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Abstract: Swarm intelligence systems where robotic devices encoded with primitive actions executed at individual 
levels in order to cause swarm level emergent behaviour are appealing to the fields of nanotechnology and 
bioinformatics. Interaction between robotic devices allow improved swarm level properties with features 
more than the sum of the contributions of the individual robotic devices that form the swarm. However, it is 
challenging to pinpoint particular primitive actions which drive robotic devices towards deliberately 
engineered emergent behaviour. We propose an XSet model inspired by the behaviours of message passing 
agents. The proposed XSet model supports direct device to device interactions in which implicit 
communication spaces arise. In this context, an XSet puts together primitive actions, parameters, and meta 
information which stipulates when primitive actions are useful to robotic devices. We assess path finding and 
path following abilities of message passing robotic devices and compared the measures thereof to the relative 
performances of the stigmergic counterparts. Better message passing performances are observed when time 
in simulation is sufficiently long, when the population of robotic devices in the swarm is high. Besides giving 
a new swarm control model, message passing XSets bring us closer to more generalized swarm control rules. 

1 INTRODUCTION 

The aptitude to form paths between selected search 
points in simulated swarms of robotic devices 
emanates from particular control routines that are 
collectively designed to cause emergent behaviour 
(Chibaya, 2014; Chibaya, 2015; Chibaya, 2019). In 
this context, a robotic device is an autonomous 
artificial agent designed with a nanite architecture in 
mind (Chibaya, 2014). Nanites are tiny electronic 
devices assembled at nanometre scale. Control 
routines, on the other hand, are computational codes 
implemented to characterize robotic devices’ 
individual-level actions (Negulescu and Barbat, 
2004). Emergent behaviour is then non-reducible 
phenomena observed in swarms of robotic devices 
which cannot be traced back to the individual-level 
actions of the robotic devices thereof (Chibaya, 
2015). 

The design of control routines is, dominantly, 
inspired by some phenomena in nature, such as the 
map-reading views known from geography (Werfel, 
2002; Wehmer et al., 2006), biological metaphors 
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(Chibaya, 2014), geometric views (Ngo et al., 2005), 
mathematical matrices (Harris, 2007), or physics 
(Spears et al., 2004a; Spears et al., 2004b; Spears et 
al., 2005). Successful control routines have been, 
commonly, built on stigmergic ant-like colonies 
(Chibaya, 2015), artificial bee colonies, or flocking 
boids. However, although related emergent 
behaviours are plausible, the individual-level actions 
of swarm members are blurredly explained. Without 
grasping the logic underpinining individual-level 
actions of swarm members, simulated swarm 
applications will remain naïve. In fact, chances are 
high of evolving undesirably hazardous outcomes 
from these swarms.  

Although they are architecturally autonomous and 
naïve, robotic devices’ interactions give rise to 
emergent behaviour whose properties are more than 
the sum of the contributions of the individual robotic 
devices (Chibaya, 2015). Collections of control 
routines, together with related parameter values, and 
meta information, forms the verbs robotic devices 
depend on in order to complete individual-level tasks. 
However, what are the white-box design features of 
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those control routines included in path finding and 
path following robotic devices’ dictionary?  

Formalizing the component units of appropriate 
sets of control routines with which robotic devices 
yield emergent behaviour is an ambitious task 
(Chibaya, 2015). The work presented in Chibaya 
(2015) proposed the use of an XSet model built on the 
characteristics of stigmergic ant-like robotic devices. 
In this context, an XSet is an eXtended Set 
comprising control routines, parameter values, and 
meta information stipulating how and when control 
routines are useful to robotic devices (Chibaya, 2014; 
Chibaya, 2015). Stigmergic robotic devices interact 
indirectly via the environment using virtual 
pheromone cues (Chibaya, 2014; Chibaya 2015). The 
environment is the shared memory of the swarm. 
However, stigmergic XSets do not provide details 
regarding how to arrive at generalizable quantities of 
pheromone level required by individual robotic 
devices at a time. Also, they ignore the effects of 
pheromone dissipation to swarm convergence speed 
and quality. In fact, the quantities of pheromone 
levels used are hard-coded (Chibaya, 2014). 

Alternative non-stigmergic XSet models can be 
tried for the same task domain. This paper 
investigates the design of an XSet model built on the 
behaviours of message passing robotic devices 
(Chibaya, 2019). The proposed XSet supports 
swarms of robotic devices that can directly interact 
with one another one-on-one (Chibaya, 2014). 
Message passing robotic devices can explicitly share 
direction vectors and confidence measures in the 
vectors they follow, and use this information to 
determine resultant vectors that determine the next 
path to follow. Shared vectors, together with related 
confidence measures, are used to modify robotic 
devices’ perceptions of the direction to the target at 
the time. Precisely, robotic devices upgrade or 
downgrade their confidence measures depending on 
the quality of the information shared amongst 
neighbours. With time, the swarms thereof converge 
on deterministic paths towards desired targets. 

1.1 Statement of the Problem 

The particular problem addressed in this paper can be 
re-phrased into two questions as follows: 

 

 Which control routines form valid message 
passing XSets? In responding to this question, 
we investigate the individual actions, the 
parameter values, and meta information which 
guide message passing robotic devices towards 
predictable emergent behaviour. As a case 
study and proof of concept, we investigate 

those control routines useful for the path 
finding and following behaviour in swarms of 
robotic devices. 

 How do message passing swarms perform 
relative to the stigmergic counterpart? In 
responding to this question, we administer an 
experiment in which we measure speed and 
quality of emergence that arise from using the 
message passing XSet versus the speed and 
quality of emergence yield when a stigmergic 
XSet model is used for the same path finding 
and path following task. Speed of emergence 
evaluates the time it takes a swarm to converge 
on a trodden path (Chibaya, 2014). On the other 
hand, quality of emergence establishes the 
tendencies of robotic devices to 
deterministically follow the established paths 
(Chibaya, 2014). 

 
While answers to these two questions may not 

respond to the very general robotic device control 
problem, the message passing XSet model is hoped to 
provide features of an alternative approach to the 
stigmergic model, which brings us closer to 
generalized rules for addressing the broader swarm 
control problem. 

1.2 Assumptions 

We assume message passing robotic devices designed 
with abilities to use control routines listed in a 
message passing XSet model. The task at hand is to 
find and follow paths between selected points situated 
in a simulated environment. At any time in 
simulation, each robotic device is either searching for 
a food-like target or it will be travelling to a nest-like 
starting point. Perpetual knowledge of the task at 
hand defines a robotic device’s internal state. Internal 
state information is kept in robotic devices’ basic 
memories, together with the information regarding 
the direction vectors being followed, as well as the 
robotic device’s confidence measures in those 
vectors. Robotic devices are able to interpret the 
vectors and confidence measures held in neighbours’ 
memories by computing their own resultant vectors 
which fairly represents the directional views of all the 
neighbour robotic devices around. A searching 
robotic device uses direction vectors pointing to the 
food-like target, while a returning counterpart uses 
direction vectors pointing to the starting point. 
Robotic devices can relocate towards the direction of 
the found resultant vector, detecting targets in each 
step, and checking if they should flip between 
different internal states when it becomes necessary. 
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These assumptions connote a message passing XSet 
model with a finite cardinality, which supports 
robotic devices with a finite number of internal states. 

1.3 Overview 

Section 2 reviews related works, emphasizing on the 
design of robotic device control views in which 
formalization of the rules followed is the key problem 
addressed. The method we follow in coming up with 
the message passing XSet model is presented in 
section 3, focusing on the identification and 
interpretation of the key control routines required by 
message passing robotic devices in computational 
terms. The setup of the message passing XSet model 
is described in this section. Thereafter, section 4 
describes the design of an experiment with which we 
evaluate and validate the message passing XSet 
model against the stigmergic counterpart. Speeds and 
qualities of emergence are measured and reported in 
section 5. Section 6 concludes the paper, highlighting 
our key observations and the contributions arising. 

2 RELATED WORK 

Use of XSets to control swarms of robotic devices 
towards desired emergent behaviour was first 
reported in Chibaya (2014). Subsequent papers then 
followed (Chibaya, 2015). However, emphasis has 
been on the use of stigmergic XSets which lack 
details regarding identification of generalizable views 
on the quantities of pheromone levels used by 
individual robotic devices in each step. More so, they 
ignore the effects of pheromone dissipation to swarm 
convergence (Chibaya, 2015). A mathematical model 
which captures the quantities of pheromone levels 
used by robotic devices, the size of the scene in which 
the swarm is deployed, the population of robotic 
devices required, the amount of time the swarm 
requires in simulation, and pheromone dissipation 
factors may, hopefully, lead to more generalizable 
views. However, such a mathematical model has not 
been found as yet.  

Compelling alternatives to the XSet model exist. 
Most alternatives, like the stigmergic model, rely on 
indirect robotic device interactions coordinated via 
the environment (Di Caro et al., 2004; Negulescu and 
Barbat, 2004; Bonaneau et al., 1999; Chibaya and 
Bangay, 2007; Dorigo, 1992; Dorigo et al., 1999). 
Other alternatives are built on cell propagation 
theories (Nagpal, 2006), cellular automata (Geer et 
al., 2003; Green, 1994; Sanders and Smith, 2009), cell 
growth and morphogenesis theories (Nagpal and 

Kondacs, 2002), or origami theories (Rothemund, 
2006). However, related robotic devices must possess 
substantial memory and extra elitist abilities to be 
able to handle the computations thereto (Chibaya, 
2014). Robotic device orientation is usually based on 
hard-marked beacons in the scene (Werfel, 2002), 
landmarks (Wehmer et al., 2006), mathematical 
models (Ngo et al., 2005), physicomimetic forces 
(Spears et al., 2004a; Spears et al., 2004b; Spears et 
al., 2005), or some Jacobian matrices (Harris, 2007). 
In these cases, robotic devices are able to solve and 
convert mathematical equations into directional cues. 
In some cases, robotic devices have physically 
mounted sensors with which to orientate (Spears et 
al., 2004b). However, these elitist features are not 
characteristics of the naïve robotic devices we 
assume. 

A few control strategies embrace message passing 
views (Trianni and Dorigo, 2005; Raijbhupinder et 
al., 2010; Rodriguiz et al., 2007). In these, robotic 
devices may hold blocks of textual messages 
(Raijbhupinder et al., 2010) to share with other agents 
of the swarm. However, processing of textual data is 
equally complex. Useful data values are often lost 
during text conversion and interpretation. The 
message passing model we propose assumes robotic 
devices that can share geometric vectors and the 
confidence measures associated with using the shared 
vectors. These are much easier to interpret. Although 
vector arithmetics are popular in machine learning, 
network analyses, and spatial data representation, 
they are a fairly new angle in resolving the robotic 
device control problem. The emphasis we put on 
simplicity and specificity in the design of the message 
passing XSet gives this strategy a computational 
edge. In our view, a message passing XSet will, 
potentially, augment the stigmergic counterpart 
towards notable developments in swarm intelligence 
systems, particularly agent control issues. 

3 METHODS 

An XSet driven swarm simulator of message passing 
robotic devices was developed to solve the path 
finding and path following problem on a simulated 
environment comprising a food-like target and a nest-
like starting point. The default task of the swarm is to 
locate the food-like target, and upon finding it, travel 
back to the nest-like starting point. Trips between the 
food-like target and the nest-like starting point are 
repeated over and over until a set simulation period 
lapses.  
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3.1 Configuration of the XSet 

Control routines included in the message passing 
XSet are sequentially listed in the order in which they 
are used by robotic devices. Meta information include 
(a) the alias name of the XSet. Stigmergic XSets were 
referred to as stigXSet (Chibaya, 2014). Message 
passing XSets are aliased as msgXSet. This alias tells 
us the inspiring metaphor on which included control 
routines are built. Another meta data is the cardinality 
of the XSet. Cardinality tells us how many control 
routines are required in each robotic device’s internal 
state. Stigmergic robotic devices needed, at most, 
four control routines in each internal state (Chibaya, 
2014; Chibaya, 2015). From repeated tests, message 
passing robotic devices require one extra control 
routine in each internal state. The number of internal 
states and the amount of memory robotic devices 
need are also important meta data. In this case, four 
internal states are supported by both stigmergic and 
message passing robotic devices. A message passing 
XSet can sufficiently drive robotic devices towards 
emergent behaviour as long as memory is sufficient 
to keep internal state information, direction vectors to 
and from the target, and the confidence measures 
thereof. 

 
 

msgXSet (cardinality, states, mem) 
{ 
  switch (states) 

     { 
case 0: {MsP, PtV, Nrm, MvP, StS} 
case 1: {NOp, NOp, NOp, NOp, StS} 
case 2: {MsP, PtV, Nrm, MvP, StS} 
case 3: {NOp, NOp, NOp, NOp, StS} 

     } 
   } 

Listing 1: Template of a message passing XSet. 

We summarize the design of a message passing 
XSet in listing 1, where msgXSet is the alias name. 
The model accepts three parameters, cardinality, 
number of internal states supported, and amount of 
memory allocated to each robotic device. In this case, 
robotic devices can hold up to 8 memory blocks. 
Control routines and related parameter values are 
listed between the curly brackets. Each control 
routine and its related parameter values are listed after 
each switch-case entry. A control routine and its 
parameter values are separated by a colon. Parameter 
values to a control routine are separated by commas. 
Different control routines are, also, separated by 
commas. Control routines used in different internal 
states are demarcated by curly brackets. A code such 

as: (MsP: V1, V2, C) tells a robotic device to share 
particular direction vectors and confidence measures. 
The vectors shared are used to determine the next 
direction to follow. Robotic devices can detect their 
proximity to targets using the control routine aliased 
as (PtV: V, C). The resultant vectors yield from any 
computation are normalized using the control routine 
(Nrm: X, Y, Z). Once orientated, robotic devices can 
relocate to desired destinations using the control 
routine (MvP: X, Y, Z). Should it be necessary at the 
time, robotic devices can flip between different 
internal states using the control routine (StS: m, n, x). 
However, there are moments when robotic devices 
have to do nothing. An empty control routine aliased 
as (NOp:) is used. The next section describes the 
computational interpretation of each of these control 
routines. 

3.2 Computational Design of Routines 

In XSets, control routine names have three letters, e.g. 
MsP, PtV, Nrm. These control routines are primarily 
used by robotic devices for sharing vectors, detecting 
targets, normalizing vectors, making movements, or 
flipping between different internal states. This section 
discusses the computational interpretation of these 
control routines.  

We indicated earlier on that message passing 
robotic devices require some memory in which to 
store internal state information, vectors, and 
confidence measures. Keeping internal state 
information in memory spells out a robotic device’s 
tasks at the time (Panait and Luke, 2004a, 2004b, 
2004c). It influences the behaviour of nearby robotic 
devices (Parunak, 2005). For example, a robotic 
device may flip to another internal state triggered by 
a nearby robotic device’s proximity to the target 
(Parunak, 2005). In some cases, such flips occur as a 
reward for an achievement (Panait and Luke, 2004a).  

Robotic devices in the search internal state 
communicate with counterparts in the returning 
internal state because those robotic devices likely 
know where the food-like target is. Robotic devices 
in the returning internal state prefer interactions with 
members in the searching internal state because those 
robotic devices would likely know better about the 
direction towards the nest-like starting point. Internal 
state changes are repeated every time a target is hit.  

Listing 2 interprets the process through which 
robotic devices achieve the flipping between different 
internal states in computational terms. The mnemonic 
(StS: m, n, x) summarizes the control routine for 
flipping between internal states. It tells a robotic 
device to set its internal state to mode m on condition 
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bool StS (m , n , x) 
{ 
   for-each robotic-device Rt   
  if (n is true in domain x) 
  { 
   internal state = m 
  }    

     } 

Listing 2: Flipping between internal states. 

that requirements n are satisfied in domain x. In our 
case, m ranges between 0 and 3, representing the four 
possible internal states message passing robotic 
devices support. Then, n is a set of conditions which 
indicates aspects of the simulation to trigger a robotic 
device’s interests in changing from one internal state 
to another. Inclusion of x sets the domain in which n 
is satisfied. For example, (StS:1,0,0) tells a robotic 
device to change to internal state case 1, provided that 
the target indicators marked as 0 are in quantities 
above 0 at the robotic device’s current location. 

Message passing robotic devices can share 
message blocks (Trianni and Dorigo, 2005) of the 
format: (xi;yi;𝑓v;𝑓w;𝑛ሬ⃗ v;𝑛w). In these message blocks, 
(xi;yi) is the offset of a communicating ith robotic 
device. Communication is allowed between a path 
finding robotic device and those robotic devices 
whose offsets are within the set communication 
range. The path finding robotic device self-localizes 
relative to nearby robotic devices, placing itself at the 
origin of its local coordinate system. The choice of 
which vectors are attractive at the time depends on the 
path finding robotic device’s internal state. When 
searching, robotic devices are attracted to 𝑓v (food 
vectors), weighed by 𝑓w (confidence measures in 𝑓v). 
The path finding robotic device accumulates the 
vectors read from all robotic devices around, each 
weighted by its related 𝑓 w. A resultant vector is 
calculated, which overwrites the path finding robotic 
device’s current 𝑓 v. Returning robotic devices are 
attracted to 𝑛ሬ⃗ v, weighted by 𝑛 w. They also find a 
resultant vector which points in the likely direction of 
the nest-like starting point. Every time a resultant 
vector is calculated, either 𝑓 w or 𝑛 w of the path 
finding robotic device is upgraded or downgraded 
depending on the quality of the information received. 
Below, we show how resultant vectors are calculated. 

3.3 Calculation of Resultant Vectors 

A similar approach where vectors are shared before 
resultant vectors are calculated was used in Ngo et al. 
(2005). Resultant vectors summarize nearby robotic 

devices’ past experiences (Rodriguez et al., 2007). 
These combined experiences upgrade or degrade a 
path finding robotic devices’ knowledge and 
confidence in the vector it is following. 

Upon deployment, robotic devices randomly pick 
𝑓v and initialize 𝑓w to a minimal value possible. The 
hope is that 𝑓w would improve as robotic devices gain 
more knowledge of the environment through 
interactions with other robotic devices. The local 
coordinate system created by robotic devices span 
over three simulated grid cells in 2D spaces. Figure 1 
shows a typical local coordinate system with eight 
possible paths a robotic device can follow. The task 
of the path finding robotic device is to decide on a 
direction to take based on the information shared 
from nearby robotic devices.  

To find that resultant vector, a message passing 
robotic device calculates intersection points and 
points of closest approaches between all possible 
pairs of vectors read from neighbours. The notion is 
that, two vectors representing the knowledge of two 
independent robotic devices would intersect at a point 
close to the target. That vector which starts from the 
origin of the local coordinate system to the 
intersection point of the two vectors is a candidate 
direction to follow next. In the event of a pair of 
vectors not intersecting within the defined scene, 
points of closest approach between the selected 
direction vectors are determined. Once a set of all 
intersection points and points of closest approach is 
established, message passing robotic devices use least 
squares point estimation to pick a fair direction vector 
which represents the knowledge gathered, at the same 
time updating or downgrading its own confidence 
measure in the new selected direction. 

 

Figure 1: coordinate system for path finding robotic 
devices. 

Figure 2 shows a set of intersection points and 
points of closest approach for an arbitrary case. 
However, how do we geometrically find those values 
of x and y at which two vectors intersect or where 
points closely approach each other? The problem of 
determining these coordinates is geometric.  
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Figure 2: Intersection points and points of closest approach. 

If we denote the vector followed by the ith robotic 
device as 𝑑 i, and that followed by the jth robotic 
device as 𝑑 j. Suppose the offsets of the ith and jth 
robotic devices relative to the path finding robotic 
device are (xi; yi) and (xj; yj) respectively. 

Then the points along each line segment 

represented by vectors 𝑑 i and 𝑑 j are 𝑑 i+𝑠 ൈ 𝑑መ⃗ i and 

𝑑 j+ 𝑡 ൈ 𝑑መ⃗ j respectively. Here, 𝑑መ⃗ i and 𝑑መ⃗ j are unit 
vectors of 𝑑 i and 𝑑 j. Parameters s and t are 

magnitudes. Let the points at 𝑑i+𝑠 ൈ 𝑑መ⃗ i and 𝑑j+𝑡 ൈ 𝑑መ⃗ j 
be (xi+1; yi+1) and (xj+1; yj+1) respectively. The 
intersection point of 𝑑 i and 𝑑 j is therefore (x ; y), 
where x and y are computed as shown in equations (1) 
and (2). With two points along each vector, we find 
the point at which two vectors meet (Wikipedia, 
2004) by finding the matrix determinants of the 
coordinates of the points identified along each vector. 

x ൌ

ተተ
ቚ

x୧ y୧
x୧ାଵ y୧ାଵ

ቚ ฬ
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ቚ ฬ
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ฬ
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ฬ
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x୨ାଵ 1ฬ ฬ
y୨ 1

y୨ାଵ 1ฬ
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 (1)
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x୧ y୧
x୧ାଵ y୧ାଵ

ቚ ฬ
y୧ 1

y୧ାଵ 1ฬ

ቚ
x୨ y୨

x୨ାଵ y୨ାଵ
ቚ ฬ

y୨ 1
y୨ାଵ 1ฬ
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ተተ
ฬ

x୧ 1
x୧ାଵ 1ฬ ฬ

y୧ 1
y୧ାଵ 1ฬ

ฬ
x୨ 1

x୨ାଵ 1ฬ ฬ
y୨ 1

y୨ାଵ 1ฬ
ተተ

 (2)

When vectors do not intersect, we get a point of 

closest approach. If Li=𝑑i+𝑠 ൈ 𝑑መ⃗ i and Lj= 𝑑j+𝑡 ൈ 𝑑መ⃗ j 

are equations of the line segments along vectors 𝑑 i 
and 𝑑j, the point at which these two vectors have a 
minimum offset, w=Li - Lj, is the point of closest 
approach. This point is when w is perpendicular to Li 

and Lj. At this point, 𝑤 ൈ 𝑑መ⃗ i =0 and 𝑤 ൈ 𝑑መ⃗ j=0. 

Algorithm 1 shows how 𝑤 ൈ 𝑑መ⃗ i=0 and 𝑤 ൈ 𝑑መ⃗ j=0 are 
used to solve for s and t, and how we find the point 
where w is smallest. Two vectors are parallel when 
ac-b2=0. Robotic devices pick a midpoint along the 
line segment w as the wanted point of closest 
approach. The set of (x ; y) value of intersection points 
and points of closest approach for all pairs of vectors 
taken from nearby devices is the data from which a 
robotic device finds its new path. Hopefully, the 
vector found fairly represents the consensus of nearby 
robotic devices. 

Algorithm 1: Determining the values of s and t. 

 

 𝑦 ൌ 𝑎ଵ  𝑥  𝑚𝑏ଵ (7)

 𝑥𝑦 ൌ 𝑎ଵ  𝑥ଶ  𝑏ଵ  𝑥 (8)

 𝑥 ൌ 𝑎ଶ  𝑦  𝑚𝑏ଶ (9)
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 𝑥𝑦 ൌ 𝑎ଵ  𝑦ଶ  𝑏ଶ  𝑦 (10)

aଵ ൌ
m ∑ xy െ ∑ x ∑ y
m ∑ xଶ െ ሺ∑ xሻଶ  (11)

bଵ ൌ
m ∑ y ∑ 𝑥ଶ െ ∑ x ∑ xy

m ∑ xଶ െ ሺ∑ xሻଶ  (12)

To pick a direction, least squares point estimation 
(Chibaya, 2014) is used on that set of (x ; y) 
coordinates. Two least squares regression lines arise, 
one for y on x, and another for x on y. The regression 
line for y on x is y = a1x + b1, and that for x on y is 
x=a2y + b2 (Chibaya, 2014). Equations (7) and (8) 
determine a1 and b1 in y = a1x + b1, while equations 
(9) and (10) find a2 and b2 in x = a2y + b2. In both 
cases, m is the population of robotic devices around 
the path finding robotic device. Equations (11) and 
(12) show how we simplify equations (7) and (8) for 
a1 and b1. Flipping x and y in these equations gives the 
formula for finding a2 and b2 in equations (9) and 
(10). Least squares point estimator finds the point at 
which the two regression lines intersect. That point 
coincides with the centre of mass (�̅�; 𝑦ത). A vector 
starting from the origin of the local coordinates 
system to the centre of mass is the resultant vector we 
want. 

3.4 Updating Confidence Measures 

We indicated that each vector has an associated 
confidence measure which indicates how well a 
robotic device has performed in previous orientation 
choices. Confidence measures indicate the robotic 
device’s trust in the path followed (Chibaya, 2014). 
They reflect the quality of the vectors previously 
followed. These are float values between 0 and 1, 
where 1 indicates awareness of the direction to the 
target and 0 indicates complete ignorance of the scene 
features. A robotic device updates its confidence 
measure by combining the confidence levels of 
nearby robotic devices with its own using equation 
(13).  

𝑤ሺ𝑡  1ሻ ൌ
ଵ

ଶ
ቀ𝑤ሺ𝑡ሻ 

∑ ௪ೕሺ௧ሻೕ∈ೖ


ൈ ሺ1 െ 𝑐ሻቁ  𝜆   (13) 

If there exist k nearby robotic devices to a path 
finding robotic device, then let the vector held in each 
of the k robotic devices be denoted as j. Therefore 
∑ ௪ೕሺ௧ሻೕ∈ೖ


 is the average confidence measure of the k 

robotic devices. To minimize the effects of outliers, 
we find the spread of the views of the k robotic 
devices and denote it as c, which is within the range 

0 to 1. To penalize larger c, we use (1-c) as the desired 
weight. An average of wi(t) of the path finding robotic 
device and wi(t) of the k nearby robotic devices gives 
the updated wi(t+1). Some randomness (λ) is added to 
allow independence in robotic devices’ actions. 
Randomness is especially useful when robotic 
devices are isolated from the rest. That way, robotic 
devices’ confidence levels would never deplete. 

3.5 The Message Passing Routine 

Listing 3 presents the message passing routine. The 
routine has three parts, one where vectors are shared 
in order to create a set of intersection points and 
points of closest approach, another part where the 
least squares point estimator is used to pick the 
vector, and a part where confidence measures are 
updated. In the mnemonic: (MsP:vc,vj,vj), vc are 
blocks in robotic devices’ memories where 
confidence measures are recorded. Then, vj are blocks 
in robotic device memories where attractive vectors 
are held. The third parameter indicates blocks in 
memory in which the resultant vectors are recorded 
after they are determined. Robotic devices overwrite 
their old vectors in vj by the vectors yield. The routine 
tells a robotic device to read vectors held in nearby 
devices’ memories, read related confidence 
measures, and find a vector to follow. 
 

 

bool MsP (Vc , Vj , Vj) 
{ 
   for-each robotic-device Rt   
 for-each robotic-device Kt   
   { 
   pos(Kt)= (xk , yk , zk) - DK 
   for-every-other Kv 
   { 
      pos(Kv) = (xv , yv , zv)-Dv 
       if (Dk Ո Dv) 
      { 
    x = calculated from (1) 
              y = calculated from (2) 
  } 
  else 
  { 
       x=random x; y=random y 
  } 
  Add (x , y) to array [] 
    }   
    c = avg (sdvev (x , y)) 
    path-wght=avg(w(t),sum(w(t)k)×c+β 
} 

Listing 3: The message passing primitive instruction. 
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bool Nrm (x, y , z) 
{ 
  length = x2 + y2 + z2 
  if (length ≠ 0) 
  { 
      x=x/length: y=y/length: z = z/length  
  } 
  else 
  { 
     x = random x 
     y = random y 
     z = 0.0 
     path-weight = 0.00001 
     Nrm (x , y , z)   
   } 
} 

Listing 4: Normalizing vectors. 

bool PtV (pi , x) 
{ 
  for-each pos-L around device Rt   
  { 
    if (Q(pi) @ L > x) 
    { 
       path (Rt+1) = (Lx , Ly , Lz) 
       path-weight (Rt+1) = 1.0  
    } 
  } 
}  

Listing 5: Detecting target indicators. 

bool MvP (x , y , z) 
{ 
  for-each robotic-device Rt   
  { 
   if (Rt = (x , y , z)) 
       Rt+1 = (x+xi , y+yi , z+zi) 
  } 
} 

Listing 6: Robotic device movement. 

Magnitudes of vectors are variable. They dictate 
robotic devices’ movement steps. Normalizing these 
vectors reset the magnitudes to 1, defining unit 
robotic device steps. Listing 4 summarizes the 
semantics for normalizing a vector. The control 
routine receives the x, y, and z components of a vector 
and use these values to find the length of the vector. 
This length is non-zero when a robotic device has 
neighbours. Components of the vector are divided by 
this length. Isolated robotic devices yield vectors of 
magnitude 0, after which the robotic devices follows 
randomly picked direction vectors with depleted 
confidence measures. Random vectors are recursively 
normalized. 

It is critical that robotic devices detect targets 
(Cavalcanti and Freitas, 2005) in order to trigger 
internal state changes. Points where key objects exist 
in the simulation environment are marked by target 
indicators (Cavalcanti and Freitas, 2005). Target 
indicators are virtual chemicals set when the 
environment is launched. A method is required with 
which message passing robotic devices can detect 
target indicators and appropriately interpret this into 
vector information. This is not the first time vectors 
have been used to interpret pheromone levels 
(Chibaya, 2014). A magnitude of zero indicate that 
the robotic device is not yet on target. Listing 5 
describes target detection and conversion of related 
information to vectors. It accepts two parameters, one 
passing the ID of the target indicator and another 
setting the lowest level of target indicators to trigger 
changes in robotic devices’ actions. If detected, the 
robotic device overwrites its vector by a vector 
pointing to the location of the target indicators. This 
upgrades confidence measures to the highest measure 
possible, indicating absolute trust in the vector to the 
target. 

Movement is the robotic device’s last task in each 
cycle. Listing 6 interprets the movement policies run 
after orientation. Three parameters indicating the 
offset of the chosen destination are received into the 
routine. In these offset values, the z component is 
always 0 as we operate in 2D. 

Meta information stipulates each XSet’s precise 
cardinality. However, there are moments when 
robotic devices require fewer control routines than 
stipulated. (NOp:) tells robotic devices to do nothing 
when it becomes necessary. This is merely an empty 
routine.  

4 EXPERIMENTS SETUP 

An experiment is administered in which to assess path 
finding and path following properties in swarms 
controlled by message passing and stigmergic XSets 
(Chibaya, 2014).  

The platform on which robotic devices are 
assessed for path finding and path following abilities 
is called an environment (Chibaya, 2014). In 
computational terms, an environment is a grid of rows 
and columns which intersect to form cells which we 
regard as locations. A location is practically a tuple 
which stores information such as target indicators. 
For experimental purposes, we assume a 1000 × 1000 
grid environment. Target and the starting point are 
hard coded at particular locations to allow repeatable 
tests.  
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Robotic devices are allowed to run for, as a case 
study, 10,000 steps in which to score performances. 
However, simulation time can be changed without 
compromising the desired outcomes. Each swarm 
consists of, as a case study, 5000 robotic devices.  

A performance metric measures the extent to 
which emergent behaviour is manifest as a result of 
robotic devices using the control routines listed in an 
XSet. Two performance metrics are of interest in this 
study. First, quality of emergence measures 
adherence of robotic devices to the schedule, 
evaluating robotic devices’ engagement with the task 
at hand (Werfel et al., 2006). On the other hand, speed 
of emergence evaluates timeliness. Combined, the 
two metrics yield an index of merit of the XSet used.  

To measure speed, the time it takes the first 
robotic device to find the target is determined. Time 
is measured in iterations. Then, the time it takes the 
last robotic device in the swarm to also find the target 
is found. The time gap between these two time 
intervals is the speed of emergence towards the target. 
Speed of emergence towards the starting point is the 
time gap between the times taken by the first and last 
robotic device to complete round trips. The average 
between speed of emergence towards the target and 
speed of emergence towards the starting point is the 
overall speed of emergence of the swarm. Ten 
repeated simulations administered, before centrally 
placed speed measures, are reported.  

To determine quality of emergence, we set a time 
frame in which successful trips of robotic devices in 
each direction are counted and recorded. Ten repeated 
tests are also administered in order to achieve 
smoothened and centrally placed performance trends.  

The index of merit is determined by scaling speed 
and quality measures so that they lie in the range [0; 
1]. Equation (14) shows how the average of the scaled 
metrics is found, giving an index of merit of an XSet. 

     Index of merit = 0.5×((1-S/T) + Q/T)       (14) 

The hypothesis which drove the experiment 
administered is: message passing XSets are a useful 
alternative for controlling swarms of robotic devices 
towards emergent behaviour. The null hypothesis 
thereto is: there aren’t significant differences in 
performance between swarms coordinated using 
message passing and stigmergic XSets. The 
dependent variables in this experiment are XSets’ 
indices of merits. Two independent variables are: the 
time taken in simulation and the control levels at 
which measures of emergence are extracted. In this 
case, performance measures are extracted at intervals 
of 1,000 iterations. All other variables are controlled, 

including the population of robotic devices, size of 
the environment, the positions of the starting point 
and the food-like target, the cardinalities of XSets, 
number of internal states, and the sizes of the memory 
blocks supported by robotic devices. Listing 7 
summarizes the design of the experiment, showing 
the procedure followed. 

 

Listing 7: Experiment design. 

5 RESULTS 

The key results reported are speeds of emergence, 
qualities of emergence, and indices of merits of 
message passing and stigmergic XSets. In these 
results, measures of central tendencies and dispersion 
are important. Correlations extracted at a 99% level 
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of confidence are also key. The sample size we use is 
statistically small, so two-tailed correlation tests are 
administered because we cannot tell, in advance, the 
sign of the correlation coefficients we will get. The 
critical correlation value we use is 0.765 when alpha 
is 0.01. Absolute values of the correlation coefficient 
above 0.765 indicate sufficient evidence to accept the 
hypothesis that there are significant relationships 
between the speeds and qualities of emergence yield.  

Figure 3 compares the indices of merits yielded 
from using the two XSets. The x- axis is marked by 
the control levels. The y-axis shows the average 
scaled indices of merits thereof. The speeds and 
qualities of emergence found satisfy Kolmogorov-
Smirnoff tests for normality with a statistical p value 
above 0.05. A correlation coefficient of 0.91 is 
yielded when speed and quality of emergence in the 
stigmergic category are compared, implying a strong 
correlation between speed and quality of emergence 
in that model. The message passing counterpart 
yielded a correlation coefficient of 0.86 when the 
same metrics are compared. Chances are therefore 
slim that any generalized views we deduce from these 
results would significantly differ from the trends and 
relationships shown. 

 
Figure 3: Comparisons between indices of merits. 

We have sufficient evidence to accept the 
hypothesis that the two XSets are alternatives to one 
another, both achieving plausible outcomes. We 
make the following additional observations: 

 The stigmergic XSet reaches a turning point in 
performances with time in simulation, after 
which swarm performances deplete. A turning 

point in performances occurs when the 
environment gets saturated with pheromone 
levels which reverts robotic devices to a 
random wandering mode. We noted in 
(Chibaya, 2015) that pheromone dissipation 
could be, to some extent, the remedy to this 
flaw. On the contrary a message passing XSet 
improves related swarm performances in 
Sigmoid-like patterns. Related performances 
gradually improve until robotic devices 
converge on deterministic paths. Thus, while 
extended time in simulation is detrimental to 
stigmergic swarm performances, it allows 
message passing swarms to build vector fields 
with deterministic cues to the targets. Swarm 
performances are therefore a function of time 
in simulation in both cases. 

 Stigmergic control routines come in specific 
sequences in order to yield good performances. 
Similarly, message passing control routines are 
executed sequentially. The configuration of the 
two XSets is similar, connoting possibilities of 
a generalized XSet.  

 Message passing and stigmergic XSets both 
influence swarm behaviour. They are, both, 
useful swarm drivers. This is a milestone in the 
study of robotic systems.   

The results provide sufficient evidence to support 
the view that message passing XSets are an 
alternative to stigmergic XSets. No significant 
differences are observed between their performances, 
with both XSets showing causal properties. 

6 CONCLUSION 

A new XSet for controlling swarms of robotic devices 
towards desired formations is proposed. The new 
XSet is inspired by the behaviours of message passing 
agents. Controlling swarms of robotic devices 
requires us to provide five meta data during the 
configuration of the XSet. We need to provide the 
alias name of the XSet, cardinality, number of 
internal states supported, amount of memory, and the 
separators used to demarcate the XSet’s entries. Six 
routines form the vocabulary of message passing 
XSets as follows: 

 (MsP:) – a control routine with which robotic 
devices share vectors, finding resultant vectors 
to follow next, updating their confidence 
measures, and orientating in each step. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10

Indices of merits

Stigmergic Xset

Message passing Xset

Random wandering Xset

Vector based Control Routines for Swarms of Path Finding Robotic Devices

281



 (PtV:) – a control routine for detecting target 
indicators, updating confidence measures, and 
orientating robotic devices towards the targets. 

 (MvP:) –a routine for relocating robotic 
devices. 

 (Nrm:) – a routine for normalizing vectors. 
 (StS:)– a control routine which allows robotic 

devices to conditionally flip between different 
internal states. 

 (NOp:)– telling robotic devices to do nothing. 

An experiment to evaluate the message passing 
XSet for causal properties showed that this is an 
alternative swarm control protocol to the stigmergic 
version. Four contributions emanate from this work:  

 The design of the message passing XSet adds 
to new developments towards practical use of 
robotic device based swarm intelligent 
systems. 

 The control routines used are creative, adding 
relevant content to the robotic device control 
and programming problem.  

 The metrics used to measure the performances 
of XSets are innovative. These metrics can be 
useful in verifying other forms of emergent 
behaviours, opening up new research avenues 
in areas related to quantification of emergency. 

 The statistical tests applied during validation of 
the XSets and tests for normality on the results 
are also innovative. Similar statistical tests may 
inspire the development of more scientific and 
deductive outcomes with positivism angles. 

Although the general robotic device programming 
problem is not resolved, this work brings us closer to 
such generalization. It provides a baseline upon 
which further investigations may arise. More so, the 
work strengthens the foundation set when the 
stigmergic XSets were identified. Importantly, the 
investigations undertaken may soon inspire the 
development of more generic control routines with 
which robotic devices, in general, would engineer 
predicable object assembly. 
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