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A microservices architecture has gained higher popularity among enterprises due to its agility, scalability,
and resiliency. However, serverless computing has become a new trendy topic when designing cloud-native
applications. Compared to the monolithic and microservices, serverless architecture offloads management and
server configuration from the user to the cloud provider and let the user focus only on the product development.
Hence, there are debates regarding which deployment strategy to use.

This research provides a performance comparison of a cloud-native web application in terms of scalability,
reliability, cost, and latency when deployed using microservices and serverless deployment strategy. This
research shows that neither the microservices nor serverless deployment strategy fits all the scenarios. The
experimental results demonstrate that each type of deployment strategy has its advantages under different
scenarios. The microservice deployment strategy has a cost advantage for long-lasting services over serverless.
On the other hand, a request accompanied by the large size of the response is more suitably handled by serverless

because of its scaling-agility.

1 INTRODUCTION

With the wide adoption of cloud computing, en-
terprises have migrated or refactored their existing
monolithic-based applications into the microservices
architecture (Di Francesco et al., 2018). Microservices
architecture based applications have higher agility
since it decouples a monolithic-based application into
smaller services and each service can then be deployed
separately either on a virtual machine or in a container
where the resources can be scaled on-demand. This
migration has not only affected the application’s archi-
tecture but also the team’s structure within an organi-
zation (Mazlami et al., 2017).

Besides many advantages, microservices architec-
ture also has some disadvantages in software devel-
opment. For instance, each service communicates
through the network via REST API endpoints, which
can pose some data security concerns during commu-
nication. Also, research shows that the development
team with a strong DevOps culture may indeed get ben-
efit from the microservices architecture, therefore the
effort to establish DevOps culture is another considera-
tion for adopting a microservices architecture (Schnei-
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der, 2016).

On the other hand, serverless computing has gained
higher popularity and more adoption in different fields
since the launch of AWS Lambda in 2014 (Handy,
2014). Compared to the monolithic or the microser-
vices architecture, a serverless architecture releases
the effort of server management from the application
developers where they now just have to focus on the
application logic (Castro et al., 2019). In other words,
DevOps are free from operations work and can purely
focus on development. In addition, in serverless com-
puting cost is charged on the number of requests re-
ceived to the functions and the time it takes for the
code to execute (Gancarz, 2017). This pricing model
is much simpler as compared to the traditional instance
pricing model which is based on the number of in-
stances and their diverse types. Therefore, application
owners in this model are also free from the decisions
of choosing instance types and a number of instances.

Both microservices and serverless computing have
their advantages and disadvantages and the decision to
adopt a design pattern depends on the team capability
and project requirements. In this research, we have
analyzed a cloud-native web application refactored
into both microservices and serverless deployment
models from the aspect of scalability, reliability, cost,
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and latency. The experimental results demonstrate
that the microservice deployment strategy has a cost
advantage for long-lasting services over serverless. On
the other hand, a request accompanied by the large
size of the response is more suitably handled by the
serverless because of its scaling-agility.

The main contribution of this paper is the perfor-
mance comparison between microservices and server-
less deployment in terms of scalability, reliability, cost,
and latency. Further, we provide architecture recom-
mendations based on the type of load, scenario, and
the request size.

The rest of this paper is composed as follows. Sec-
tion 2 discusses the background knowledge required
for this paper in brief. Section 3 studies the related
works. Section 4 provides the overall system design.
Section 5 provides the evaluation strategy and exper-
imental configuration details and, also showcase the
results of the conducted analysis. Section 6 summa-
rizes the discussion of the results and lastly, Section 7
concludes the paper.

2 BACKGROUND

2.1 Microservices-based Architecture

Monolithic architecture is one of the most widely used
design patterns for enterprise applications. From a
modularization abstraction perspective, the character-
istics are hardware resource-sharing, and the inter-
nal executable is mutually dependent (Kratzke, 2018).
Developers could efficiently conduct end-to-end test-
ing on this type of architecture with automation tools.
On the other hand, the maintenance, bug-fixing, tech-
nology refactoring, and scaling specific resources are
the drawbacks of this architecture (Kazanavicius and
Mazeika, 2019). In contrast to monolithic architec-
ture, microservices architecture design is a more loose-
coupled style (Bhojwani, 2018). Microservices con-
sists of a suite of modules, and each module is dedi-
cated to a specific business goal and communicates via
a well-defined interface. The benefits of a microser-
vices architecture are improved fault tolerance, flexi-
bility in using technologies and scalability and speed
up of the application (Novoseltseva, 2017). However,
there are also some disadvantages such as the increase
of development and deployment complexity, imple-
menting an inter-service communication mechanism,
and challenging to conduct end-to-end testing (Bho-
jwani, 2018).

2.1.1 Microservices-based Deployment Strategy

Deploying a monolithic architecture is relatively
straight-forward than other architectures where devel-
opers deploy the whole application on a single physical
or virtual server (Richardson, 2019b). If an application
is required to be deployed on multiple servers, a com-
mon way is to deploy the same application multiple
times on each server and then load balance it using a
load balancer. The principle of microservices architec-
ture is loose-coupling, which requires multiple service
instances for an application (Richardson, 2015). This
can be achieved either by deploying each service on
a separate virtual machine instance or deploying a
service per container or one can even combine multi-
ple services per virtual machine and container. The
containerization deployment benefits from the higher
deployment speed, agility, and lower resources con-
sumption (Richardson, 2019a). This strategy also al-
lows each microservice instance to run in isolation on a
host. This enables the guaranteed quality of service for
each microservice at the cost of idle resources. Con-
tainer orchestration tools like Kubernetes' and AWS
Elastic Container Service” can be used for managing
the containers.

2.2 Serverless-based Architecture

Compared to the monolithic and microservices archi-
tecture, serverless architecture does not require the
management of underlying infrastructure (Amazon,
2018). Although serverless architecture still requires
infrastructure to execute programs, all the tasks, includ-
ing infrastructure management and operation, auto-
scaling, and maintenance, shift to the cloud service
providers. Since there are no reserved instances for
the serverless, the cost is charged on the number of
requests received to the functions and the time it takes
for the code to execute (Gancarz, 2017). In general,
one of the advantages of serverless architecture is the
less total cost of ownership by paying as you run.

2.2.1 Serverless-based Deployment Strategy

Most of the configuration regarding physical servers,
containers, and scalability for the deployment of a
serverless application does not require the developer’s
attention (Amazon, 2018). A serverless platform
accepts the application source code as an input along
with a deployment specification to describe the func-
tions, APIs, permissions, configurations, and events

Thttps://kubernetes.io/docs/
Zhttps://aws.amazon.com/ecs/
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that make up a serverless application through an inter-
face which can be a CLI or web interface or using some
frameworks like Serverless’ and Architect*. This spec-
ification is then further used by the framework to build
and deploy the application on the serverless platform.
Almost all cloud service providers provide cloud-based
IDE or plugins to the popular IDEs for the develop-
ment and deployment of the serverless applications.
For instance, AWS provides Serverless Application
Model (AWS SAM), an open-source framework that
is used to build serverless applications on AWS (AWS,
2020b). It also provides a local environment that al-
lows the developers to test and debug their applications
locally before deploying it to the cloud. Each server-
less execution platform also provides function execu-
tion logs which further can be used by the developers
for debugging. In addition, there is user request tracing
tools like AWS X-Ray which enables developers to
trace the requests and debug potential problems (AWS,
2020a; Lin et al., 2018).

3 RELATED WORK

We present here the related work in threefolds, firstly,
on the performance evaluation of microservices, sec-
ondly on the performance evaluation of serverless and
lastly on the architectural decisions on selecting mi-
croservices or serverless deployment. Casalicchio and
Perciballi (Casalicchio and Perciballi, 2017) analyze
the effect of using relative and absolute metrics to
assess the performance of autoscaling. They have de-
duced that for CPU intensive workloads, the use of
absolute metrics can result in better scaling decisions.
Jindal et al. (Jindal et al., 2019) addressed the per-
formance modeling of microservices by evaluation of
a microservices web application. They identified a
microservice’s capacity in terms of the number of re-
quests to find the appropriate resources needed for the
microservices such that, the system would not violate
the performance (response time, latency) requirements.
Kozhirbayev and Sinnott (Kozhirbayev and Sinnott,
2017) present the performance evaluation of microser-
vice architectures in a cloud environment using dif-
ferent container solutions. They also reported on the
experimental designs and the performance benchmarks
used as part of this performance assessment.
Nowadays serverless computing has become a hot
topic in the research (Lloyd et al., 2018; Eivy, 2017;
Baldini et al., 2017; Jonas et al., 2017). Baldini et
al. (Baldini et al., 2017) presents the general features

3https://serverless.com/framework/docs/
“https://arc.codes/
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of serverless platforms and discuss open research prob-
lems in it. Lynn et al. (Lynn et al., 2017) discuss
the feature analysis of enterprise based serverless plat-
forms, including AWS Lambda, Microsoft Azure Func-
tions, Google Cloud Functions and OpenWhisk. Lee
et al. (Lee et al., 2018) evaluated the performance of
public serverless platforms for CPU, memory and disk-
intensive functions. Similarly, Mohanty et al. (Mo-
hanty et al., 2018) compared the performance of open-
source serverless platforms Kubeless, OpenFaaS, and
OpenWhisk. They evaluated the performance of each
in terms of the response time and success ratio for
function when deployed in a Kubernetes cluster. Pinto
et al. showcased the use of serverless in the field of
IoT by dynamically allocating the functions on the IoT
devices (Pinto et al., 2018).

With the rise of serverless computing, microser-
vices architecture is not the only choice when mod-
ernizing a monolithic application. There are debates
about architecting decisions when it comes to choosing
serverless or microservices. Jambunathan et al. (Jam-
bunathan and Yoganathan, 2018) elaborated on the
aspects of architecture decisions on microservices and
serverless. From the service deployment’s perspective,
serverless has infrastructure restrictions that need na-
tive cloud service support and must be hosted by cloud
service providers. In contrast, a microservices archi-
tecture could deploy on either the private data center
or public cloud. However, the benefits of auto-scaling
without considering complex server configuration is
a deployment advantage on serverless than microser-
vices.

However, none of the works specifically address
the comparison of microservices and serverless deploy-
ment from the aspects of scalability, reliability, cost,
and latency on a cloud-native web application.

4 SYSTEM DESIGN

4.1 Application Overview

The application used as part of this research is an
employee time-sheet management portal where the
time an employee has worked on a project is recorded.
It is developed in Node.js and consists of following 3
main modules:

4.1.1 Favourite Projects

It consists of the projects which are marked favourite
by the user. When a user visits this module, it triggers
a GET request to fetch all the projects and display
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Figure 1: Overview of APIs present in the application.

them in a table view. Then the system invokes an-
other POST request with the user’s ID to get the user’s
favourite projects. Afterward, the system displays all
the projects and the favourites are marked in a differ-
ent color for distinction. A user can conduct CRUD
(Create, Read, Update, and Delete) operations on each
of the project entity for adding, reading, updating and
deleting the favourite projects.

4.1.2 Timesheet

This module is used for recording and viewing the
time the user has spent on a project. When a user visits
this the page, the system invokes a POST request with
the user’s ID to get a list of favorite projects along
with the time the user has spent on each of them. This
information is then displayed in a calendar style’s grid
matrix to present the user’s working hours in each cell.
Users can conduct CRUD(Create, Read, Update, and
Delete) operation on each project entity which is then
executed with the database.

4.1.3 Miscellaneous

Both Favorite Projects and Timesheet modules require
the user’s information. Also, each region’s holiday
information is necessary when displaying a calendar
style’s grid matrix. Meanwhile, a list of activities that
represent what type of role the user has played when
doing projects is also required. All this information is
handled by this module.

To sum up, there are 12 API calls which are in-
voked in the application and studied in this research,
these APIs are shown in Fig. 1.

4.2 Deployment Strategies

The above-discussed application is deployed using
the two strategies: Microservices and Serverless. For
both of these strategies, the front-end user interface
has remained the same, the AWS Relational Database
System with the Aurora cluster database is used as the
main database for storing the data. However, the back-
end server is refactored accordingly for each of the
strategies. The overview of the system when deployed
using each of the strategies is shown in Fig. 2. Below
subsections describe the back-end deployment for each
strategy in more detail.

4.2.1 Microservices

The microservices back-end is deployed using con-
tainerized instances and leverages Amazon Elastic
Container Service(ECS) to orchestrate all of the con-
tainer instances as shown in Fig. 2a. Amazon ECS
is a highly scalable, high-performance container or-
chestration service that supports Docker containers
and allows the users to run and scale containerized
applications on AWS. It is integrated with Amazon
Elastic Container Registry(ECR) where the updated
containerized-images are uploaded and ECS service
automatically pulls the latest images from it. In order
to handle multiple requests, the ECS cluster is inte-
grated with an application load balancer(ALB) that
distributes the traffic to the containers. Fig. 3a shows
a further detailed overview of the deployed back-end
architecture in this strategy. It has 5 containers for 5
main cases (project, timesheet, activities, server, em-
ployee). Table 1 shows the per API call the container
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(b) Overview of the system when deployed using serverless strategy using AWS API gateway and Lambda functions.

Figure 2: Overview of the system when deployed using different strategies.
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Figure 3: Detailed overview of the deployed back-end architecture in each of the strategy.

used and its port configuration.

4.2.2 Serverless

The serverless back-end is deployed using AWS
Lambda and AWS API Gateway, as shown in Fig. 2b.
AWS API Gateway serves as an API access point
that directs the incoming requests to the right AWS
Lambda function. AWS Lambda function then exe-
cutes a customized business logic after parsing the re-
quest and fetching the data from the database resources.
As part of this deployment, it is not necessary to assign
specific ports since a specific path and resource are
designated. AWS Lambda is then equipped with an
auto-scaling policy for scaling on-demand with the
workload. Fig. 3b shows a further detailed overview
of the deployed back-end architecture in this strategy.
In the current implementation, we have 6 lambda func-
tions and the Table 1 shows the lambda functions with
their API calls.
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S EVALUATION

We have evaluated the performance of both the deploy-
ment strategies. The following subsections elaborate
more detail about the infrastructure settings, evalu-
ation system, and performance metrics used for the
evaluation.

5.1 Infrastructure Setting

For the AWS ECS setting on the microservices strat-
egy, we allocated each container instance 0.25 CPU
core (equal to 256 CPU units) and 512 MB of memory.
For maintaining the desired state of the containers,
the auto-scaling of ECS is also enabled. For each
container’s scale-out policy, the system automatically
adds two more instances into the cluster when the
average CPU utilization goes above 50% for a con-
secutive 1 minute. In contrast, the scale-in policy is
configured to remove two instances from the clusters
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Table 1: Overview of the API calls, microservices containers, their ports and serverless functions which are part of each module.

Microservices Serverless
Module APICall (Container:port) | (Lambda function)
projectProfileService-getAll project:3003 projectProfileService-getAll
projectFavService-Create project:3003 projectFavService
Favorite Projects | projectFavService-Read project:3003 projectFavService
projectFavService-Update project:3003 projectFavService
projectFavService-Delete project:3003 projectFavService
timesheetService-Create timesheet:3001 timesheetService
Timesheet timesheetService-Read timesheet:3001 timesheetService
timesheetService-Update timesheet:3001 timesheetService
timesheetService-Delete timesheet:3001 timesheetService
activityService-getAll activities:3000 activitiesService-getAll
Miscellaneous holidayService-getAll server:3002 holidayService-getAll
employeeService-getCurrentUser | employee:3004 employeeService-get

A
g, UGS,

Send data every 5s . JL Query Influxdb periodically
— ) influx

=

Grafana

) Google CloudPlatform

mm Microservices
Serverless

Figure 4: Overall evaluation system design for evaluating each of the strategies using the k6 as the load generator, influxdb for
storing the data and grafana for real time visualization deployed on the Google Cloud Platform.

once the average CPU utilization is lower than 30%
for a consecutive 1 minute. The cooldown period is
set to 30 seconds for both the scaling policies to pre-
vent over-provisioning. For both scaling scenarios, to
distribute the incoming traffic to a dedicated container
group for achieving load balancing a load balancer is
also used. It automatically registers or deregisters the
newly joined containers into their target group. The
Microservices strategy consists of five different con-
tainer entities. Each of them is responsible for different
API calls and is designated to dedicated ports.

The serverless strategy is also deployed on AWS
and leverages AWS Lambda and API Gateway. The
business logic of each Lambda function is written in
Javascript and is run with Node.js version 10.10. Each
function is allocated with 512MB memory space. We
have not set a specific concurrency number for each
Lambda function, however, AWS set a concurrency
quota of 1000 for each user account as a soft limitation
for this service. The AWS API Gateway acts as the
entry point to navigate the incoming request to the

right Lambda function.

In order to minimize the experiment’s performance
deviation, both microservices and serverless are con-
nected to the same database cluster deployed on AWS.
The database used is the AWS Aurora cluster with the
MySQL engine (version. 5.7.12).

5.2 [Evaluation System

Our evaluation strategy is implemented via a load test-
ing tool - k6> and Fig. 4 shows the overall evaluation
system design. k6 is a developer-centric open-source
load and performance regression testing tool for test-
ing the performance of the cloud-native backend in-
frastructure, including APIs, microservices, serverless,
containers, and websites. k6 generates different pat-
terns of the user workload to the deployed microser-
vices and serverless system. It is deployed on the
Google Compute Platform and the testing results from

Shttps://k6.io/

209



CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

k6 are ingested into the InfluxDB®, which is an open-
source time-series database. Furthermore, Grafana’,
an open-source analytic & monitoring solution, visual-
izes the queried data from the InfluxDB and presents
it in real-time in a user-defined dashboard style.

5.3 Performance Testing Metrics

The performance is evaluated by calculating the HTTP-
request-duration (min, mean, median, max, and per-
centile95), the total number of requests k6 has sent, the
number of total requests served successfully and cost.
The cost is referenced from AWS billing estimation
and derived from the pricing model of AWS ECS and
Lambda. In this research, the free-tier quota of each
building block is not taken into consideration.

For both microservices and serverless strategies,
we have evaluated each of them through 12 API calls
across incremental (continuously increasing), random
(random number of requests), and triangle (continu-
ously increasing till half time and then continuously
decreasing for the remaining time) user workload pat-
terns. As a result, there are 72 (12 APIs * 3 load
patterns * 2 deployment strategies) API tests executed
for the evaluation. Each test of an API is executed
for 15 minutes. In addition, there is a 3 minutes cool
down period between each API’s test and between each
workload pattern’s test there is a 30 minutes pause to
make sure that the testing infrastructure achieves a
normal state.

6 EXPERIMENT RESULTS

To compare the performance of microservices and
serverless strategy, we focused on the percentile95
response time of requests for both the deployment
strategies. The x-axis represents the testing duration
from 0 to 15 minutes, and the y-axis is the percentile95
duration of HTTP-request in milliseconds.

6.1 Favorite Projects

The projectProfileService-getAll API call which is
used to get all the projects is a relatively static re-
quest which is always invoked when a user visits this
module. From the Fig. 5, The serverless strategy has a
better performance in terms of performance stability
and scaling-agility. For the microservices strategy, we
found that the response time starts to rise with an in-
crease in the workload. However, after the scale-out,

Shttps://docs.influxdata.com/influxdb/v1.7/
7https://grafana.com/docs/grafana/latest/
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the response time has decreased. In the case of the
serverless strategy, there is also high response times at
the beginning of each test due to the cold-start problem
but afterward, it becomes stable. But the serverless
has a lesser duration of high request response time as
compared to microservices.

The projectFav-Read is the consecutive API call
that fetches user’s favorite projects and displays them
in the front-end. It is apparent that the serverless strat-
egy here also provides better performance with respect
to fast responsiveness and performance stability. More-
over, we immediately identify that the microservices
have a regular peaking response time, which often
happens on the dot of a minute. One of the poten-
tial explanations would be its monitoring granularity,
a minute-level monitoring period. So every time it
starts to scale with more container instances, the re-
distribution of traffic results in particular high peaking
response time as shown in Fig. 5

Table 2 shows the summary results for the
Favourite Projects module. It shows that the cold start
problem of serverless resulted in a significantly higher
minimum response time than microservices. Neverthe-
less, the serverless strategy still has cost advantages
as compared to microservices. Also, it still provides a
higher average number of requests served per second
(Avg. RPS) than microservices in all the scenarios.

6.2 Timesheet

For the create and update operations in the case of
the Timesheet module, the serverless strategy provides
better performance in terms of responsiveness and per-
formance stability as shown in Fig. 6. In contrast,
the microservices strategy provided an unstable per-
formance on the incremental and triangle workload
scenarios. However, the microservices outperforms
serverless when executing the delete operation. The
serverless strategy as in the previous case suffers from
cold-start during the first 2 minutes of the evaluation
period.

Table 3 shows the summary results for the
Timesheet module. It shows that the serverless strategy
provides better response time in create, read, and up-
date operations. But for the delete operation, microser-
vices performs better than serverless. Even though
both strategies have similar performance with respect
to the average number of requests served per second,
it shows that in this case, microservices are more cost-
effective than the serverless. It could be due to the fact
that the minimum cost required for setting up server-
less is more than what is required in the case for setting
up microservices deployment.
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Figure 5: Comparison of percentile95 response time in Favorite Projects for both microservices and serverless deployment at
different workload patterns.

Table 2: Summary results for Favorite Projects module showcasing HTTP-request-duration (minimum, mean, median, and
maximum) the average number of requests served successfully and cost for both microservices and serverless deployment at
different workload patterns.

| | Metrics | Min | Mean | Max | Avg. RPS | Cost |
| | Type [ M| S | M [ S | M | S |[M|S| M| S |
‘ ‘ Incremental ‘ 21.2 ‘ 1160.0 ‘ 2930.0 ‘ 1410.0 ‘ 10060.0 ‘ 5680.0 ‘ 13.8 ‘ 26.8 ‘ 0.0062 ‘ 0.0054 ‘
‘ projectProfileService ‘ Random ‘ 23.0 ‘ 1110.0 ‘ 2990.0 ‘ 1400.0 ‘ 11900.0 ‘ 5390.0 ‘ 11.0 ‘ 23.1 ‘ 0.0093 ‘ 0.0047 ‘
| |
| |
| |
| |

API

getal Triangle | 23.1 | 1150.0 | 4100.0 | 1430.0 | 12580.0 | 5350.0 | 9.4 | 24.7 | 0.0062 | 0.0050 |
Incremental | 20.1 | 26.7 | 582.1 | 32.7 | 414000 | 252.3 | 27.5 | 42.1 | 0.0062 | 0.0076 |
projectFavService Random | 20.1 | 259 | 503.1 | 29.7 | 39730.0 | 248.8 | 23.6 | 35.0 | 0.0093 | 0.0063 |
Read Triangle | 201 | 27.2 | 976.5 | 33.8 | 42810.0 | 267.0 | 19.6 | 40.0 | 0.0093 | 0.0072 |
6.3 Miscellaneous 7 DISCUSSION
Fig.7 represents activityService-getAll, holidayService- To summarize, we have drawn four points of discus-
getAll and employeeService-getCurrentUser API calls sion mentioned below:

respectively in the Miscellaneous module. All of them
are relatively simple, small and static requests. Here,
the microservices strategy outperforms the serverless
in most of the cases. In addition, microservices de-
ployment strategy provides faster response times than
serverless, this could again be due to the minimum
overhead of the virtualization stack required in server-
less deployment. Serverless strategy was only better in
employeeService-getCurrentUser with the incremental
load pattern.

The summary table 4 also shows that the microser-
vices strategy has somewhat better or equivalent per-
formance as compared to the serverless with respect
to the average number of requests served per second.
However, again microservices strategy is more cost-
effective than serverless and serverless has higher min-
imum response time due to cold start.

1. Serverless Strategy Suffers from the Cold-start
Problem. Whenever a function is triggered or in-
voked by a user request the AWS lambda func-
tion is deployed in a newly-initiated container and
there is always a certain small period that a re-
quest needs to wait until the container is ready to
serve. This wait is usually taken by the container
to initialize the environment and pull the function
source code. This phenomenon is referred to as the
cold-start problem. There already have been many
researches to decrease the cold start time like using
pre-warmed containers (Thémmes, 2017), periodic
warming consisting of submitting dummy requests
periodically to induce a cloud service provider to
keep containers warm (Samdan, 2018) and pause
containers (Mohan et al., 2019). DevOps need to
keep this in consideration when deploying an ap-
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Figure 6: Comparison of percentile95 response time in Timesheet module for both microservices and serverless deployment at
different workload patterns.

Table 3: Summary results for Timesheet module showcasing HTTP-request-duration (minimum, mean, median, and maximum)
the average number of requests served successfully and cost for both microservices and serverless deployment at different
workload patterns.

‘ ‘ Metrics ‘ Min ‘ Mean ‘ Max ‘ Avg. RPS ‘ Cost ‘
| A | Ty [ M| S [M|S|M][S[M]|[S]M]| S |
| | Incremental | 27.3 | 23.7 | 46.0 | 28.1 | 279.1 | 2442 | 42.1 | 42.1 | 0.0062 | 0.0076 |
| timesheetService | Random | 27.2 | 22.6 | 32.6 | 25.3 | 286.8 | 262.4 | 35.0 | 35.0 | 0.0031 | 0.0063 |
| M| Tviangle | 27.7 | 237 | 405 | 28.9 | 4962 | 340.8 | 40.0 | 400 | 0.0031 | 0.0072 |
| | Incremental | 25.3 | 23.5 | 48.0 | 27.9 | 300.6 | 310.3 | 42.1 | 42.1 | 0.0062 | 0.0076 |
| timesheetService | Random | 24.5 | 22.8 | 29.9 | 25.5 | 249.7 | 3234 | 35.0 | 35.0 | 0.0031 | 0.0063 |
| TP T ingle | 263 | 24.0 | 362 | 29.0 | 262.2 | 3004 | 40.0 | 40.0 | 0.0062 | 0.0072 |
| | Incremental | 20.6 | 23.8 | 22.5 | 28.1 | 2465 | 233.6 | 42.1 | 42.1 | 0.0031 | 0.0076 |
| timesheetService | Random | 21.3 | 22.6 | 23.1 | 25.3 | 254.1 | 294.5 | 35.0 | 35.0 | 0.0031 | 0.0063 |
| P Tiiangle | 20.5 | 24.6 | 22.4 | 292 | 247.3 | 481.2 | 40.0 | 400 | 0.0031 | 0.0072 |
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plication and decide based on the use case whether
this deployment strategy is beneficial or not.

Microservices Deployment Strategy Suffers
from the Load Balancing and Traffic Re-
distribution Problem. Despite the cold start prob-
lem in the serverless deployment, it performed
stably after the initial period. In contrast, microser-
vices deployment had a high peak of duration scat-
tered randomly during each test. One potential
explanation is that these peaks coincide with scal-

ing out or scaling in time of the autoscaling which
resulted in the increase in the response time. If
one needs a stable latency over the whole time,
then one could choose deployment using server-
less computing.

. Microservices Deployment Strategy Outper-

forms When Fetching Small Size and Repeti-
tive Requests. For the API calls where the re-
quests are with the simple payload and invoked
repetitively having the static or small size response



Microservices vs Serverless:

Incremental

Random

Triangle

A Performance Comparison on a Cloud-native Web Application

— Microservices
1750 Serverbu

Duration (ms)
2
a8
Duration (ms)

activityService-
getAll

YU VT S __ A

01234567609 1001210M1I5

Duration (ms)
g 3

2000

1750

4 5 6 7 8 9 101112131415

Serveriess

70 Serverless

60 1501

Duration (ms)
Duration (ms)

holidayService-
getAll

Miscellaneous

Duration {ms)
Duration (ms)

employeeService-
getCurrentUser

@ 1 2 3 4 5 6 7 8 9 10111213 1415

Time (minutes)

L
=t

— Mic cos
Secvidias

5 6 7 B 9 101112131415
Time {minutes)

0

Duration (ms)
z

Serverless

@ 1 % 3 45 6 7 8 % 10111213 1418

Time [minutes)

Figure 7: Comparison of percentile95 response time in Miscellaneous module for both microservices and serverless deployment

at different workload patterns.

Table 4: Summary results for Miscellaneous module showcasing HTTP-request-duration (minimum, mean, median, and
maximum) the average number of requests served successfully and cost for both microservices and serverless deployment at

different workload patterns.

‘ ‘ Metrics ‘ Min ‘ Mean ‘ Max ‘ Avg. RPS ‘ Cost ‘
A | T | M| S |M|S|[ M| S [M|]S]|] M]S|
\ | Incremental | 22.8 | 36.4 | 69.0 | 69.7 | 1900.0 | 1790.0 | 42.1 | 42.1 | 0.0031 | 0.0076 |
| activityService | Random | 21.2 | 37.4 | 26.4 | 65.4 | 255.0 | 1800.0 | 35.0 | 35.0 | 0.0031 | 0.0063 |
\ getall | Triangle | 20.6 | 35.4 | 28.7 | 67.4 | 228.9 | 2330.0 | 40.0 | 39.9 | 0.0031 | 0.0072 |
\ | Incremental | 20.5 | 24.0 | 22.6 | 28.6 | 252.1 | 299.4 | 42.1 | 42.1 | 0.0031 | 0.0076 |
| holidayService | Random | 21.3 | 24.6 | 24.0 | 28.7 | 367.9 | 334.7 | 35.0 | 35.0 | 0.0031 | 0.0063 |
| A hingle | 214 | 234 | 234 | 282 | 249.5 | 3530.0 | 40.0 | 40.0 | 0.0031 | 0.0072 |
\ | Incremental | 20.8 | 23.8 | 37.4 | 28.6 | 246.7 | 382.0 | 42.1 | 42.1 | 0.0062 | 0.0076 |
| employeeService |  Random | 20.8 | 23.0 | 24.8 | 27.2 | 2704 | 2159 | 35.0 | 35.0 | 0.0031 | 0.0063 |
| eetCumentUser T ngle | 220 | 239 | 292 | 285 | 2700.0 | 2600 | 40.0 | 39.9 | 0.0031 | 0.0072 |

then they should leverage a microservices deploy-
ment due to cost advantages and no cold-start prob-
lem. Serverless deployment has some minimum
overhead due to either the virtualization stack or
the different involved components which is more
than what these cases need as a result for such
cases microservices deployment should be pre-
ferred.

. Serverless Deployment is More Agile in Terms
of Scalability. As we compare the scalability and

agility of both the deployments, serverless is bet-
ter than microservices. Since the microservices
deployment starts to auto-scale only after the sys-
tem has reached the defined criteria for at least one
minute, there is always a delay of responsiveness to
re-balance the current workload. As a result, there
is an increase in response time with the increasing
workload, then it drops after the new containers
have been launched. In the end, the granularity
of monitoring set in minute-level limits the agility
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of the microservices scalability which is not the
case with the serverless deployment. However,
this disadvantage can be resolved by configuring a
proper caching mechanism to store repetitive con-
tent but the user has to deal with more than what
is required.

8 CONCLUSION

Based on the experimental evaluation for microser-
vices and serverless deployments, it proves that no
single type of deployment could fit all kinds of appli-
cations. For example, a POST request which fetches a
response body of large fixed size may not work well
with a microservices deployment due to the latency
in auto-scaling execution. On the other hand, a mi-
croservices deployment may outperform serverless
deployment in some scenarios, For example, the GET,
POST, and DELETE requests with a simple payload
can result in a lower duration and cost when used with
microservices as compared to using serverless. In addi-
tion, serverless strategy provides immediate scalability
and prompt response when handling random spike traf-
fic, but the microservices architecture still is the best
cost-effective when facing regular traffic patterns.

In the end, this research derived a future research
direction towards optimizing the deployment in terms
of cost, performance, and application domain by build-
ing a hybrid deployment environment consisting of
both the microservices as well the serverless deploy-
ment strategies. A deployment strategy is selected
dynamically based on the workload pattern.
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