
Quality of Service in Cloud Computing Environments with Multitenant
DBMS

Manuel I. Capel1 a, Oscar I. Aporta1 and Marı́a C. Pegalajar-Jiménez2 b

1Department of Software Engineering, ETSI Informática and Telecomunicación, University of Granada,
Periodista Daniel Saucedo Aranda s/n, 18015 Granada, Spain

2Department of Computer Science and AI, ETSI Informática and Telecomunicación, University of Granada
Periodista Daniel Saucedo Aranda s/n, 18015 Granada, Spain

Keywords: Multitenancy, Multitenant DBMS, Quality of Service, DBMS Located in the Cloud, IaaS, OpenNebula.

Abstract: This article proposes a new study of Quality of Service (QoS) in Database Management Systems with mul-
titenancy in which it is experimentally verified that tenants follow interference patterns between them when
they concurrently access the DBMS. The interference degree depends on characteristics of the database used
by each tenant. A testing architecture with virtual machines (VM), managed with OpenNebula, has been de-
signed. In each VM one DBMS is loaded managing many databases, one for each tenant. Five experiments
were designed and numerous measurements performed using benchmarks of reference, such as TPCC, in a
Cloud computing-based system. The results of the experiments are presented here, for which the latency and
performance were measured with respect to different workloads and tenant configurations. To carry out the
experiments, a multitenant environment model known as shared database/separate schema or shared instance
was deployed, which is widely used at moment and presents the best ratio between resource use, performance
and response.

1 INTRODUCTION

The requirements of today’s society and the new ITC
paradigms that dominate in a general way explain that
software development tends to be increasingly flexi-
ble, dynamic and personalized, accessible off-premise
through the Internet, without the need to be installed
and managed on-premise. Virtualization is one of the
fundamental technologies to make this new approach
possible for the development and provision of soft-
ware services, since it allows a variety of applications,
which function as dedicated software, to be grouped
into a set of shared resources that help to improve
the use of physical resources, to simplify management
and reduce costs for companies.

A tenant is defined according to the context in
which it is inserted, for example, a tenant can be a
user of the application or a particular database in re-
lation to a DBMS.

A multitenant approach can help us consolidate
applications composed of multiple simultaneous ver-
sions into a single functional system, thus avoiding

a https://orcid.org/0000-0003-2449-4394
b https://orcid.org/0000-0001-9408-6770

the inefficiency of having a separate system for each
tenant (Benjamin et al., 2011). DBMS are poten-
tial candidates for implementation in a multitenant
Cloud Computing environment, thus promoting scala-
bility, cost reduction, ease of configuration, availabil-
ity of on-demand services, etc. Currently, multitenant
DBMS have been used to host multiple tenants within
a single system, and thus allowing the efficient shar-
ing of resources at different levels of abstraction and
isolation (Agrawal et al., 2011a).

We propose here a software architecture and a per-
formance evaluation methodology to carry out a Qual-
ity of Service (QoS) study in Database Management
Systems (DBMS) for multitenant environments in the
Cloud.

Cloud service providers have to solve several chal-
lenges, such as availability, performance, scalability
and elasticity, to meet the quality of service required
by customers of multitenancy systems in the Cloud.
A possible solution to achieve this is to automatically
manage the available resources and the workload of
the system to obtain elasticity and improve the use of
these resources (Sousa et al., 2011), but this solution
usually causes throughput gets worse due to the in-

506
Capel, M., Aporta, O. and Pegalajar-Jiménez, M.
Quality of Service in Cloud Computing Environments with Multitenant DBMS.
DOI: 10.5220/0009794605060514
In Proceedings of the 10th International Conference on Cloud Computing and Services Science (CLOSER 2020), pages 506-514
ISBN: 978-989-758-424-4
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



crease in the response time of tenants’ requests. In
particular, to solve the drawback caused by the high
degree of concurrency among the tenants of a DBMS,
there is a strategy that consists of distributing the loca-
tion of tenants in virtual machines according to their
individual interference pattern. To apply that means
performing the following tasks: (a) analysis of the
tenant’s profile to determine the level of interaction
with other tenants, (b) dynamic assignment of ten-
ants to different virtual machines without degrading
the system response and (c) application of techniques
to efficiently migrate tenants which show a lot of in-
terference.

This article, therefore, has focused on conducting
a systematic study to determine interference profile
of each tenant by using metrics such as performance,
latency and response time. The study has to be con-
sidered a preliminary stage in the development of a
method and software tool that allow automatic migra-
tion of tenants and DBMS. The experiments carried
out mix different workload/tenant configurations and
measure their latency and throughput by assuming
one DBMS per VM, many databases (one database
per tenant) managed by one DBMS and VM, which
are managed using OpenNebula.

The article structure is as follows. First the quality
of service (QoS) model used to comply with the SLA
(client requirements) of a multitenant DBMS system
is presented. In the third section, the software archi-
tecture and the implementation of the execution en-
vironment to conduct the study are discussed. In the
fourth section the design of the testing experiments
carried out is detailed. The fifth section is dedicated
to the measures obtained in the study and discussion
of results. Finally, a section of conlusions and future
work is included.

2 A PROPOSAL FOR OBTAINING
QoS OF A MULTITENANCY
DBMS IN THE CLOUD

In multitenant models where each tenant only needs
a fraction of the resources, the degree of concurrency
of multiple tenants is quite high and makes difficult
to guarantee the quality of service (QoS), which is
usually defined by means of an SLA with the user.
Cloud service providers have to solve several chal-
lenges to meet their required availability to customers
of the service.

Scalability is a static property of the system that
specifies its behavior with respect to a given configu-
ration, and elasticity is the dynamic property that al-

lows to scale the system when there is a variation in
demand, while the system is in operation (Agrawal
et al., 2011b). Therefore, the property of elasticity
is the most important to achieve quality of service by
Cloud service providers, who try to obtain an estimate
of the workloads expected to be reached, in order to
be able to perform a proactive management of the re-
sources.

We select a multitenancy model that presents the
best relationship between the maximum degree of
resource sharing and the least number of interfer-
ences between tenants that may concur in the DBMS.
The selected multitenant model is that of shared
database/separate schema or shared instance, since
it is the most widely used and present the best re-
lationship between resource utilization, performance
and security (Barker et al., 2012). According to this
model, each virtual machine has an instance of the
DBMS, and each DBMS contains a variable number
of tenants, depending on the capacity of the virtual
machine resources and the workload. A tenant is rep-
resented by a database in the system. Despite requir-
ing less infrastructure resources, this model increases
the interference between tenants, since there will be a
greater number of tenants in the same DBMS.

2.1 Proposal of DBMS Model with
Multitenancy

Our DBMS model in the Cloud with QoS was built
according to the requirements of elasticity, scalability
and efficient use of shared resources.

Figure 1: OpenNebula-based Cloud architecture.

To meet the above requirements, the multitenant sys-
tem proposal is structured in the following compo-
nents,

1. Autonomic Manager: Highly scalable monitoring
system that can interpret a computation to col-
lect the relevant parameters, regarding migration
of tenants.

2. Predictive Models: allow to anticipate software
and hardware failures.

3. Managed Resources: Cloud management plat-
form for autonomous services that provides self-

Quality of Service in Cloud Computing Environments with Multitenant DBMS

507



Figure 2: Determination of limits of acceptance for Q-attributes in a DBMS w.r.t. SLA during monitoring of services execu-
tion, from (2011:Sousa).

awareness and self-configuration through sensors
and actuators to take proactive measures and deci-
sions of reconfiguration (replication, migration).

4. Task Assignment System based on QoS: distributes
the workload based on the current state of avail-
able resources. The allocation system is a load
balancer based on QoS.
We choose OpenNebula middleware (see Fig-

ure 1), which manages physical and virtual resources
(nodes, networks, virtual machines, images, etc.),
to perform the functions of a stand-alone adminis-
trator (“Autonomic Manager”), while OpenNebula’s
OneFlow service is the service administrator (“Man-
aged Resources”) that manages services automati-
cally, including elasticity. Self-awareness and self-
configuration are achieved by extending the OneGate
component provided by OpenNebula.

Users and administrators use OneGate to collect
metrics, detect problems in applications, and trig-
ger elasticity rules in OneFlow. OpenNebula in-
teracts with OneGate, through its XML-RPC inter-
face, to send monitoring metrics to virtual machines.
OneGate is the principal mechanism used to exchange
information between virtual machines and OneFlow.

2.2 Quality Model of the DBMS
According to the Service Level
Agreement

The service level contract (SLA) contains information
related to the functional and non-functional require-
ments that the service provider must guarantee and
the penalties in case of non-compliance. The defini-
tion of an SLA is not a trivial task and should con-
sists of information about stakeholders, the SLA’s pa-
rameters, an algorithm to calculate these and the met-
rics used, service level objective (SLO) and the ac-
tions to be performed in case of violation of the agree-
ment (Schnjakin et al., 2010). That information must
be specified as characteristics and attributes of qual-
ity in a structured and guided way, by means of a SLA
specification language, such as one of the languages:
WSLA, WSOL or SLAng.

According to (Chi et al., 2011), SLA metrics for
database in Cloud Computing should optimize the
system, address relevant aspects for data manage-
ment and contemplate the characteristics of the Cloud
Computing model, such as elasticity, scalability and
multitenancy. For (Schoroeder et al., 2010) it is im-
portant to establish more general criteria to evaluate
QoS, such as the percentile x% within which the re-
sponse time is less than a given value y. In (Sousa
et al., 2011) (Moreira et al., 2013) we find SLADB,
an example of a quality model, which includes a def-
inition of SLA, monitoring techniques and penalties.
Each metric has a quality of service level objective
(SLO) associated with it, as indicated below,

• Response Time: percentile x% of response times
less than a certain value and for a period of time t

• Throughput: percentile z% of throughput values
greater than a k value and for a period of time t

• Availability: function detected/non-detected for
indicating the existence of queries rejected over
a period of time

• Consciousness: function detected/non-detected
for indicating whether updated data are accessed
according to the consistency type (strong or weak)

In a QoS model for DBMS based on states, to
comply with the SLA, the acceptable limits of the
above parameters must be defined to perform a cor-
rect monitoring, as shown in Figure 2.

2.3 QoS Metrics for a Multitenant
DBMS

The proposed multitenant DBMS infrastructure
presents a set of objectives included in the SLA,
which have associated metrics that allow measuring
the quality of the service. The System Level Objec-
tive (SLO) contains the predetermined limits for the
parameter to be measured and, for each parameter, a
way of calculating how it is defined, e.g., by com-
puting the mean time. We define a Function of Ap-
titude (FA) that will help us in the decision process
regarding the distribution of workloads, thus allowing

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

508



us to verify the allocation of a load to a virtual ma-
chine (VM). FA will give us a criterion to determine
whether the instance of the DBMS loaded in the VM
is suitable to receive a new workload or not.

We calculate the FA(i) for each VM(i) that will
reflect the percentage of work capacity of each VM (i)
with respect to the rest of the VMs. The function must
be defined according to the capacity of the resource
and the efficiency,

FA(i) = a∗ cp(i)+b∗ cm(i)+ c∗ tr(i) where :
cp(i) = CPU capacityavailable f or theV M(i)
cm(i) = Availablememorycapacityo f theV M(i)
tr(i) = Responsetimeo f theV M(i)
{a, b, c} aretheweigths

Where each of the three parameters of FA will be mul-
tiplied by a weight depending on the importance of
this factor in the multitenant system.

3 ARCHITECTURE OF THE
SOFTWARE AND
IMPLEMENTATION

We will introduce in this section the OpenNebula
middleware (Fontan et al., 2008), which is the man-
agement platform of Cloud computing selected for
this study. We will show how physical resources are
orchestrated and virtualized. We use OpenNebula in
this study because it makes possible the construction
of any type of cloud computing system: private, pub-
lic or hybrid, which is fundamental for the adminis-
tration of heterogeneous infrastructures of distributed
data centers. It includes features for integration, ad-
ministration, planning, management, scalability, se-
curity and data center accounting. Its core is very ef-
ficient and is fully developed in C ++ with a backend
for highly scalable database management systems, in-
cluding support for MySQL and SQLite.

The software architecture of OpenNebula pro-
vides interfaces that allow interaction with physical
resources as well as virtual resources, such as the fol-
lowing: i) Interfaces for consumers and administra-
tors of Cloud Computing, with several available APIs:
AWS EC2, EBS and OGF OCCI. In hybrid configu-
rations, it has adapters for Amazon EC2 Cloud ser-
vices and ElasticHosts. ii) Management interfaces
for advanced users and operators of Cloud Comput-
ing, such as the UNIX-based command line interface
(ONE CLI), and its own graphical GUI from Sun-
stone, which serves as a multi-user portal and man-
ager of resources for advanced users. iii) Low level

extensible APIs for Cloud integrators for Java, Ruby,
XMLRPC API. iv) OpenNebula Marketplace is an
online catalog that offers a wide variety of appli-
cations capable of running in OpenNebula environ-
ments.

In our study we chose to use a multitenant model
of shared instance, so that, according to this model, a
correspondence between a database and a tenant in
the system can be defined; each DBMS contains a
variable number of tenants and each virtual machine
maintains a single instance of the DBMS (see Fig-
ure 3).

Figure 3: ‘Shared instance’ multitenant DBMS model used
in the study.

For the evaluation of the model, we used a pri-
vate cloud implemented with the OpenNebula mid-
dleware. This allows us to focus the study’s attention
on analyzing the interference between tenants after
getting rid of external factors (network latency, un-
availability of a public cloud, etc.) that could affect
the results of our measurements. In relation to the
evaluation tool, we opted for MuTeBench, since it is
the first specific tool for this type of systems that cur-
rently exists, at least, until our best knowledge at the
time of publication. MuTeBench allows you to sim-
ulate a complete multitenant environment. To carry
out the measurements, we created 2 virtual machines
(VM-MuTeBench, VM-mySQL) each one running a
Ubuntu 16.04 LTS distro. VM-MuTeBench is de-
ployed in 2 CPUs, 8 GB of RAM, 30 GB of stor-
age, and contains the MuTeBench framework. In its
turn, the VM-mySQL virtual machine is deployed in
2 CPUs, 4 GB of RAM, 30 GB of storage and runs
MySQL 5.7 DBMS, with the InnoDB engine, and 128
MB of buffer memory. The databases provided by
MuTeBench for the realization of the TPCC, YCSB
and Wikipedia benchmarks, were located in the VM-
mySQL virtual machine.

4 DESIGN OF TESTING
EXPERIMENTS

In a multitenant architecture the data layer is essen-
tial and an important issue is how a tenant’s workload

Quality of Service in Cloud Computing Environments with Multitenant DBMS

509



Table 1: Set of benchmarks accepted in OLTP-Bench.
Class Benchmark Application domain

Transactional

AuctionMark Auctions on line
CH-benCHmark OLTP and OLAP mix

SEATS On-line airline ticketing
SmallBank Banking system

TATP Call location application
TPCC Processing order
Voter Talent sample voting

Web oriented

Epinions Social networks
Twitter Social networks

Wikipedia Online encyclopedia

Functional test

ResourceStresser Isolate resources stress-test
YCSB Scalable store of

key-value pairs
JPAB Relational assignment

of objects
SIBench Transactional isolation

Table 2: Databases used in the experiments.

Multiple tenants Size
running the benchmatk (MB)

TPCC 500 MB
YCSB 800 MB

Wikipedia 600 MB

interferes with the rest of tenants sharing a resource.
The evaluation of multiple tenants in the Cloud dif-
fers completely from the methods used in a tradi-
tional evaluation of DBMSs, being necessary to use
specific benchmarks for these environments that may
have the ability to execute in parallel and changing
workloads of several tenants. Until very recently there
was no standard benchmark designed to conduct the
evaluation of database services with multitenancy in
cloud computing systems. MuTeBench (MuTeBench,
2014) allowed us to make different measurements on
these systems by creating different workload scenar-
ios. Like OLTP-Bench, the execution of a bench-
mark in MuTeBench consists of three phases, cre-
ation of the database, data loading and execution;
the type of execution must be indicated with the ap-
propriate parameter. OLTP-Bench is an open-source
framework for benchmarking, useful for relational
databases, which supports data generation and execu-
tion of workloads. To carry it out, OLTP-Bench uses
14 specific benchmarks applicable to online trans-
action processing (OLTP) (Difallah et al., 2013), as
Table 1 shows. Transactional benchmarks include
intensive writing transactions and complex relation-
ships. Benchmarks oriented to the Web address char-
acteristics of social networks, with operations based
on many-to-many graphs relationships. These bench-
marks take into account public data available to sim-

ulate a real application. Benchmarks oriented to func-
tional tests are focused on testing individual function-
alities of certain DBMS, such as multitenancy ones.

The objective of this study is to verify through ex-
periments the availability. Therefore, we use bench-
marks to perform this analysis with different charac-
teristics, capable of validating a well differentiated
range of applications belonging to the three types of
benchmarks accepted in OLTP-Bench,
1. TPCC, a transactional benchmark well known in

the specific literature (TPCC, 2008),
2. Wikipedia, understood as a web-oriented bench-

mark
3. YSCB (Yahoo Cloud Serving Benchmark) as a

functional test.
Next, we design a set of experiments to perform dif-
ferent types of tests, first by analyzing the behavior
of tenants in an isolated environment, which assumes
the absence of interference with other tenants. In a
second phase, response times are analyzed by assum-
ing that several tenants could start interfering if the
number of these is progressively increased.

5 MEASUREMENTS AND
RESULTS

The main objective of the tests carried out was to ver-
ify the performance of a multitenant DBMS under
synthetic workloads that simulate operations of differ-
ent applications. In order to do that, the benchmarks
TPCC, YCSB (Cooper et al., 2010) and Wikipedia,
were used throughout the different experiments car-
ried out in the study.

To evaluate a multitenant database system we used
the aforementioned shared instance model. Conse-
quently, we create the databases shown in Table 2.
Each experiment explores a different feature of a mul-
titenant DBMS in the Cloud, such as quality of ser-
vice or elasticity, for this reason we need to vary the
transaction rate.

Firstly, we executed 3 tenants of different sizes
and individually, without competition of resources
among them. For each one, we made four measures
modifying the number of users (in each measure we
doubled the number of the previous one), as Table 3
shows.

5.1 Individual Execution

In this first experiment we want to evaluate how some
characteristics influence the performance of the ten-
ants that run in an instance of the DBMS: size of

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

510



Table 3: QoS temporal properties (ms.) of each tenant during a 30-minute execution of the model.

Throughput
Tenant# 1 user 50 users 100 users 150 users

TPCC1 (100MB) 128.5 − 157.05 460.26 − 598.05 515.51 − 553.35 458.32 − 495.40
TPCC2 (500MB) 95.5 − 113.56 456.41 − 484.56 426.8 − 452.61 405.78 − 425.37
TPCC3 (900MB) 96.06 − 130.91 352.25 − 365.80 333.9 − 343.3 327.05 − 338.47

Latency
TPCC1 (100MB) 6.36 − 10.30 83.60 − 108.72 180.61 − 193.94 279.01 − 328.2
TPCC2 (500MB) 8.67 − 10.45 97.09 − 109.62 221.0 − 305.9 344.82 − 367.58
TPCC3 (900MB) 7.63 − 10.68 134.05 − 142.0 287.71 − 299.2 440.25 − 511.08

99th percentile latency
TPCC1 (100MB) 27.20 − 39.96 298.55 − 369.53 558.15 − 636.05 825.65 − 1020.99
TPCC2 (500MB) 30.72 − 36.30 352.30 − 381.09 570.14 − 1073.75 822.53 − 887.69
TPCC3 (900MB) 34.30 − 36.36 446.38 − 513.97 776.76 − 916.06 1086.47 − 1196.64

Figure 4: Minimum and maximum: (a)throughput measured for 1, 50, 100 and 150 users, (b)average latency measured for 1,
50, 100 and 150 users.

the tenant, number of users executing parallel con-
nections to the DB, number of transactions per sec-
ond that each user executes. We show in Table 3 the
measurements obtained for the Throughput, Average
Latency and Average Latency of the 99th Percentile
response time or tail lantency.

From the data obtained, both the size of the
database (different for each tenant) and the number of
users influence the performance of the DBMS, when
these values increase, it worsens throughput and in-
creases latency.

This experiment served to observe the behavior of
the DBMS in a simulated environment of a single ten-
ant and serves as a comparison reference for multite-
nancy DBMS assessment.

Table 4: Configuration of tenants in the second experiment.

Tenant# Users Start Finish Rate
(min.) (min.) (tps)

T PCC1 (Tenant 1) 25 2 7 1000
T PCC2 (Tenant 2) 25 4 9 1000
T PCC3 (Tenant 3) 25 6 11 1000
T PCC4 (Tenant 4) 25 8 13 1000
T PCC5 (Tenant 5) 25 10 15 1000

5.2 Constant Load Concurrent
Execution

In the second experiment (see tables 5 and 6), we
used TPCC tenants of 500 MB each, at a rate of 1000
transactions per second and running for 5 min. The
first tenant ran after an initial phase of 2 min to reach
7 minutes, and then every 2 minutes a new tenant
was included in the DBMS until including 4 more.
Throughput of tenants gets worse (see Table 5) as new
tenants are incorporated into the DBMS and increases
when a tenant ends, and thus the total number of ten-
ants sharing the DBMS instance decreases. The re-
sults of the total throughput show that MySQL ade-
quately manages tenant concurrency by providing a
good isolation among them. As shown in table 6, the
latency values increase with the inclusion of new ten-
ants in the DBMS and decrease when a tenant ends,
therefore no anomalies in measured latency, which
might lead to interference anomaly, were observed in
the experiments that were carried out. The results of
the average latency of 99th percentile for the 5 tenants
are depicted in Figure 5. These results reflect that
MySQL suitably manages the overload that suffers
trying to cope with concurrency of tenants through

Quality of Service in Cloud Computing Environments with Multitenant DBMS

511



Table 5: Throughput of each tenant during the time of the second experiment.
Time (m.)

Tenant# 120 180 240 300 360 420 480 540 600 660 720 780 840 900
Tenant 1 58.265 57.661 118.604 119.005 171.604 121.511 0 0 0 0 0 0 0 0
Tenant 2 0 0 119.216 118.626 171.617 117.315 170.663 129.952 0 0 0 0 0 0
Tenant 3 0 0 0 0 172.51 117.472 171.976 118.744 177.909 177.536 0 0 0 0
Tenant 4 0 0 0 0 0 0 173.469 118.2 177.725 116.629 113.46 113.956 0 0
Tenant 5 0 0 0 0 0 0 0 0 177.907 117.526 113.471 59.116 58.545 34.908

Table 6: 99th percentile latency during the time of the second experiment.
Time (m.)

Tenant# 120 180 240 300 360 420 480 540 600 660 720 780 840 900
Tenant 1 243.749 251.211 388.414 395.643 508.144 280.246 0 0 0 0 0 0 0 0
Tenant 2 0 0 393.486 399.541 513.79 390.997 511.26 322.939 0 0 0 0 0 0
Tenant 3 0 0 0 0 506.217 382.018 499.573 397.456 517.671 305.902 0 0 0 0
Tenant 4 0 0 0 0 0 0 510.845 393.934 503.831 381.745 390.311 251.671 0 0
Tenant 5 0 0 0 0 0 0 510.845 0 505.716 377.593 382.607 247.873 246.484 95.263

Figure 5: (a) System’s average latency ; (b)99th percentile average latency (TPCC1, TPCC2, TPCC3, TPCC3, TPCC4,
TPCC5).

preserving a good level of isolation between them.

5.3 Measurement of the QoS

According to the graphs plots shown in Figure 5, the
value of average latency of p99 increases with the in-
clusion of tenants into the DBMS and decreases when
a tenant ends its work and exits. At time equal to 640
s. the average latency reaches its maximum value,
which is when all the maxima are reached in the sys-
tem, i.e., the critical instant when tenants’ concur-
rency is the highest in the DBMS for this sample,
as well connections to MySQL and transactions per
second. Latency evolution reflects how the increase
in transactions produces an overload in the DBMS,
and also how MySQL presents a good level of isola-
tion among the different tenants. In our third exper-
iment we used TPCC tenants of 500 MB in size, a
variable transaction rate per second according to the
sequence: 500, 1000, 1500, 2000, 2500, which in-
creased every 2 min. We started by adding 2 tenants
to the DBMS, with an interval of 3 min; and thus
2 new tenants were added until reaching 19 min of
time when stopped incorporating new tenants. With
this experiment we wanted to evaluate how the vari-
ation of workload influences the quality of service of
the multitenant DBMS. We designed several exper-

iments that represented different scenarios, combin-
ing different types of tenants and varying the work-
load over time. It is also observed that for time win-

Table 7: Throughput variability depending on the workload
of tenants.

(s.)
Tenant# 300 360 420
TPCC 1 115.067 107.233 108.783
TPCC 2 116.667 107.617 106.867
TPCC 3 111.7 107.25 108.45
TPCC 4 112.083 109.3 106.483

TPS 3000 4000 5000

dows where the number of tenants is constant and are
concurrently executed, the throughput only suffers a
small decrease due to the increase in the number of
transactions executed by each tenant. The data in ta-
ble 7 shows that at 300 seconds 3000 tps is executed,
at 360 seconds 4000 tps and at 420 seconds 5000 tps,
a small decrease in throughput occurs when the num-
ber of transactions per second increases and there are
no new tenants incoming.

In Figure 6 we can observe how the througput of
TPCC tenants gets worse when the tenants YCSB2
and YCSB3 increase their workload. Therefore, the
increase in the workload of YCSB tenants interferes

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

512



Figure 6: (a)Throughput (tps) (TPCC1, Wikipedia1, Wikipedia2, YCSB1, YCSB2, YCSB3) (b)99th percentile average latency
(ms.) (TPCC1, Wikipedia1, Wikipedia2, YCSB1, YCSB2, YCSB3).

Figure 7: (a)Aggregated average latency (ms.) (TPCC1, Wikipedia1, YCSB1, YCSB2, YCSB3) (b)99th percentile average
latency (ms.) (TPCC1, Wikipedia1, YCSB1, YCSB2, YCSB3).

with the performance of the TPCC tenant. However, it
is noticed that the Wikipedia-tenant does not present
interference with the rest of the tenants.

As we can observe in Figure 7, in the two latency
plots, we can see that augmenting the workload of the
YCSB tenant produces an increase in the TPCC ten-
ant’s latency (minutes from 17 to 26 and from 32 to
41) due to the interference that occurs between the
two. It must be also pointed out that MySQL works
well even with an increase in the workload, as it can
keep acceptable latency values when the concurrent
execution of the three tenants takes place.

5.4 Elasticity

In this section we will evaluate the elasticity when
the workloads of tenants increase and decrease dur-
ing a certain period of time. We designed several sce-
narios by using different types of tenants and combi-
nations of heterogeneous workloads. Elasticity was
analized, so that we used the same tenants of prior ex-
periments: functional test (YCSB), transactional test
(TPCC) and web-oriented test (Wikipedia). The evo-
lution in the workload of the system varied by increas-
ing and decreasing the workload of the YCSB tenant

while the workloads of TPCC and Wikipedia tenants
kept fixed. Thus, the workload of the YCSB tenant
changed every 5 minutes, according to the sequence:
1000, 5000, 1000, 1000, 3000. For the benchmarks
that we named: TPCC and Wikipedia, the transaction
rate was set to 1000 tps. All the tenants were config-
ured with 20 users.

The plots in Figure 7 show how MySQL works
well with the elasticity of the workload, given that
the troughput values respond to the evolution of the
workload of the tenants, presenting little interference.
At minute 44 and 55 we see how the growth of the
workload of YCSB3 causes a drop in the through-
put value of TPCC1, which denotes an interference
between both tenants that causes a reduction in the
performance of TPCC1. In Figure 6 we observe that
increasing the work load of YCSB increases its la-
tency, and when it decreases it shows a better result.
After 32 minutes, the TPCC tenant starts executing,
coinciding with the completion of YCSB2, which ex-
plains the alteration of the latency at that point due to
the interference between the two. After 42 minutes,
the YCSB3 tenant begins to run, and the interference
that occurs with TPCC at minutes 44 and 51 is clearly
visible.

Quality of Service in Cloud Computing Environments with Multitenant DBMS

513



6 CONCLUSIONS

The paper presents experimental analyses of DBMSs
running on virtual machines with different bench-
marks (mainly TPCC). The experiments mix different
workload / tenant configurations and measure their la-
tency and throughput. We have verified that a multi-
tenant DBMS model of shared instance prevents from
the anomaly of throughput degradation, which usu-
ally occurs due to interference between tenants of a
DBMS (MySQL) located in the same VM.

Getting the tenant’s time profile (workload evo-
lution) allows detecting of changes in DBMS perfor-
mance and overload and, therefore, allows to iden-
tify the level of interference between tenants. Five
experiments were designed and numerous measure-
ments have been performed using benchmarks, such
as TPCC, in a cloud computing based system. The
work done presents the results of the experiments
in which different workloads and tenant configura-
tions for which their latency and performance were
measured. Patterns of mutual interference between
tenants have been identified depending on the three
types: YCSB, TPCC and Wikipedia considered in this
study.

Our objective is to obtain individualized tech-
niques for assigning tenants to VMs, relying on the
monitoring of quality features in addition to the ones
studied in this article, which will allow us in the future
to obtain a variation of the tenant’s workload through
proactive models and machine learning. Likewise, it
is important to detect tenant usage patterns that help to
classify tenants with little interference. Several levels
of QoS could be defined for different types of tenants.

REFERENCES

Agrawal, D., Das, S., and El-Abbadi, A. (2011a). Big data
and cloud computing: Current state and future op-
portunities. In In: Proceedings of the 14th Interna-
tional Conference on Extending Database Technology
(EDBT’11). ACM.

Agrawal, D., Das, S., and El-Abbadi, A. (2011b). Database
scalability, elasticity, and autonomy in the cloud. In
In: Database Systems for Advanced Applications -
16th International Conference (DASFAA 2011), v.1,
2:15. ACM.

Barker, S., Yun, C., Hyun, M., Hacigumus, H., and Shenoy,
P. (2012). Cut me some slack:latency-aware live mi-
gration for databases. In In Proceedings of the 15th In-
ternational Conference on Extending Database Tech-
nology (EDBT12), 432:443. ACM.

Benjamin, S., Andreas, B., and Bernhard, M. (2011). Na-
tive support of multi-tenancy in rdbms for software

as a service. In In Proceedings of the 14th Interna-
tional Conference on Extending Database Technology,
EDBT/ICDT ’11, 117:128. ACM.

Chi, Y., Moon, H., Hacimugus, H., and Tatemura, J.
(2011). Sla-tree: A framework for efficiently sup-
porting sla-based decisions in cloud computing. In In
Proceedings of the 14th International Conference on
Extending Database Technology (EDBT/ICDT ’11),
129:140. ACM.

Cooper, B., Silberstein, A., Tam, E., Ramakrishnan, R.,
and Sears, R. (2010). Benchmarking cloud serving
systems with ycsb. In In: Proceedings SoCC. DOI:
10.1145/1807128.1807152.

Difallah, D., Pavlo, A., Curino, C., and Cudre-Mauroux, P.
(2013). Oltp-bench: An extensible testbed for bench-
marking relational databases. In In: PVLDB 7 Pro-
ceedings, 277:288. PVLDB.

Fontan, J., Vazquez, T., Gonzalez, L., Montero, R., and
Llorente, I. (2008). Open nebula: the open source
virtual machine manager for cluster computing. In
In: Proceedings of Open Source Grid and Cluster
Software Conference. OSGCSC 2008, San Francisco
(USA).

Moreira, L., Sousa, F., Maia, J., Farias, V., Santos, G., and
Machado, J. (2013). A live migration approach for
multi-tenant rdbms in the cloud. In In: 28th Brazilian
Symposium on Databases (SBBD ’13), 73:78. SBBD.

MuTeBench (2014). Colaborative development platform in
GitHub. GitHub.

Schnjakin, M., Alnemr, R., and Meinel, C. (2010).
Contract-based cloud architecture. In In: Proceed-
ings of the Second International Workshop on Cloud
Data Management, CloudDB ’10, 33:40. ACM. DOI:
10.1145/1871929.1871936.

Schoroeder, B., Harchol-Balter, M., Iyengar, A., and
Nahum, E. (2010). Achieving class-based qos
for transactional workloads. In In: Proceedings
of the 22nd International Conference on Data En-
gineering (ICDE ’06), 153:155. IEEE-CS. DOI:
10.1109/ICDE.2006.11.

Sousa, F., Moreira, L., and Machado, J. (2011). Sladb:
Acordo de nı́vel de serviço para banco de dados
em nuvem. In In: 26th Brazilian Symposium on
Databases (SBBD ’11), 155:162. SBBD.

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

514


