 0.56, p = 1.829e-18), which can be 
explained as Engrossment puts strong emphasis on 
emotional attachment of the player to the game, 
something Flow does not elicit. All three showed 
strong correlation to Flow (see Table 2), meaning the 
relation between these two psychological states 
explained in section 2 is likely. 

Table 2: Correlation between Flow and Immersion 
(Spearman-Rho-Coefficient). 

 Flo
w 

Engage
-ment 

Engross
-ment 

Total 
Immersio

n 
Flow 1 0.69 0.57 0.65 

Engage-
ment 

0.69 1 0.45 0.58 

Engross-
ment 

0.57 0.45 1 0.62 

Total 
Immersio

n 

0.65 0.58 0.62 1 

Table 3: Correlation between Flow and physiological 
measurements (Spearman-Rho-Coefficient). 

 GSR HR Fixations 
per minute

Flow -0.02 -0.03 -0.07 
Engage-

ment 
0.01 -0.08 -0.02 

Engross-
ment 

-0.04 -0.09 0.05 

Total 
Immersion 

-0.15 0 0.06 

 

Figure 3: Scatter plot for correlation between Flow and 
Total Immersion, R=0,65; P<2,2e^-16; conf=0,95. 

Direct correlation between normalized 
physiological data and answers of the Flow and 
Immersion questionnaires showed no meaningful 
correlation. The direct correlation results are shown 
in Table 3. Further discussion on the statistical 
methods employed can be found in Kannegieser et al., 
2019. 

3 ONGOING WORK 

Given the similarities in definition, a correlation 
between Engagement-based Immersion and Flow 
seemed a logical consequence, as shown in the 
previous chapter. However, the data elicited by a 
study to find the link between physiology and high 
focus states did not yield matching results. 
Therefore, ongoing work focuses on expanding the 
study setup and refining the methods utilized to gain 
detailed insight and improve the understanding of the 
data recorded as well as improve overall data quality 
and density. How to elicit Micro-expressions (ME) 
which are defined as “true emotional state” which are 
deemed suitable to help finding more significant 
relations between states of high focus and 
physiological data, is elaborated on further in this 
chapter. 

3.1 Micro-expressions 

ME are very short (40-200ms) contractions of facial 
muscles in limited areas (Liong et al., 2019; Gan et 
al., 2019). ME contrast macro-expressions (MA) 
(>200ms) in duration, intensity, and the scope of the 
affected areas.  
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Unlike MA, ME are also involuntary in nature, i.e. 
they emerge without conscious intent and cannot be 
replicated deliberately. That is, micro-expressions are 
not subject to conscious manipulation and thence 
reflect peoples’ true emotions.  

Capturing and identifying ME with adequate 
hard- and software could enable the inference of 
emotional states experienced by participants. The 
ability to detect emotions in this manner could prove 
to be a valuable addition to our experiment setup in 
the context of measuring high focus states. 

3.2 Capturing Micro-expressions 

As in the case of macro-expressions, there are two 
established methods to capture micro-expressions 
(Ekman, 1992; Tan et al. 2012). The first method 
involves measuring the activity of facial muscles 
using electromyography (EMG). The second method 
employs special software to detect facial expressions 
visually based on footage acquired by video cameras.  

Recording ME via electromyography is 
performed by measuring several facial muscle 
regions of the mimetic muscles (Fridlund and 
Cacioppo, 1986). As the placement of electrodes onto 
the face of the participant had been deemed too 
invasive, High Frame Rate Video (HFRV) was 
chosen as an alternative approach. 

Conventional video cameras record video with 
either 30 frames per second (fps) (NTSC – e.g. in 
North America), 25 fps (PAL – e.g. in Europe) or 24 
fps (cinema). Although the term is not defined 
precisely, HFRV is understood to refer to video with 
frame rates higher than these conventional frame 
rates. 

ME will be identified by first segmenting the 
captured videos into individual pictures, then 
extracting the facial area by a machine learning (ML) 
algorithm, and finally detecting emotions using the 
CNN by Levi and Hassner (Levi and Hassner, 2015). 

3.3 Feasibility Study of HFRV 

The experiment at hand is intended to accumulate 
data with the goal of determining connections 
between physiological signals and immersive states. 
This automatically poses the requirement on all 
sensors and electronics used, that these not impede 
participants from experiencing said immersive states. 
From the two methods for capturing ME, HFRV has 
been selected for integration into the existing study 
setup, due to its less invasive nature in comparison to 
facial EMG. 

3.3.1 HFRV with the Current Setup 

In the current study setup, video footage of the 
participants is acquired using the web cam Logitech 
C920 (Logitech International S.A., Newark, 
California, USA). Theoretically, this camera is 
capable of recording video with a maximum of 30 fps. 
With all other software running on the computer at 
the same time, the highest achieved sampling rate, 
without overall negative performance impact was 15 
fps. 

Most cameras are controlled by internal 
electronics, and save recordings to a storage medium, 
like a memory card. Web cams, on the other hand, can 
be controlled by software on the computer they are 
attached to and save the videos directly to the hard 
drive of the computer, which adds additional load to 
the computer.  

Video games can have high memory 
requirements, as does the software used for recording 
multiple physiological signals and screen capturing. 
The combination of all these processes resulted in 
disturbances to the player in the form of slowdowns, 
reductions in the game’s frame rate and buffer issues 
when writing data streams to disk: the frame drop of 
the screen capture and web cam video increased 
significantly, when ramping up the video output 
frame rate, resulting in deteriorated data quality.  

In order to quantify the effects of capturing video 
via web cam on the computer’s performance, multiple 
benchmark tests have been carried out. First, without 
recording video, then with ever-increasing frame 
rates. Two different benchmarks were used: the 
3DMark basic edition (Futuremark Oy, Espoo, 
Finland), and the Unigine Heaven Benchmark 4.0 
(Unigine Corp., Clemency, Luxembourg). In all three 
tests, the achieved overall scores showed negative 
tendencies, indicating that recording video on the web 
cam mentioned above has a negative impact on the 
computer’s performance. The exact results can be 
seen in Table 4. The numerical values show that 
increases in frame rates cause only small changes in 
performance. However, the differences in 
subjectively perceivable spatial resolution during the 
tests were substantial.  

One way to resolve the resulting bottleneck 
regarding the computer’s performance would be 
upgrading the computer. This solution has been 
repudiated, as it would have required substantial 
financial investment. As an alternative, it has been 
proposed that the current web cam be replaced with a 
different camera. Potentially, this could prevent 
disturbances to immersion in the game, while also 
capturing video at higher, more adequate frame rates. 
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Table 4: Overall scores of the computer used in the 
experiment on three benchmark tests with different frame 
rates. 

FPS 3DMark Heaven 
Score %CPU Score %CPU 

No video 10484 91.707 2685 93.768 
10 10768 94.593 2687 97.581 
15 10678 95.443 2586 94.196 
20 10532 94.911 2587 96.821 
25 10451 98.489 2580 99.651 
30 10332 99.314 2566 98.946 

As reported in the scientific literature, the shortest 
ME last a mere 40ms, or 1/25 of a second.  
Theoretically, to capture each signal, each ME, a 
sampling rate higher than the minimal frequency of 
the original signal should be chosen. Therefore, in the 
case of this experiment, a minimum 26 fps is 
necessary. 

Using even higher frame rates would insure that 
each signal is captured with higher certainty, while 
also providing additional information in regards to 
each individual ME. In this manner, information 
pertaining to the path of the movement could be 
acquired, as well, potentially improving the accuracy 
of emotion detection. 

Common frame rates of camera hardware, able to 
record video faster than 30 fps include 50, 60, 90, 120 
and 240 fps. To allow a detailed sampling of the target 
signal and to coincide with a conventional frame rate, 
the minimum necessary frame rate for this selection 
process has been set at 60 fps. 

Three cameras available in-house, the Sony HDR-
CX240E, the Sony Alpha 5100, and the Sony FCB-
ER8550 (Sony Corporation, Minato, Tokyo, Japan), 
have been tested. The cameras were operated via a 
USB-HDMI-Interface, an Elgato HD-Cam Link 
(Corsair GmbH, Munich, Germany) with an internal 
restriction to 60 fps), and the maximum possible 
frame rate has been assessed. Each of these cameras 
achieved maximum frame rates higher than the 
aforementioned webcam. The exact results can be 
seen in Table 5.  

Table 5: Evaluated cameras and the respective frame rates 
achieved. 

Camera Achieved FPS 
Logitech C920 29 
Sony HDR-CX240E 30 
Sony Alpha 5100 50 
Sony FCB-ER8550 59 

As these cameras could not achieve frame rates of 60 
fps, alternative camera equipment available on the 

market has been selected based on the requirements 
listed in 3.3.2. To evaluate their suitability for 
emotion recognition, the selected cameras will be 
integrated into the experiment setup and tested. 
Videos captured by each camera will be evaluated 
regarding their performance in ME and emotion 
recognition with multiple frame rate settings (60, 120, 
240 fps). 

3.3.2 Requirements 

In order to be classified as eligible for integration into 
the experimental setup, cameras should meet certain 
requirements regarding hardware features. As they 
greatly simplify and shorten developmental 
processes, integrating control functions for the 
camera into the existing software with the help of an 
application-programming interface (API) is required 
to be feasible. 

High Resolution. Spatial resolution of the camera 
should be high enough to give detailed visual 
information of the subject’s face. High resolution 
would also allow for placing the camera far enough 
from the subject to provide them with a certain level 
of freedom of movement. Potentially, this could make 
participants more at ease and promote immersion. 
Full-HD (1080p) had been set as a target value. 

High Frame Rate. As outlined above (3.3.1), the 
minimum frame rate has been set at 60 fps.  However, 
using even higher frame rates could deliver more 
detailed information regarding facial muscle 
movements.   
Instead of using the pre-trained CNN of Levi and 
Hassner (2015) for face detection and extraction, it 
would also be conceivable to train this CNN with self-
generated data, or to use a different network, also self-
trained. In this manner, face detection accuracy could 
potentially be improved. For training a neural 
network, a large training data set is essential. Higher 
frame rates could provide more data per 
measurement, contributing to and facilitating the 
accumulation of such a data set (Pfister et al., 2011). 

Internal Soft- and Hardware for Video Recording 
and Storage. These features would allow for the 
outsourcing of the computational burden of capturing 
and saving video. Outsourcing these tasks would free 
up computational capacity on the main computer, 
contributing to a lag-free gaming experience. 

API. An available open source API would be rather 
advantageous, because it would greatly simplify the 
integration of the camera into the existing 
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experimental setup and software. In addition, this 
would do away with the restrictions the HD-Cam 
Link poses on frame rates (60 fps). With the help of 
said API, the following functionalities should be 
feasible: Set camera settings (Resolution, FPS, FOV, 
etc.), Start/stop video recording, Media export to 
computer and deleting media from memory card. 

3.3.3 Proposed Solution 

For subsequent integration into our experiment setup, 
off-the-shelf cameras on the market have been 
evaluated, based on the criteria listed above (3.3.2).  

Two action cameras (action-cams) have been 
selected and purchased for further testing: the Yi4k 
(Xiaoyi Technology Co., Ltd., Pudong District, 
Shanghai, China) and the GoPro Hero7 Black (GoPro 
Inc., San Mateo, California, USA). The maximum 
frame rate of the Yi4k is 120 fps, and that of the 
Hero7 Black is 240 fps, both at a resolution of 1080p. 
At this resolution, both cameras are able to record at 
their respective highest frame rates. Both are also 
capable of recording at higher resolutions, albeit only 
at lower frame rates. 

 Both cameras use internal soft- and hardware for 
capturing and storing video. Moreover, these cameras 
can be controlled via API. In theory, this should allow 
for outsourcing the computational burden of 
capturing videos while synchronizing said videos 
with the recorded physiological signals. That is, these 
two action-cams meet all four requirements 
mentioned above.  

For the Yi4k, there is an open-source API (Yi 
Technology, 2017) available online. To the contrary, 
the GoPro Hero7 Black has none. Fortunately, 
however, it can be controlled via simple HTTP-
requests. A list of these requests is available online 
(Iturbe, 2020). Utilizing said API, both cameras will 
be integrated into the current setup: the video 
recordings will be started and stopped and file 
transfer over Wi-Fi will be initiated from the 
computer. 

Multiple tests will be carried out regarding these 
cameras: some regarding the performance of video 
acquired by these cameras with different frame rates 
(60-240 fps) in ME and emotion recognition, and 
others regarding circumstantial modalities. These 
circumstantial modalities include battery life, speed 
of data transfer over Wi-Fi and its effect on 
experiment duration, and utilized color encoding 
systems. It is imperative that the battery last long 
enough to record one experiment and carry through 
data transfer to the computer. In this experiment, the 
recorded videos are 30 min long. HFRV-files of this 

length will be several GB in size. Therefore, the 
length of time necessary for data transfer to the 
computer over Wi-Fi will have to be assessed. With 
the color encoding system NTSC, higher frame rates 
can be achieved than with PAL. Therefore, NTSC 
would be preferred. The compatibility of this setting 
with artificial lighting under European standard AC 
frequency will have to be tested, as well. 

4 CONCLUSIONS AND 
DISCUSSION 

This paper gave an overview of the current state of 
work related to the physiology of Flow and 
Immersion. It referenced a preceding study that did 
not yield the expected results, but also did not rule out 
the possibility of achieving such results with different 
methods. It laid out the experiment setup of the 
previous study and delineated plans to expand it with 
the goal of improving data quality and density. This 
refers to the integration of a HFRV approach.   

With the integration of the proposed method, 
further insight regarding the relationship between 
Flow/Immersion and physiological signals could be 
gained. Obtaining such insight could prove to be a 
step forward in developing a tool for measuring high 
focus states physiologically. 

Further plans have been described to boost the 
performance of machine learning methods already in 
use (face detection/extraction, emotion recognition) 
as well as to employ machine learning as a substitute 
for conventional statistical analysis in identifying 
relationships between physiological signals and 
questionnaire data. 

Currently, both face detection/extraction and 
emotion recognition is accomplished using software 
developed and described by Levi and Hassner (Levi 
and Hassner, 2015). This program, like any other, is 
not fully accurate. It does not recognize faces in 
images with perfect precision, misidentifications are 
inevitable. 

The software used for emotion recognition faces 
a similar problem: As detailed in their paper, the CNN 
of Levi and Hassner used for emotion recognition 
accurately classified approximately 54% of the 
displayed emotions into seven categories. In the 
concrete application laid out in this work, this 
accuracy is to be improved by better quality footage. 
However, improving video quality is not the only way 
imaginable to achieve such improvement. One 
possibility would be to train the aforementioned CNN 
with self-generated and application-specific data. As 
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this method runs into the difficulty of labelling data, 
other methods seem more actionable. For example, 
alternative NN could provide better results. As of 
2020, the CNN used in this work is about five years 
old; it seems plausible to think that in the rapidly 
evolving field of machine learning other NN with 
higher classification accuracy have been developed in 
the meantime.  

Video data is not the only kind of data collected. 
Parallel to capturing video footage, other 
measurement systems are also in use. These include 
EMG, ECG, and GSR (Kannegieser et al., 2018). In 
these cases, similar to video data, there could still be 
room for improvement regarding data quality, as well. 
Such improvements could theoretically be achieved 
using alternative measurement tools or different 
methods for data processing. 

Up until now, statistical methods have been used 
for finding correlations between questionnaire data 
and physiological signals. As mentioned before in 
this paper, none has been found. Apart from 
improving the quality of the data with methods like 
the ones described above, one could entertain the idea 
that such correlations could be found with different 
analytical methods. For example, as a tool capable of 
establishing connections based on high-level 
abstraction, machine learning seems an obvious and 
promising candidate. 
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