
IT-Application Behaviour Analysis: Predicting Critical System States
on OpenStack using Monitoring Performance Data and Log Files

Patrick Kubiak1 a, Stefan Rass2 b and Martin Pinzger2 c
1Volkswagen Financial Services AG, Brunswick, Germany

2Alpen-Adria-University, Klagenfurt, Austria

Keywords: Data Science, IT-Operations, Log File Analysis, Failure Prediction.

Abstract: Recent studies have proposed several ways to optimize the stability of IT-services with an extensive portfolio
of processual, reactive or proactive approaches. The goal of this paper is to combine monitored performance
data, such as CPU utilization, with discrete data from log files in a joint model to predict critical system states.
We propose a systematic method to derive mathematical prediction models, which we experimentally test
using a downsized clone of a real life contract management system as a testbed. First, this testbed is used for
data acquisition under variable and fully controllable system loads. Next, based on the monitored performance
metrics and log file data, we train models (logistic regression and decision trees) that unify both, numeric and
textual, data types in a single incident forecasting model. We focus on 1) investigating different cases to
identify an appropriate prediction time window, allowing to prepare countermeasures by considering
prediction accuracy and 2) identifying variables that appear more likely than others in the predictive models.

1 INTRODUCTION

With todays companies vitally relying on continuous
service of their IT infrastructures, predictive analytics
as a tool to “foresee” problems has become
indispensable. With many software solutions out in
the wild, the problem of data acquisition and model
design is still to a wide extent a matter for a domain
expert to make design decisions, such as (i) which
performance metrics can be monitored, but more
importantly (ii) which among the ones possible
should be monitored for a good predictive model?
Last but not least, we strive for explainable models,
meaning that the model’s predictions should be
comprehensible by a human. While the diversity of
predictive models is rich and data science has lots to
offer to study, the construction beforehand enjoys a
much smaller set of theoretical aids. Our work is
meant to close this gap in a twofold way: first, we fit
a series of models (one stochastic, one deterministic)
to a set of variables to determine which among them
are likely to play a role in either model. This is to
answer the previous question (i) to equip an

a https://orcid.org/0000-0002-4312-8499
b https://orcid.org/0000-0003-2821-2489
c https://orcid.org/0000-0002-5536-3859

administrator with a reasonable initial guess about
what to monitor. Second, towards answering question
(ii), we describe how to unify two kinds of data
sources in the same model, namely monitoring data
and textual log files. Almost all predictive models in
the literature focus exclusively on one or the other
type of data. Our propopsal is the first study of a
combined model. A careful initial choice about which
data should go to a further analysis can substantially
save efforts (time and costs) here. This paper will
answer the following research questions (RQ):

(RQ1): Which method mix can be used to combine
numeric and continuous with textual and discrete IT-
system data to be suitable for a single incident
forecasting model?
(RQ2): Which variables are most likely to be relevant
for predicting the system state by a (yet unspecified)
model, so that we know which variables should be
monitored?
(RQ3): To what extent does prediction window size
influence the prediction quality and the impact of the
variables on the system state?

Kubiak, P., Rass, S. and Pinzger, M.
IT-Application Behaviour Analysis: Predicting Critical System States on OpenStack using Monitoring Performance Data and Log Files.
DOI: 10.5220/0009779505890596
In Proceedings of the 15th International Conference on Software Technologies (ICSOFT 2020), pages 589-596
ISBN: 978-989-758-443-5
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

589

We start with an overview of related work. To close
a gap identified in previous related literature, we
empirically substantiate the added value of predictive
modelling that pursues a combined use of monitoring
data and log files. The main body of this work is
predictive modelling based on IT-system data.
Finally, we present our results and findings, which
will further be investigated as mentioned in the future
work section.

2 RELATED WORK

A lot of different research in the IT-service-
management (ITSM) area focuses on approaches and
methodologies to keep the quality and availability of
IT systems (ITS) at a maximum level. A common
way to improve ITS quality and availability is the
orientation on processual best practice frameworks
like ITIL and has been widely studied (Hochstein et
al., 2005), (Potgieter et al., 2005), (Cater-Steel et al.,
2007). Beside these frameworks and their
recommendations, analytics based approaches, which
are actually not part of the frameworks, come to the
fore. There are a vast amount of event pattern mining
and summarization approaches for log file analysis
available, which can be structured as suggested in
(Kubiak/Rass, 2018) following the question what the
practitioners do want to learn from or do want to do
with the data: Recognition of interdependencies,
which often manifest themselves as patterns
(Ma/Hellerstein, 2001), (Li et al., 2005), (Tang et
al., 2012), (Zöller et al., 2017) or understanding the
system and its dynamics as such, which can be
presented as summaries (Kiernan/Terzi, 2009),
(Wang et al., 2010), (Peng et al., 2007). A taxonomy
for online failure prediction methods and its major
concepts has been presented in (Salfner et al., 2010).
Some of the methods use time series data from
monitoring metrics to predict the system state but the
taxonomy includes predictions based on log file event
occurrence as well. A limited number of research
papers focus on the complementary use of monitoring
data and log file events to generate further insights
(Luo et al., 2014).

3 DATA ACQUISITION

For data acquisition, we defined a concept for a load
and performance measurement in scenarios that
resemble real life user interactions with the system.
We used a small-scale digital twin of a real life IT-

system environment, which resembles a productive
system without being one, to fully control and
manipulate the systems behaviour as requested. There
was no continuous load on the system because it was
a training environment mainly used for irregularly
employee trainings. Therefore, test scripts were
generated using VuGen and scheduled using
LoadRunner Enterprise, which both are software
products of Micro Focus. These scripts generate
regular system load (client transactions sent to the
system) and load peaks. As a major advantage of
using a digital twin here, the scripts enabled us to
produce any sort of unwanted behaviour known to be
different from noise. In particular, rare events and
incidents of diverse kinds can be triggered to the
amount and extent required.

3.1 Application Architecture and
Implementation

The application of our choice for the experimental
setup is a contract management system (CMS), which
is a web application based on Java. Fig. 1 illustrates
the architecture of our experimental testbed, which is
an on-premise cloud application hosted at our data
centre. Essentially, the application consists of an
infrastructure as a service (IaaS) as backend
component and a platform as a service (PaaS) as
frontend component. Both run within an OpenStack
environment, which is an open source software for
creating public or private clouds.

Figure 1: Architecture of the CMS.

The IaaS component ran on a node with 8 CPUs (Intel
Xeon CPU E5-2680 v4 @ 2.40GHz), 8GB RAM, and
20 GB hard disk. The PaaS component ran on a node
with 4 CPUs, 8 GB RAM, and 2 GB hard disk. The
web and application servers both run on Linux RHEL
7.x operating system. As application runtime, the web
server uses WildFly while the application server uses
JBoss EAP. WildFly is an open source application
runtime and part of the JBoss middleware framework.
Furthermore, it is the basis for the commercial version
IBM Red Hat JBoss EAP. For collecting monitoring

ICSOFT 2020 - 15th International Conference on Software Technologies

590

data, we used DX Application Performance
Management (formerly known as CA APM).

3.2 Load and Performance Test Design

To generate necessary monitoring data and log files,
we designed a concept for a 10-day long load and
performance test. From data quality perspective, our
focus was to evaluate the suitability of our models
with data whose underlying generative processes are
entirely known to us. We simulated a specific number
of user interactions within the CMS, based on real
system transactions like contract search, creation,
modification and termination for fixed time windows.
The load and performance test consists of different
scenarios to simulate normal as well as anomalous
behaviour, which we defined as unusually high
system load (peaks), i.e., as critical system state from
application performance perspective. The number of
virtual users working on the CMS simultaneously was
the trigger for the system load intensity. We decided
to switch from normal to anomalous behaviour in a
15-minutes interval within an 8 hours period for each
test day. The reason to switch from normal behaviour
to load peaks in a 15-minutes interval was to enrich
the data set with as much as possible behaviour
changes to train the models. An earlier experimental
setup showed that imbalance between the number of
data rows for normal load and anomalies had
significant (negative) influence on prediction
accuracy. For the load peaks, we decided to use a high
grade of variety for the stepwise load increases to
avoid patterns. We defined normal behaviour as ൒ 5
and ൑ 17 virtual users working simultaneously, a
number of ൒ 18 virtual users represents the threshold
for anomalous behaviour. Due to internal regulations,
the test design was restricted to a system load
generated by ൑ 25 virtual users working at the same
time. The collected data consists of ൎ 25 GB raw text
file documents (log files) and 4,800 monitoring data
records (measured in a 1-minute interval).
Remark 1: Alternative other such conditions are of
course possible, say, defining the trigger levels based
on resource consumption as induced by the user’s
transactions. Such anomaly triggers bear an intrinsic
stochastic element, since the system load that a
transaction causes may vary depending on what a user
does specifically.

4 DATA PREPARATION

Because the data results from different sources,
harmonization of textual and numeric data into one

common format was the main challenge (besides the
standard steps like data cleansing, which is not
discussed further here).

4.1 Log File Data

Since most data harvested from a normal IT-
application comes in textual form of log files, our first
task is to convert the textual information into numeric
data, usable with analytic models. To this end, we
followed the standard practice of taking these steps:
i) filtering out error messages from the overall log
textual corpus; ii) use document-term-matrices
(DTM) to extract signalling keywords from the text,
to recognize “topics” that the log entries refer to
(Imai, 2017; Xu et al., 2003); and iii) run a clustering
algorithm to associate each log entry with one out of
a few clusters that correspond to variables in a
predictive model to be constructed. Each cluster
created in the last step is then a log-data related
variable in our predictive model, and the association
of a log entry with a cluster manifests itself as the
respective indicator variable in the model coming in
with the proper (numeric) value. Together with the
log entry’s timestamp, we obtained a set of 0-1-
valued variables, which are the first part of the data
set. For the clustering, we chose DBSCAN (Ester et
al., 1996) as the simplest method to apply in absence
of specific domain knowledge. This choice is
consistent with our initial assumption of the
administrator not yet having much insight about what
variables to measure at all, so an algorithm that
determines the number of clusters itself is more
desirable here. After testing different configurations
without considerable differences for the result, we
decided to use the configuration with 𝑚𝑖𝑛𝑃𝑡𝑠 ൌ 4
and 𝜀 ൌ 0.4.

4.2 Monitoring Data

We collected monitoring data using agents installed
on the IaaS and PaaS components. These agents are
exclusively for application performance monitoring
and do not monitor the infrastructure layer, i.e.,
metrics for the physical hardware are not available.
Each group of monitoring metrics consists of at least
one but usually several variables – (for example, CPU
is a variable and a metric group at the same time while
the average response time group contains measures of
the response times of >50 different JavaBeans):

 Average Response Time (AR): The average
response time in ms of a JavaBean from method
call until response

IT-Application Behaviour Analysis: Predicting Critical System States on OpenStack using Monitoring Performance Data and Log Files

591

 Memory Pools (MP): The dedicated part of the
heap memory in bytes, which allocates memory
for all instances and arrays at runtime

 Concurrent Invocations (CI): The number of
simultaneous calls of a JavaBean

 CPU: The CPU utilization in percentage
 % Time Spent in Garbage Collection (GC):

The percentage time within an interval in which
obsolete in-memory code is removed

 Responses per Interval (RpI): The number of
application responses within an interval

 Sockets (Sock): The number of available
Communication Points of the Application

4.3 Merging Log File and Monitoring
Data

After preparing the log file and monitoring data, we
merged both data sets into a single data set based on
the timestamps of their entries. Because the
granularity of the monitoring data was less (recorded
in a fixed 1-minute interval) than that of the
(sporadically occurring) log events, several rows of
the log file data were lost through the (inner) join.
Afterwards, we labelled the entries resulting from the
merge by adding a column "Alarm". Values for
Alarm are “0” denoting normal behaviour and “1”
denoting anomalous behaviour. Resulting from the
scripted induction of anomalies in our experimental
setup for the data acquisition task, the data labelling
was reliably automatable. As result, we obtained a
data set that consists of 4,800 rows and 139 variables.
Returning to our requirement of explainability and
interpretability, 139 variables is a lot to handle, and
not all of them are equally important. In a final step,
we used 𝜒2-tests (alternatively, also Fisher’s exact
test) to further filter this set of variables keeping only
those variables that show a statistically significant
interplay with the alarm indicator. Through this final
step, the dataset was reduced to 106 (out of 139)
statistically significant variables.

5 EXPERIMENTAL SETUP

We do not only want to train models to achieve a
suitable prediction quality, we moreover want to have
an entirely transparent system devoid of black-box
parts. Thus, we want to give IT-operators guidance on
which variables they should focus on to indicate
reasons for the system state turning critical. Our
general prediction scheme is illustrated in Fig. 2.

Figure 2: Our approach for predicting the system state.

5.1 Choice of Prediction Models

Our first choice is logistic regression as a predictive
model of an alerting system. This alert, or alarm, is a
binary random variable, whose probability, or
equivalently the logarithm ℓ of the respective odds,
is linearly dependent on any choice of variables
𝑋ଵ, … , 𝑋௞. The model takes the form

ℓሺalarmሻ ൌ 𝛽଴ ൅ 𝛽ଵ𝑋ଵ ൅ 𝛽ଶ𝑋ଶ ൅ ⋯ ൅ 𝛽௞𝑋௞ ൅ 𝜀

where ℓሺalarmሻ is the log-odd of the alarm
probability p ൌ Pr ሺalarmሻ (defined as ℓ ൌ
log ሺ

୮

ଵି୮
ሻ), and ε is an error term having a Gaussian

distribution with zero mean. Although such a logistic
regression model generally presumes a stochastic part
in the data, this may not accurately reflect reality
when alerts are generated by deterministic rules (such
as we sketched above using peak thresholds or
similar). Nevertheless, fitting a logistic regression
model offers the appeal of telling us – during the
fitting – if the alarm variable has a deterministic
dependence on the variables in question. For that
case, decision trees are our second choice. They are
recursive partitions of an instance space and used for
classification or regression tasks. A decision tree
compiles a sequence of threshold decisions using the
predictor variables, each decision splitting the
instance space into ൒ 2 subspaces, until the final
decision associated with a leaf of the decision tree.
Based on a certain discrete function of the input
variables, each internal node represents a decision
and its consequences along the further tree. We shall
not go into much detail about the statistical
background and refer the reader to
(Hosmer/Lemeshow, 2000) and (Rokach/Maimon,
2010). For the evaluation, we decided to experiment
with different configurations based on a matrix

ICSOFT 2020 - 15th International Conference on Software Technologies

592

consisting of the forecasting horizon and the number
of historic data rows used for prediction. These cases
each are evaluated within a loop of 1,000 repetitions
and in each repetition, a different training and test
data set for evaluation is randomly sampled. Our
evaluation focuses on counting the number of
appearance of each variable that was relevant for
fitting the 1) logistic regression and 2) decision tree.
Regarding 1), we measured the significance of the
variables by counting the number of a variable having
a 𝑝-value ൏ 0.1 within the loops. Regarding 2), we
counted the number of appearance for each variable
being part of the fitted decision trees. We stress that
this is conceptually different from the usual model
diagnostics asking for statistical significance or
importance of a variable; our analysis is here only to
quantify the (frequentist) likelihood for a variable to
appear in a model at all, whereas the counts cannot
say anything about its significance or importance for
a specific model. This is consistent with our goal of
helping a model builder with an a priori choice of
variables to measure, rather than doing a standard a
posteriori quality judgement of a model or variables
therein. For an a posteriori evaluation of the
prediction quality, we calculated the average
accuracy measure within the 1,000 repetitions. For a
rough decision about the quality of the prediction, the
accuracy is enough here for our purposes. Future
work will include more detailed diagnostic studies
and many more scores.

5.2 Model Construction

If the model shall be such that it predicts alarms for a
future time window Δt, based on the events over a
fixed past time window Δh, we proceeded as follows:
at time 𝑡, collect all records timestamped within the
period H ൌ ሾt െ Δh, tሿ and concatenate the records
into a larger new record containing all data within this
time window. Naturally, each 𝑋௜ will then occur with
multiple copies in the record set, for example, if there
were three records in the past history, each carrying
the variables 𝑋ଵ, … , 𝑋௞, we got a record with predictor

variables 𝑋ଵ
ሺ଴ሻ, … , 𝑋௞

ሺ଴ሻ, 𝑋ଵ
ሺଵሻ, … , 𝑋௞

ሺଵሻ, 𝑋ଵ
ሺଶሻ, … , 𝑋௞

ሺଶሻ ,

where the notation 𝑋௜
ሺ௝ሻ denotes the 𝑖th variable at 𝑗

time steps before the current time 𝑡. The setting of the
variable 𝑎𝑙𝑎𝑟𝑚 is then determined by how far we
look into the future: essentially, with the predictors
constructed as above, the predicted variable 𝑎𝑙𝑎𝑟𝑚 is
then set to 1 in the so-constructed training data if and
only if there was an alarm in the recorded data
between the current time 𝑡 and the (fixed) forecasting
horizon t ൅ Δt. For example, if there was no alarm in

the records falling into the range ሾt, t ൅ Δtሿ, we would
instantiate the current training data record with
𝑎𝑙𝑎𝑟𝑚 ൌ 0 , and with the historic values collected
from the records falling into ሾt െ Δh, tሿ. Otherwise,
we set 𝑎𝑙𝑎𝑟𝑚 ൌ 1 , since there has been a race
condition occurred after time 𝑡 within the forecasting
horizon Δt, which we seek to predict based on the
current situation and history.

5.3 Configuration Cases

Resulting from our experimental setup for data
acquisition, the maximum for the forecasting horizon
is 15 minutes because the intervals from normal load
and peaks switch all 15 minutes at every test day. We
decided to use 1, 5, 10 and 15 as intervals for the
forecasting horizon (in minutes) and the number of
historic data rows used for prediction (1 row ≙ 1
minute) as well. Tab. 1 shows the resulting
configurations.

Table 1: Configuration cases.
 Historic data rows used

P
re

di
ct

io
n

w
in

d
ow

1 5 10 15
1 C1 C5 C9 C13
5 C2 C6 C10 C14
10 C3 C7 C11 C15
15 C4 C8 C12 C16

Remark 2: We imposed a practical time limit for our
experimental evaluation per configuration,
considering that the evaluation of “larger”
configurations C13-C16 exceeded this practical limit
(up to 2 weeks per configuration for the model
construction and evaluation).

6 RESULTS

Since the number of variables can be large in practice,
it may be useful to arrange variables of similar
semantics in groups to ease the interpretation,
presentation and visualization of the results. This is
the sought initial guidance for monitoring operations,
as a decision aid on which variables to monitor in first
place, before later going into the matter of
constructing concrete models and analysing them (for
statistical significance, importance or other scores
related to individual variables therein).

6.1 Logistic Regression

Tab. 2 presents the results for the logistic regression,
which are limited to C1-C4. For the logistic

IT-Application Behaviour Analysis: Predicting Critical System States on OpenStack using Monitoring Performance Data and Log Files

593

regression, we counted the number of appearances of
each metric group that contains at least one variable
having a 𝑝-value ൏ 0.1 within 1,000 repetitions to
identify the significance of the variables in that metric
group for the prediction. The analysis clearly shows
that three of the nine groups of metrics dominate in
case of the appearance and that the other groups could
be neglected for monitoring. Furthermore, the
significance of the % time spent in garbage collection
(GC) group of metrics is continuously increasing the
more historic rows are used in the data set while the
memory pools (MP) group decreases and the
concurrent invocations (CI) group first increases until
case C3 and then decreases.

Table 2: Results of the logistic regression models.

Case Accuracy Metric
group

Number of
appearance

C1 96% MP 783
CI (PaaS) 140

GC 2
C2 98% MP 777

CI (PaaS) 437
GC 181

C3 97% CI (PaaS) 868
MP 711
GC 310

C4 96% GC 846
CI (PaaS) 317

MP 194

Summarized, we identified that there are three
dominating groups of metrics to predict the system
state using logistic regression. Thus, model
complexity could be reduced by removing variables
of all other metric groups. Furthermore, the resulting
guidance for monitoring operations is to give
threshold warnings based on metrics falling into the
three dominating groups. Those deserve preferential
treatment as containing the most promising indicators
for an incoming critical system state. In all other
cases, we found (quasi-)perfect separation, as
indicated by the maximum likelihood fitting of the
logistic regression model failing to converge. This
failure carries a useful diagnostic information, since
it tells us that a deterministic model is in this case
more advisable The separation phenomena are easy to
explain, as it is an artefact of the quasi deterministic
raise of alarms in our scripts. This makes the labelling
follow a deterministic pattern, which becomes
recognizable via the diverging behaviour of the
maximum likelihood fitting algorithm.

6.2 Decision Trees

Applying the decision tree was possible for all cases.
Nevertheless, some metric groups show no
meaningful trend over all cases and could be ignored
as well. Therefore, we limited visualizations on
important metrics groups using bubble plots, which
are shown in Fig. 3-5. In all diagrams, the x-y location
of the bubble corresponds to the configuration in the
column/row of the experimental setting in Tab. 1. The
size of the bubble is proportional to the percentage
frequency of the variable group to appear in a model
within the given configuration. Thus, the larger the
bubble, the more likely is a variable (group) to be
relevant in the respective prediction setup. This is a
direct pointer for a practitioner to see which variables
or groups are relevant and which are less relevant. We
remark that our particular experimental setup with a
rule-based alarming makes decision tree analysis the
most promising candidate here. Our practical advice
is thus to nonetheless start by fitting a logistic
regression model, since it will distinguish the need for
a deterministic or a stochastic model very well.
Memory pools are a good indicator for predictions
from 1 to 5 minutes but become less relevant if
forecasting horizon is set to ൒ 10 minutes. The
meaning of concurrent invocations of the PaaS lacks
within C5, C6, C9 and C10 but are consistently a
good indicator over all cases using one historic data
row. CPU, somewhat surprisingly, turns into a
meaningful indicator only if the number of historic
data rows is ൐ 1. The analysis shows that the CPU
value 2 minutes before 𝑡 is the only relevant CPU
variable. All other metric groups did not show reliable
trends and cannot be declared as generally
meaningful indicators although a case specific use
could be considered.

Figure 3: Results of decision trees – memory pools.

ICSOFT 2020 - 15th International Conference on Software Technologies

594

Figure 4: Results of decision trees – Concurrent
Invocations.

Figure 5: Results of decision trees – CPU.

Tab. 3 presents the detailed results for the decision
trees but limited to the top 3 metric groups per case.
In summary, it was possible to reduce the large set of
variables that could be monitored by determining
relevant metric groups using two different models,
which both achieved an outstanding prediction
accuracy. More importantly, we could identify
variables that are very likely to be useful for
prediction and therefore should receive primary
attention, thus saving resources and gaining
efficiency for the IT-operating.

7 THREATS TO VALIDITY

We judge our results using following threats to
validity. A threat to construct validity is the design of
our load and performance test scenario. Related to the
restriction of having only ൑ 25 simulated users
interacting on the system at the same time, we cannot
guarantee that this system load intensity was seriously
endangering the system state. This allows the
question if the load intensity was high enough to
jeopardize normal application behaviour and
if necessary log file events, i.e. “fatal” events, were

Table 3: Results of decision tree models.

Case Accuracy Metric group
Number of
appearance

C1 95%
MP 1,100

CI (PaaS) 742
AR (PaaS) 285

C2 98%
CI (PaaS) 1,204

MP 647
CI (IaaS) 486

C3 99%
CI (PaaS) 1,001

GC 686
CI (IaaS) 260

C4 96%
CI (PaaS) 1,332
AR (PaaS) 722

GC 537

C5 95%
CPU 976
MP 370
GC 338

C6 97%
AR (PaaS) 2,170

CPU 1,000
MP 563

C7 99%
CI (PaaS) 1,024

CPU 965
GC 67

C8 93%
AR (PaaS) 1,624
CI (PaaS) 1,424

CPU 990

C9 99%
CPU 964
MP 382
GC 347

C10 100%
CPU 1,000

AR (PaaS) 494
CI (IaaS) 478

C11 99%
CI (PaaS) 1,035

CPU 954
AR (PaaS) 159

C12 99%
CI (PaaS) 1,400

CPU 1,000
GC 597

generated (although our data set contains more than
40 different types of error messages, which are the
event type with the highest severity of the CMS). This
could falsify the assumption that log file events do not
have any relevance as predictor for the system state.
We address the threat of internal validity by repeating
the experiments 1,000 times for both models using
randomly sampled training and test data sets in each
repetition. The main threat to external validity is the
generalizability of our results. Even if the described
method mix should be applicable to any IT-
application, the results are specific to the chosen CMS
training environment.

IT-Application Behaviour Analysis: Predicting Critical System States on OpenStack using Monitoring Performance Data and Log Files

595

8 CONCLUSION AND FUTURE
WORK

The combination of monitoring performance metrics
and log files allows the unification of necessary
system parameters into one predictive model. In this
paper, we propose 1) a method mix to unify numerical
and textual data as well as 2) a method to obtain
(automated) guidance on what sort of model to
construct for the prediction of alarm states.

On RQ1: The described mixed application of logistic
regression and decision trees accomplishes the
unified use of continuous monitoring with discrete
event data in the same model.
On RQ2: Limited to our experimental setup, our
results show that the occurrence of log file events
does not have any impact on the system state turning
critical so far. Hence, prediction based on monitoring
performance metrics seems to be the most promising
way to predict incoming critical system states.
On RQ3: We clearly see that the different
configurations influence the relevance of the
variables as well as the accuracy.

Future work will complement our analysis with a
posteriori analysis of the respective prediction
models. Thus, we will statistically compare the
significance and importance that variables play in the
respective models.

ACKNOWLEDGEMENTS

The authors would like to thank Stefanie Alex,
Corinna Cichy and Roxane Stelzel for having made
invaluable suggestions to the content of the paper.

REFERENCES

Cater-Steel, A., Tan, W.-G. and Toleman, M., 2008.
“Summary of ITSM standards and frameworks survey
responses” in Proc. of the itSMF Australia 2007 Conf..
Toowoomba, Australia.

Ester, M., Kriegel, H.-P., Sander, J. and Xiaowei, X., 1996.
“A density-based algorithm for discovering clusters in
large spatial databases with noise” in Proc. of the
Second Int. Conf. on Knowledge Discovery and Data
Mining (KDD’96). Portland, OR, USA.

Hochstein, A., Tamm, G. and Brenner, W., 2005. “Service-
Oriented IT Management: Benefit, Cost and Success
Factors” in Proc. of the 13th European Conf. on
Information Systems. Regensburg, Germany.

Hosmer, D.W. and Lemeshow, S., 2000. “Applied Logistic
Regression”, Wiley, New York et al., 2nd edition.

Imai, K., 2017. "Quantitative Social Science: An
Introduction". Woodstock, Oxfordshire, GB: Princeton
University Press.

Kiernan, J. and Terzi, E., 2009. “Constructing
comprehensive summaries of large event sequences”
ACM Transactions on Knowledge Discovery from
Data (TKDD), vol. 3, no. 4, Art. No. 21.

Kubiak, P., Rass, S., 2018. “An overview of data-driven
techniques for IT-service-management”. IEEE Access,
vol. 6, pp. 63664–63688.

Li, T., Liang, F., Ma, S. and Peng, W., 2005. “An integrated
framework on mining logs files for computing system
management” in Proc. of the eleventh ACM SIGKDD
int. Conf. on Knowledge discovery in data mining.
Chicago, IL, USA.

Luo, C., Lou, J.G., Lin, Q., Fu, Q., Ding R., Zhang, D.,
Wang, Z., 2014. “Correlating events with time series for
incident diagnosis” in Proc. of the 20th ACM SIGKDD
int. Conf. on Knowledge discovery and data mining.
New York, NY, USA.

Ma, S. and Hellerstein, J.L., 2001. “Mining partially
periodic event patterns with unknown periods” in Proc.
of the IEEE Int. Conf. on Data Engineering. Heidelberg,
Germany.

Peng, W., Perng, C., Li, T. and Wang, H., 2007. “Event
summarization for system management” in Proc. of the
13th ACM SIGKDD int. Conf. on Knowledge
discovery and data mining. San Jose, CA, USA.

Potgieter, B.C., Botha, J.H. and Lew, C., 2005. “Evidence
that use of the ITIL framework is effective” in Proc. of
the 8th Annual Conf. of the national advisory
committee on computing qualifications. Tauranga, New
Zealand.

Rokach, L. and Maimon, O., 2010. “Data Mining and
Knowledge Discovery Handbook”, Springer, New
York, 2nd edition.

Salfner, F., Lenk, M. and Malek, M., 2010. “A survey of
online failure prediction methods”. ACM Computing
Surveys (CSUR), vol. 42, no. 3, Art. No. 10.

Tang, L., Li, T. and Shwartz, L., 2012. “Discovering lag
intervals for temporal dependencies” in Proc. of the
18th ACM SIGKDD int. Conf. on Knowledge
discovery and data mining. Beijing, China.

Wang, P., Wang, H., Liu, M. and Wang, W., 2010. “An
algorithmic approach to event summarization” in Proc.
of the 2010 ACM SIGMOD Int. Conf. on Management
of data. Indianapolis, IN, USA.

Xu, W., Liu, X. and Gong, Y.,2003. “Document clustering
based on non-negative matrix factorization” in Proc. of
the 26th annual int. ACM SIGIR Conf. on Research and
development in information retrieval. Toronto, Canada.

Zöller, M.-A., Baum, M. and Huber, M. F., 2017.
“Framework for mining event correlations and time
lags in large event sequences” in Proc. of the IEEE 15th
Int. Conf. on Industrial Informatics (INDIN). Emden,
Germany.

ICSOFT 2020 - 15th International Conference on Software Technologies

596

