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Abstract: Recent studies have proposed several ways to optimize the stability of IT-services with an extensive portfolio 
of processual, reactive or proactive approaches. The goal of this paper is to combine monitored performance 
data, such as CPU utilization, with discrete data from log files in a joint model to predict critical system states. 
We propose a systematic method to derive mathematical prediction models, which we experimentally test 
using a downsized clone of a real life contract management system as a testbed. First, this testbed is used for 
data acquisition under variable and fully controllable system loads. Next, based on the monitored performance 
metrics and log file data, we train models (logistic regression and decision trees) that unify both, numeric and 
textual, data types in a single incident forecasting model. We focus on 1) investigating different cases to 
identify an appropriate prediction time window, allowing to prepare countermeasures by considering 
prediction accuracy and 2) identifying variables that appear more likely than others in the predictive models. 

1 INTRODUCTION 

With todays companies vitally relying on continuous 
service of their IT infrastructures, predictive analytics 
as a tool to “foresee” problems has become 
indispensable. With many software solutions out in 
the wild, the problem of data acquisition and model 
design is still to a wide extent a matter for a domain 
expert to make design decisions, such as (i) which 
performance metrics can be monitored, but more 
importantly (ii) which among the ones possible 
should be monitored for a good predictive model? 
Last but not least, we strive for explainable models, 
meaning that the model’s predictions should be 
comprehensible by a human. While the diversity of 
predictive models is rich and data science has lots to 
offer to study, the construction beforehand enjoys a 
much smaller set of theoretical aids. Our work is 
meant to close this gap in a twofold way: first, we fit 
a series of models (one stochastic, one deterministic) 
to a set of variables to determine which among them 
are likely to play a role in either model. This is to 
answer the previous question (i) to equip an 
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administrator with a reasonable initial guess about 
what to monitor. Second, towards answering question 
(ii), we describe how to unify two kinds of data 
sources in the same model, namely monitoring data 
and textual log files. Almost all predictive models in 
the literature focus exclusively on one or the other 
type of data. Our propopsal is the first study of a 
combined model. A careful initial choice about which 
data should go to a further analysis can substantially 
save efforts (time and costs) here. This paper will 
answer the following research questions (RQ): 
 
(RQ1): Which method mix can be used to combine 
numeric and continuous with textual and discrete IT-
system data to be suitable for a single incident 
forecasting model? 
(RQ2): Which variables are most likely to be relevant 
for predicting the system state by a (yet unspecified) 
model, so that we know which variables should be 
monitored? 
(RQ3): To what extent does prediction window size 
influence the prediction quality and the impact of the 
variables on the system state? 
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We start with an overview of related work. To close 
a gap identified in previous related literature, we 
empirically substantiate the added value of predictive 
modelling that pursues a combined use of monitoring 
data and log files. The main body of this work is 
predictive modelling based on IT-system data. 
Finally, we present our results and findings, which 
will further be investigated as mentioned in the future 
work section. 

2 RELATED WORK 

A lot of different research in the IT-service-
management (ITSM) area focuses on approaches and 
methodologies to keep the quality and availability of 
IT systems (ITS) at a maximum level. A common 
way to improve ITS quality and availability is the 
orientation on processual best practice frameworks 
like ITIL and has been widely studied (Hochstein et 
al., 2005), (Potgieter et al., 2005), (Cater-Steel et al., 
2007). Beside these frameworks and their 
recommendations, analytics based approaches, which 
are actually not part of the frameworks, come to the 
fore. There are a vast amount of event pattern mining 
and summarization approaches for log file analysis 
available, which can be structured as suggested in 
(Kubiak/Rass, 2018) following the question what the 
practitioners do want to learn from or do want to do 
with the data: Recognition of interdependencies, 
which often manifest themselves as patterns 
(Ma/Hellerstein, 2001), (Li et al., 2005), (Tang et 
al., 2012), (Zöller et al., 2017) or understanding the 
system and its dynamics as such, which can be 
presented as summaries (Kiernan/Terzi, 2009), 
(Wang et al., 2010), (Peng et al., 2007). A taxonomy 
for online failure prediction methods and its major 
concepts has been presented in (Salfner et al., 2010). 
Some of the methods use time series data from 
monitoring metrics to predict the system state but the 
taxonomy includes predictions based on log file event 
occurrence as well. A limited number of research 
papers focus on the complementary use of monitoring 
data and log file events to generate further insights 
(Luo et al., 2014). 

3 DATA ACQUISITION 

For data acquisition, we defined a concept for a load 
and performance measurement in scenarios that 
resemble real life user interactions with the system. 
We used a small-scale digital twin of a real life IT-

system environment, which resembles a productive 
system without being one, to fully control and 
manipulate the systems behaviour as requested. There 
was no continuous load on the system because it was 
a training environment mainly used for irregularly 
employee trainings. Therefore, test scripts were 
generated using VuGen and scheduled using 
LoadRunner Enterprise, which both are software 
products of Micro Focus. These scripts generate 
regular system load (client transactions sent to the 
system) and load peaks. As a major advantage of 
using a digital twin here, the scripts enabled us to 
produce any sort of unwanted behaviour known to be 
different from noise. In particular, rare events and 
incidents of diverse kinds can be triggered to the 
amount and extent required. 

3.1 Application Architecture and 
Implementation 

The application of our choice for the experimental 
setup is a contract management system (CMS), which 
is a web application based on Java. Fig. 1 illustrates 
the architecture of our experimental testbed, which is 
an on-premise cloud application hosted at our data 
centre. Essentially, the application consists of an 
infrastructure as a service (IaaS) as backend 
component and a platform as a service (PaaS) as 
frontend component. Both run within an OpenStack 
environment, which is an open source software for 
creating public or private clouds. 

 

Figure 1: Architecture of the CMS. 

The IaaS component ran on a node with 8 CPUs (Intel 
Xeon CPU E5-2680 v4 @ 2.40GHz), 8GB RAM, and 
20 GB hard disk. The PaaS component ran on a node 
with 4 CPUs, 8 GB RAM, and 2 GB hard disk. The 
web and application servers both run on Linux RHEL 
7.x operating system. As application runtime, the web 
server uses WildFly while the application server uses 
JBoss EAP. WildFly is an open source application 
runtime and part of the JBoss middleware framework. 
Furthermore, it is the basis for the commercial version 
IBM Red Hat JBoss EAP. For collecting monitoring 
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data, we used DX Application Performance 
Management (formerly known as CA APM). 

3.2 Load and Performance Test Design 

To generate necessary monitoring data and log files, 
we designed a concept for a 10-day long load and 
performance test. From data quality perspective, our 
focus was to evaluate the suitability of our models 
with data whose underlying generative processes are 
entirely known to us. We simulated a specific number 
of user interactions within the CMS, based on real 
system transactions like contract search, creation, 
modification and termination for fixed time windows. 
The load and performance test consists of different 
scenarios to simulate normal as well as anomalous 
behaviour, which we defined as unusually high 
system load (peaks), i.e., as critical system state from 
application performance perspective. The number of 
virtual users working on the CMS simultaneously was 
the trigger for the system load intensity. We decided 
to switch from normal to anomalous behaviour in a 
15-minutes interval within an 8 hours period for each 
test day. The reason to switch from normal behaviour 
to load peaks in a 15-minutes interval was to enrich 
the data set with as much as possible behaviour 
changes to train the models. An earlier experimental 
setup showed that imbalance between the number of 
data rows for normal load and anomalies had 
significant (negative) influence on prediction 
accuracy. For the load peaks, we decided to use a high 
grade of variety for the stepwise load increases to 
avoid patterns. We defined normal behaviour as ൒ 5 
and ൑ 17  virtual users working simultaneously, a 
number of ൒ 18 virtual users represents the threshold 
for anomalous behaviour. Due to internal regulations, 
the test design was restricted to a system load 
generated by ൑ 25 virtual users working at the same 
time. The collected data consists of ൎ 25 GB raw text 
file documents (log files) and 4,800 monitoring data 
records (measured in a 1-minute interval). 
Remark 1: Alternative other such conditions are of 
course possible, say, defining the trigger levels based 
on resource consumption as induced by the user’s 
transactions. Such anomaly triggers bear an intrinsic 
stochastic element, since the system load that a 
transaction causes may vary depending on what a user 
does specifically. 

4 DATA PREPARATION 

Because the data results from different sources, 
harmonization of textual and numeric data into one 

common format was the main challenge (besides the 
standard steps like data cleansing, which is not 
discussed further here). 

4.1 Log File Data 

Since most data harvested from a normal IT-
application comes in textual form of log files, our first 
task is to convert the textual information into numeric 
data, usable with analytic models. To this end, we 
followed the standard practice of taking these steps: 
i) filtering out error messages from the overall log 
textual corpus; ii) use document-term-matrices 
(DTM) to extract signalling keywords from the text, 
to recognize “topics” that the log entries refer to 
(Imai, 2017; Xu et al., 2003); and iii) run a clustering 
algorithm to associate each log entry with one out of 
a few clusters that correspond to variables in a 
predictive model to be constructed. Each cluster 
created in the last step is then a log-data related 
variable in our predictive model, and the association 
of a log entry with a cluster manifests itself as the 
respective indicator variable in the model coming in 
with the proper (numeric) value. Together with the 
log entry’s timestamp, we obtained a set of 0-1-
valued variables, which are the first part of the data 
set. For the clustering, we chose DBSCAN (Ester et 
al., 1996) as the simplest method to apply in absence 
of specific domain knowledge. This choice is 
consistent with our initial assumption of the 
administrator not yet having much insight about what 
variables to measure at all, so an algorithm that 
determines the number of clusters itself is more 
desirable here. After testing different configurations 
without considerable differences for the result, we 
decided to use the configuration with 𝑚𝑖𝑛𝑃𝑡𝑠 ൌ 4 
and 𝜀 ൌ 0.4. 

4.2 Monitoring Data 

We collected monitoring data using agents installed 
on the IaaS and PaaS components. These agents are 
exclusively for application performance monitoring 
and do not monitor the infrastructure layer, i.e., 
metrics for the physical hardware are not available. 
Each group of monitoring metrics consists of at least 
one but usually several variables – (for example, CPU 
is a variable and a metric group at the same time while 
the average response time group contains measures of 
the response times of >50 different JavaBeans): 

 Average Response Time (AR): The average 
response time in ms of a JavaBean from method 
call until response 
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 Memory Pools (MP): The dedicated part of the 
heap memory in bytes, which allocates memory 
for all instances and arrays at runtime 

 Concurrent Invocations (CI): The number of 
simultaneous calls of a JavaBean 

 CPU: The CPU utilization in percentage 
 % Time Spent in Garbage Collection (GC): 

The percentage time within an interval in which 
obsolete in-memory code is removed 

 Responses per Interval (RpI): The number of 
application responses within an interval 

 Sockets (Sock): The number of available 
Communication Points of the Application 

4.3 Merging Log File and Monitoring 
Data 

After preparing the log file and monitoring data, we 
merged both data sets into a single data set based on 
the timestamps of their entries. Because the 
granularity of the monitoring data was less (recorded 
in a fixed 1-minute interval) than that of the 
(sporadically occurring) log events, several rows of 
the log file data were lost through the (inner) join. 
Afterwards, we labelled the entries resulting from the 
merge by adding a column "Alarm". Values for 
Alarm are “0” denoting normal behaviour and “1” 
denoting anomalous behaviour. Resulting from the 
scripted induction of anomalies in our experimental 
setup for the data acquisition task, the data labelling 
was reliably automatable. As result, we obtained a 
data set that consists of 4,800 rows and 139 variables. 
Returning to our requirement of explainability and 
interpretability, 139 variables is a lot to handle, and 
not all of them are equally important. In a final step, 
we used 𝜒2-tests (alternatively, also Fisher’s exact 
test) to further filter this set of variables keeping only 
those variables that show a statistically significant 
interplay with the alarm indicator. Through this final 
step, the dataset was reduced to 106 (out of 139) 
statistically significant variables. 

5 EXPERIMENTAL SETUP 

We do not only want to train models to achieve a 
suitable prediction quality, we moreover want to have 
an entirely transparent system devoid of black-box 
parts. Thus, we want to give IT-operators guidance on 
which variables they should focus on to indicate 
reasons for the system state turning critical. Our 
general prediction scheme is illustrated in Fig. 2.  

 

Figure 2: Our approach for predicting the system state. 

5.1 Choice of Prediction Models 

Our first choice is logistic regression as a predictive 
model of an alerting system. This alert, or alarm, is a 
binary random variable, whose probability, or 
equivalently the logarithm ℓ  of the respective odds, 
is linearly dependent on any choice of variables 
𝑋ଵ, … , 𝑋௞. The model takes the form 
 

ℓሺalarmሻ ൌ 𝛽଴ ൅ 𝛽ଵ𝑋ଵ ൅ 𝛽ଶ𝑋ଶ ൅ ⋯ ൅ 𝛽௞𝑋௞ ൅ 𝜀 

where ℓሺalarmሻ  is the log-odd of the alarm 
probability p ൌ Pr ሺalarmሻ  (defined as ℓ ൌ
log ሺ

୮

ଵି୮
ሻ), and ε is an error term having a Gaussian 

distribution with zero mean. Although such a logistic 
regression model generally presumes a stochastic part 
in the data, this may not accurately reflect reality 
when alerts are generated by deterministic rules (such 
as we sketched above using peak thresholds or 
similar). Nevertheless, fitting a logistic regression 
model offers the appeal of telling us – during the 
fitting – if the alarm variable has a deterministic 
dependence on the variables in question. For that 
case, decision trees are our second choice. They are 
recursive partitions of an instance space and used for 
classification or regression tasks. A decision tree 
compiles a sequence of threshold decisions using the 
predictor variables, each decision splitting the 
instance space into ൒ 2  subspaces, until the final 
decision associated with a leaf of the decision tree. 
Based on a certain discrete function of the input 
variables, each internal node represents a decision 
and its consequences along the further tree. We shall 
not go into much detail about the statistical 
background and refer the reader to 
(Hosmer/Lemeshow, 2000) and (Rokach/Maimon, 
2010). For the evaluation, we decided to experiment 
with different configurations based on a matrix 
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consisting of the forecasting horizon and the number 
of historic data rows used for prediction. These cases 
each are evaluated within a loop of 1,000 repetitions 
and in each repetition, a different training and test 
data set for evaluation is randomly sampled. Our 
evaluation focuses on counting the number of 
appearance of each variable that was relevant for 
fitting the 1) logistic regression and 2) decision tree. 
Regarding 1), we measured the significance of the 
variables by counting the number of a variable having 
a 𝑝-value ൏ 0.1 within the loops. Regarding 2), we 
counted the number of appearance for each variable 
being part of the fitted decision trees. We stress that 
this is conceptually different from the usual model 
diagnostics asking for statistical significance or 
importance of a variable; our analysis is here only to 
quantify the (frequentist) likelihood for a variable to 
appear in a model at all, whereas the counts cannot 
say anything about its significance or importance for 
a specific model. This is consistent with our goal of 
helping a model builder with an a priori choice of 
variables to measure, rather than doing a standard a 
posteriori quality judgement of a model or variables 
therein. For an a posteriori evaluation of the 
prediction quality, we calculated the average 
accuracy measure within the 1,000 repetitions. For a 
rough decision about the quality of the prediction, the 
accuracy is enough here for our purposes. Future 
work will include more detailed diagnostic studies 
and many more scores. 

5.2 Model Construction 

If the model shall be such that it predicts alarms for a 
future time window Δt, based on the events over a 
fixed past time window Δh, we proceeded as follows: 
at time 𝑡, collect all records timestamped within the 
period H ൌ ሾt െ Δh, tሿ and concatenate the records 
into a larger new record containing all data within this 
time window. Naturally, each 𝑋௜ will then occur with 
multiple copies in the record set, for example, if there 
were three records in the past history, each carrying 
the variables 𝑋ଵ, … , 𝑋௞, we got a record with predictor 

variables 𝑋ଵ
ሺ଴ሻ, … , 𝑋௞

ሺ଴ሻ, 𝑋ଵ
ሺଵሻ, … , 𝑋௞

ሺଵሻ, 𝑋ଵ
ሺଶሻ, … , 𝑋௞

ሺଶሻ , 

where the notation 𝑋௜
ሺ௝ሻ denotes the 𝑖th variable at 𝑗 

time steps before the current time 𝑡. The setting of the 
variable 𝑎𝑙𝑎𝑟𝑚 is then determined by how far we 
look into the future: essentially, with the predictors 
constructed as above, the predicted variable 𝑎𝑙𝑎𝑟𝑚 is 
then set to 1 in the so-constructed training data if and 
only if there was an alarm in the recorded data 
between the current time 𝑡 and the (fixed) forecasting 
horizon t ൅ Δt. For example, if there was no alarm in 

the records falling into the range ሾt, t ൅ Δtሿ, we would 
instantiate the current training data record with 
𝑎𝑙𝑎𝑟𝑚 ൌ 0 , and with the historic values collected 
from the records falling into ሾt െ Δh, tሿ. Otherwise, 
we set 𝑎𝑙𝑎𝑟𝑚 ൌ 1 , since there has been a race 
condition occurred after time 𝑡 within the forecasting 
horizon Δt, which we seek to predict based on the 
current situation and history.  

5.3 Configuration Cases 

Resulting from our experimental setup for data 
acquisition, the maximum for the forecasting horizon 
is 15 minutes because the intervals from normal load 
and peaks switch all 15 minutes at every test day. We 
decided to use 1, 5, 10 and 15 as intervals for the 
forecasting horizon (in minutes) and the number of 
historic data rows used for prediction (1 row ≙  1 
minute) as well. Tab. 1 shows the resulting 
configurations. 

Table 1: Configuration cases. 
 Historic data rows used 

P
re

di
ct

io
n 

w
in

d
ow

 

1 5 10 15
1 C1 C5 C9 C13
5 C2 C6 C10 C14
10 C3 C7 C11 C15
15 C4 C8 C12 C16

Remark 2: We imposed a practical time limit for our 
experimental evaluation per configuration, 
considering that the evaluation of “larger” 
configurations C13-C16 exceeded this practical limit 
(up to 2 weeks per configuration for the model 
construction and evaluation). 

6 RESULTS 

Since the number of variables can be large in practice, 
it may be useful to arrange variables of similar 
semantics in groups to ease the interpretation, 
presentation and visualization of the results. This is 
the sought initial guidance for monitoring operations, 
as a decision aid on which variables to monitor in first 
place, before later going into the matter of 
constructing concrete models and analysing them (for 
statistical significance, importance or other scores 
related to individual variables therein). 

6.1 Logistic Regression 

Tab. 2 presents the results for the logistic regression, 
which are limited to C1-C4. For the logistic 
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regression, we counted the number of appearances of 
each metric group that contains at least one variable 
having a 𝑝-value ൏ 0.1  within 1,000 repetitions to 
identify the significance of the variables in that metric 
group for the prediction. The analysis clearly shows 
that three of the nine groups of metrics dominate in 
case of the appearance and that the other groups could 
be neglected for monitoring. Furthermore, the 
significance of the % time spent in garbage collection 
(GC) group of metrics is continuously increasing the 
more historic rows are used in the data set while the 
memory pools (MP) group decreases and the 
concurrent invocations (CI) group first increases until 
case C3 and then decreases. 

Table 2: Results of the logistic regression models. 

Case Accuracy Metric 
group 

Number of 
appearance 

C1 96% MP 783
CI (PaaS) 140

GC 2
C2 98% MP 777

CI (PaaS) 437
GC 181

C3 97% CI (PaaS) 868
MP 711
GC 310

C4 96% GC 846
CI (PaaS) 317

MP 194

Summarized, we identified that there are three 
dominating groups of metrics to predict the system 
state using logistic regression. Thus, model 
complexity could be reduced by removing variables 
of all other metric groups. Furthermore, the resulting 
guidance for monitoring operations is to give 
threshold warnings based on metrics falling into the 
three dominating groups. Those deserve preferential 
treatment as containing the most promising indicators 
for an incoming critical system state. In all other 
cases, we found (quasi-)perfect separation, as 
indicated by the maximum likelihood fitting of the 
logistic regression model failing to converge. This 
failure carries a useful diagnostic information, since 
it tells us that a deterministic model is in this case 
more advisable The separation phenomena are easy to 
explain, as it is an artefact of the quasi deterministic 
raise of alarms in our scripts. This makes the labelling 
follow a deterministic pattern, which becomes 
recognizable via the diverging behaviour of the 
maximum likelihood fitting algorithm. 

 

6.2 Decision Trees 

Applying the decision tree was possible for all cases. 
Nevertheless, some metric groups show no 
meaningful trend over all cases and could be ignored 
as well. Therefore, we limited visualizations on 
important metrics groups using bubble plots, which 
are shown in Fig. 3-5. In all diagrams, the x-y location 
of the bubble corresponds to the configuration in the 
column/row of the experimental setting in Tab. 1. The 
size of the bubble is proportional to the percentage 
frequency of the variable group to appear in a model 
within the given configuration. Thus, the larger the 
bubble, the more likely is a variable (group) to be 
relevant in the respective prediction setup. This is a 
direct pointer for a practitioner to see which variables 
or groups are relevant and which are less relevant. We 
remark that our particular experimental setup with a 
rule-based alarming makes decision tree analysis the 
most promising candidate here. Our practical advice 
is thus to nonetheless start by fitting a logistic 
regression model, since it will distinguish the need for 
a deterministic or a stochastic model very well. 
Memory pools are a good indicator for predictions 
from 1 to 5 minutes but become less relevant if 
forecasting horizon is set to ൒ 10  minutes. The 
meaning of concurrent invocations of the PaaS lacks 
within C5, C6, C9 and C10 but are consistently a 
good indicator over all cases using one historic data 
row. CPU, somewhat surprisingly, turns into a 
meaningful indicator only if the number of historic 
data rows is ൐ 1. The analysis shows that the CPU 
value 2 minutes before 𝑡  is the only relevant CPU 
variable. All other metric groups did not show reliable 
trends and cannot be declared as generally 
meaningful indicators although a case specific use 
could be considered. 

 

Figure 3: Results of decision trees – memory pools. 
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Figure 4: Results of decision trees – Concurrent 
Invocations. 

 

Figure 5: Results of decision trees – CPU. 

Tab. 3 presents the detailed results for the decision 
trees but limited to the top 3 metric groups per case. 
In summary, it was possible to reduce the large set of 
variables that could be monitored by determining 
relevant metric groups using two different models, 
which both achieved an outstanding prediction 
accuracy. More importantly, we could identify 
variables that are very likely to be useful for 
prediction and therefore should receive primary 
attention, thus saving resources and gaining 
efficiency for the IT-operating. 

7 THREATS TO VALIDITY 

We judge our results using following threats to 
validity. A threat to construct validity is the design of 
our load and performance test scenario. Related to the 
restriction of having only ൑ 25  simulated users 
interacting on the system at the same time, we cannot 
guarantee that this system load intensity was seriously 
endangering the system state. This allows the 
question if the load intensity was high enough to 
jeopardize normal application behaviour and  
if necessary log file events, i.e. “fatal” events, were  

Table 3: Results of decision tree models. 

Case Accuracy Metric group 
Number of 
appearance 

C1 95% 
MP 1,100

CI (PaaS) 742
AR (PaaS) 285

C2 98% 
CI (PaaS) 1,204

MP 647
CI (IaaS) 486

C3 99% 
CI (PaaS) 1,001

GC 686
CI (IaaS) 260

C4 96% 
CI (PaaS) 1,332
AR (PaaS) 722

GC 537

C5 95% 
CPU 976
MP 370
GC 338

C6 97% 
AR (PaaS) 2,170

CPU 1,000
MP 563

C7 99% 
CI (PaaS) 1,024

CPU 965
GC 67

C8 93% 
AR (PaaS) 1,624
CI (PaaS) 1,424

CPU 990

C9 99% 
CPU 964
MP 382
GC 347

C10 100% 
CPU 1,000

AR (PaaS) 494
CI (IaaS) 478

C11 99% 
CI (PaaS) 1,035

CPU 954
AR (PaaS) 159

C12 99% 
CI (PaaS) 1,400

CPU 1,000
GC 597

generated (although our data set contains more than 
40 different types of error messages, which are the 
event type with the highest severity of the CMS). This 
could falsify the assumption that log file events do not 
have any relevance as predictor for the system state. 
We address the threat of internal validity by repeating 
the experiments 1,000 times for both models using 
randomly sampled training and test data sets in each 
repetition. The main threat to external validity is the 
generalizability of our results. Even if the described 
method mix should be applicable to any IT-
application, the results are specific to the chosen CMS 
training environment. 
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8 CONCLUSION AND FUTURE 
WORK 

The combination of monitoring performance metrics 
and log files allows the unification of necessary 
system parameters into one predictive model. In this 
paper, we propose 1) a method mix to unify numerical 
and textual data as well as 2) a method to obtain 
(automated) guidance on what sort of model to 
construct for the prediction of alarm states. 
 
On RQ1: The described mixed application of logistic 
regression and decision trees accomplishes the 
unified use of continuous monitoring with discrete 
event data in the same model. 
On RQ2: Limited to our experimental setup, our 
results show that the occurrence of log file events 
does not have any impact on the system state turning 
critical so far. Hence, prediction based on monitoring 
performance metrics seems to be the most promising 
way to predict incoming critical system states. 
On RQ3: We clearly see that the different 
configurations influence the relevance of the 
variables as well as the accuracy. 
 
Future work will complement our analysis with a 
posteriori analysis of the respective prediction 
models. Thus, we will statistically compare the 
significance and importance that variables play in the 
respective models. 
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