
Optimizing dm-crypt for XTS-AES: Getting the Best of Atmel
Cryptographic Co-processors

Levent Demir1,2, Mathieu Thiery1,2, Vincent Roca1, Jean-Michel Tenkes2 and Jean-Louis Roch3

1Incas ITSec, France
2Univ. Grenoble Alpes, Inria, France

3Univ. Grenoble Alpes, Grenoble INP, LIG, France

Keywords: Full Disk Encryption, XTS-AES, Linux dm-crypt Module, Cryptographic Co-processor, Atmel Board.

Abstract: Linux implementation of Full Disk Encryption (FDE) relies on the dm-crypt kernel module, and is based on
the XTS-AES encryption mode. However, XTS-AES is complex and can quickly become a performance bot-
tleneck. Therefore we explore the use of cryptographic co-processors to efficiently implement the XTS-AES
mode in Linux. We consider two Atmel boards that feature different cryptographic co-processors: the XTS-
AES mode is completely integrated on the recent SAMA5D2 board but not on the SAMA5D3 board. We first
analyze three XTS-AES implementations: a pure software implementation, an implementation that leverages
the XTS-AES co-processor, and an intermediate solution. This work leads us to propose an optimization of
dm-crypt, the extended request mode, that enables to encrypt/decrypt a full 4kB page at once instead of issu-
ing eight consecutive 512 bytes requests as in the current implementation. We show that major performance
gains are possible with this optimization, a SAMA5D3 board reaching the performance of a SAMA5D2 board
where XTS-AES operations are totally offloaded to the dedicated cryptographic co-processor, while remaining
fully compatible with the standard. Finally, we explain why bad design choices prevent this optimization to
be applied to the new SAMA5D2 board and derive recommendations for future co-processor designs.

1 INTRODUCTION

Data protection is a necessity: large amounts of sensi-
tive information are stored in many different devices,
smartphones, tablets and computers. If such devices
are lost or stolen, unauthorized access to information
could have disastrous consequences (e.g., psycholog-
ical or economic (LLC, 2010)). We also have to pay
attention not only to data at rest, but also to data in
different memories like RAM and swap spaces.

One possible approach is to use Full Disk Encryp-
tion (FDE), which consists of encrypting an entire
disk, content as well as associated metadata, all in-
formation being encrypted/decrypted on-the-fly trans-
parently. At the system level, data is stored either in a
logical partition or in a file container. Different tools
exist for FDE. With Linux, the native solution is based
on cryptsetup/LUKS application (Fruhwirth, 2005),
within user-space, and the dm-crypt module (Brož
et al., 2020) within kernel-space, which allows trans-
parent encryption and decryption of blocks.

A crucial aspect for FDE is the cipher mode of
operation, AES being the main cipher choice. Until
2007, the standard for data encryption in FDE was
the CBC-AES mode. But this mode has several draw-

backs. For instance, as explained in (IEEE Computer
Society, 2008): ”an attacker can flip any bit of the
plaintext by flipping the corresponding ciphertext bit
of the previous block” which can be dangerous. Fur-
thermore, encryption is not parallelizable which is an
issue for certain use cases.

A new mode has been introduced in 2008, XTS-
AES (IEEE Computer Society, 2008) that solved the
two previous limitations as 16-bytes block encryp-
tion/decryption is now performed independantly of
any previous 16-byte block. Each 16-byte block can
be accessed in any order and parallelization is possi-
ble during both encryption and decryption. In spite of
that, XTS-AES encryption/decryption operations are
complex and the use of this mode in lightweight envi-
ronments over huge amounts of data is challenging.

The motivation for this work is to offload all XTS-
AES cryptographic operations to a dedicated board in
charge of FDE. This feature can be useful to design a
security board that would handle all cryptographic op-
erations required to outsource user’s data in external,
untrusted storage facilities (e.g., a Cloud). This archi-
tecture, with a security board between the client and
the storage facility, was our initial goal that triggered
the present work. The question of XTS-AES mode

Demir, L., Thiery, M., Roca, V., Tenkes, J. and Roch, J.
Optimizing dm-crypt for XTS-AES: Getting the Best of Atmel Cryptographic Co-processors.
DOI: 10.5220/0009767802630270
In Proceedings of the 17th International Joint Conference on e-Business and Telecommunications (ICETE 2020) - SECRYPT, pages 263-270
ISBN: 978-989-758-446-6
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

263

performances improvement in embedded, lightweight
environments, is therefore critical.

Choice of Atmel Boards and Importance of De-
tailed Technical Specifications: We considered
two Atmel boards, both equipped with a crypto-
graphic co-processor, the (old) SAMA5D3 board (AT-
MEL, 2017b) and the (new) SAMA5D2 board (AT-
MEL, 2017a). We chose these because of their low
price and wide acceptance in industrial systems, and
because the cryptographic co-processor documenta-
tion is publicly available, a requirement for advanced
developments. This is not always the case as we dis-
covered after buying another more powerfull board:
the provided information turned out to be too lim-
ited for our needs and our academic status did not
enable us to obtain the technical documentation from
the manufacturer, even after asking their support.

A major difference exists between these two At-
mel boards, which justifies that we consider both
of them: the cryptographic co-processor of the first
board supports common AES modes but not XTS-
AES, while the second one also supports XTS-AES.
Those constraints led us to consider different imple-
mentation options that are the subject of this work.

Scientific Approach Followed in this Work: The
first step of our work was the experimental analysis
of three XTS-AES implementations: a pure software
implementation (the legacy baseline), an implemen-
tation that leverages the dedicated cryptographic co-
processor with XTS-AES support of the SAMA5D2
board (the most favourable case), and in between an
implementation that leverages the cryptographic co-
processor with ECB-AES support only of the old
SAMA5D3 board. Our benchmarks demonstrated
that the performance in all cases was still behind ex-
pectations and did not match our objective of efficient
on-the-fly encryption/decryption of large amounts of
data within the Atmel boards.

An analysis of in-kernel data paths highlighted a
limitation of plaintext sizes to a hard-coded 512 bytes
value, in particular because this is the common sector
size on most devices, and also because test vectors
are limited to a maximum of 512 bytes in the official
XTS-AES standard (IEEE Computer Society, 2008).
We therefore explored the possibility of having 4 KB
long requests (i.e., a page size), a rational choice and
a pretty natural idea for kernel operations. We called
this optimization ”extended request mode”, or extReq.

We therefore modified dm-crypt as well as the un-
derlying atmel-aes driver, two highly complex tasks,
in order to support extended encryption/decryption
requests. We then analyzed the performance impacts.

With this optimization, a mixed implementation with
the (old) SAMA5D3 ECB-AES co-processor features
roughly the same performance as that of the (new)
SAMA5D2 XTS-AES co-processor.

Finally we analyzed the existing XTS-AES cryp-
tographic co-processor of the SAMA5D2 board in or-
der to apply the extReq optimization to it directly. Un-
fortunately, because of bad design choices by Atmel,
this new cryptographic co-processor is not compati-
ble with this optimization, therefore limiting the op-
portunities for major performance improvements. We
explain why it is so and conclude this work with rec-
ommendations for future co-processor designs (the
interested reader is invited to refer to the full paper:
https://hal.archives-ouvertes.fr/hal-02555457).

Note that this work only considers cryptographic
operations over large data chunks, which is pretty
common with FDE use-cases. It does not consider
the opposite case, i.e., large numbers of small data
chuncks, which is not the target of our optimisation.

Contributions of this Work:
• this works explores the implementation of crypto-

graphic primitives in Linux systems, detailing the
complex interactions between software and hard-
ware components, and the dm-crypt kernel mod-
ule internals. Note that this work implied ma-
jor in-kernel low-level software developments and
complex performance evaluation campaigns.

• this work shows that significant performance
gains are possible thanks to the ”extended request
mode”, extReq, optimization, even with boards
that do not feature cryptographic co-processors
supporting XTS-AES. Although the idea behind
this optimisation is pretty natural, we describe
the architectural implications, we apply it to sev-
eral XTS-AES implementations, depending on
the available hardware, and provide performance
evaluation results. Note that even if this work only
considers embedded boards, it will be useful to
other execution environments.

• when we tried to apply the extReq optimization
to the XTS-AES facility of the new cryptographic
co-processor, we discovered an uncompatible de-
sign. We explain why it is so, we provide likely
explanations for this situtation, as well as recom-
mendations for future co-processor designs. This
is an important outcome of this work if we want
to boost FDE cryptographic performance.

SECRYPT 2020 - 17th International Conference on Security and Cryptography

264

2 FULL DISK ENCRYPTION
(FDE) IMPLEMENTATIONS ON
LINUX

2.1 About FDE in Linux

Since Linux kernel v.2.6, FDE relies on the dm-
crypt kernel module. It provides transparent encryp-
tion/decryption of a virtual block device using the ker-
nel crypto API, in which the block device can be a
logical partition, an external disk (HDD or USB stick)
or a file container. Data written/read to/from the de-
vice is automatically encrypted/decrypted.

The kernel crypto API offers a rich set of cryp-
tographic ciphers, modes, and data transform mecha-
nisms. Natively the crypto API offers its own generic
software ciphers: since the cryptographic operations
are performed by the CPU, this cipher is portable,
without any assumption on available hardware. When
another implementation exists for the same cipher
(see section 2.3), it is used instead of the generic one.

On top of the kernel module, FDE relies on crypt-
setup, which in turn is based on Linux Unified Key
Setup (LUKS). LUKS provides a standard on-disk
header with all required information like cipher mode,
salt and hash of the master key (Fruhwirth, 2018). It
also provides a secure user management system that
allows up to eight users to share a single container.

Figure 1 presents a high-level overview of the
global architecture and summarizes the various oper-
ations on data between user-space, kernel space, and
physical device.

2.2 About XTS-AES

XTS-AES is the standard cipher mode for block-
oriented storage devices since 2007 (IEEE Computer
Society, 2008). The block size of this mode matches
the block size of the storage device: 512 bytes1.

The sector number corresponding to a 512-byte
block is used as IV, which means that the encryp-
tion/decryption operations can be done independently
for each block, and in parallel if needed.

Let us consider XTS-AES encryption (refer to
(Martin, 2010; IEEE Computer Society, 2008) for de-
cryption). There are three input parameters:

• The key, K, is 256 or 512 bits long and is divided
into two equal-sized sub-keys, K1 and K2. K1 is

1 We discuss in the long version of this paper that this
block size value significantly impacted the design of the At-
mel XTS-AES co-processor, thereby preventing us from ap-
plying our optimization on this board.

 BLOCK
 LAYER

USERSPACE

Cryptsetup / LUKS

Application:

DEVICE
 MAPPER Map IO

dm-crypt module

KERNEL

Physical device: file container, disk ...

Low level driver: atmel-aes driver

Atmel
cryptographic
co-processor

Figure 1: High-level overview of the FDE architecture in
Linux and the data paths during cryptographic operations.
Within the user-space, cryptsetup allows to create an en-
crypted disk following LUKS format. When plaintext needs
to be encrypted, data is sent to the dm-crypt module, within
the kernel space. Depending on what is available, a soft-
ware or cryptographic co-processor based implementation
is chosen. When a co-processor is available, as is the case
here, data is transferred to the specific low level driver. Fi-
nally the ciphertext is written to the physical device.

used to encrypt/decrypt data while K2 is used for
IV encryption.

• The initialization vector, IV , is 128 bits/16 bytes
long and represents the sector number (i.e., the
logical position of the data unit). This IV, once
encrypted, is called eIV . After multiplication, it
forms the tweak, denoted as T .

• The plaintext P is 512 bytes long block and con-
stitutes the payload to encrypt.

A 512-byte block is composed of 32 data units of 128
bits/16 bytes each. Let j denote the sequential num-
ber of the 128 bits data unit inside this block. Figure 2
shows the encryption process for this data unit. The
first step consists in encrypting the IV with K2 using
AES-ECB to produce the eIV . The result is multi-
plied in the Galois Field with the jth power of α to
produce the tweak, T , where α is a primitive element
of GF(2128). Then the 128 bits data unit (plaintext) is
XORed with T and encrypted with K1 using AES-ECB,
resulting in CC. The last step consists in XORing CC
with T , producing the encrypted result C for this 128
bits data unit. The same operation is performed for all
the 128 bits data units, successively.

2.3 XTS-AES Implementations

Cipher implementations are available at different lev-
els including from userspace, through libraries such
as OpenSSL, GnuTLS or Gcrypt. Within the Linux
kernel, other ciphers are used:
• some of them are pure software implementations;

Optimizing dm-crypt for XTS-AES: Getting the Best of Atmel Cryptographic Co-processors

265

Figure 2: XTS-AES encryption of the jth 128 bits data unit
of a 512-byte block.

• other ciphers use specific CPU instructions like
AES-NI (Gueron, 2012) for Intel CPU, or ARMv8
Crypto Extensions for ARM processor. They offer
a clear performance benefit compared to generic
software implementations;

• finally some implementations rely on a dedicated
cryptographic co-processor. This approach usu-
ally features better performance than generic soft-
ware, but on the downside, the co-processor acts
as an unmodifiable black box.

In the next section we introduce a fourth solution
which leverages on the SAMA5D3 cryptographic co-
processor ECB-AES support.

3 OPTIMIZING DM-CRYPT FOR
XTS-AES

3.1 Accelerating XTS-AES with an
ECB-AES Co-processor

For situations where a cryptographic co-processor is
available and supports ECB-AES but not XTS-AES
(e.g., the Atmel SAMA5D3 board, section 4.1), a
mixed approach is possible. XTS-AES is composed
of five operations: two XOR operations, a multiplica-
tion in GF(2128), two ECB-AES encryptions (or de-
cryptions). The idea is to offload the two ECB-AES
operations onto the cryptographic co-processor while
other operations are performed by the CPU. Doing so
requires to modify the atmel-aes driver. The main dif-
ficulty is to accommodate the asynchronous nature of
the cryptographic co-processor operations: the inter-
ruption generated at the end of the ECB-AES encryp-
tion (or decryption) by the co-processor is intercepted
and triggers the remaining CPU operations.

As we will see later on, the performance gain
achieved was not as high as expected and we looked

at another possible optimization.

3.2 Extended Requests to the atmel-aes
Driver

We also analyzed the mapping between 4kB pages
managed by the dm-crpyt module and the low level
cryptographic operations within the atmel-aes driver.
Let us consider the encryption operation in Figure 3
(decryption is similar):
• The dm-crypt module gets a description in a bio

structure of the plaintext file (this bio is not repre-
sented in Figure 3). This bio structure consists of
a list of bio vec structures, one per 4kB page.

• For each 4kB page of the list, the dm-crypt mod-
ule splits this page into eight 512-byte blocks and
initializes two scatterlist structures for each block,
respectively for source (where the plaintext is) and
destination (where to write the ciphertext). The
offset in the page is incremented for each scat-
terlist to point to the right 512-byte block.

• Then an encryption request is generated for each
block, with complementary information (like the
IV) and sent to the atmel-aes driver.

• Finally the atmel-aes driver encrypts each 512-
byte block, writing the result to the destination.

It appears that a natural optimization would consist in
working with larger requests to the atmel-aes driver,
a full 4kB page at a time. Doing so reduces by a fac-
tor eight the number of requests and reduces the im-
pact of fixed overheads within the cryptographic co-
processor (e.g., when programming a DMA to move
data from a kernel buffer to the internal co-processor
memory, and vice-versa).

We also limit ourselves to 4kB pages (rather than
a list of pages) because the page size is the common
size for file processing. It follows that the various
pages are not necessarily contiguous on disk which
limits the benefit of having a single request larger than
a page.

This optimization requires modifying both dm-
crypt and the atmel-aes driver. We increased the dm-
crypt 512 bytes limit to 4kB. Of course, the original
dm-crypt behavior is preserved and used if less than a
full page is concerned.

The atmel-aes driver is also modified. Again, any
request size from 512 bytes to 4kB (with a 512 bytes
step) is accepted. For instance, with an extended re-
quest for a full page, the driver computes eight IVs,
by incrementing the initial IV value for each 512-byte
block. This is in line with the way data is stored in the
page, since the eight blocks are necessarily stored se-
quentially. The driver also computes eight times more

SECRYPT 2020 - 17th International Conference on Security and Cryptography

266

tweaks from these IVs, and performs XOR and ECB-
AES encryption operations 4kB at a time.

This approach is fully backward compatible,
which we experimentally checked: a plaintext en-
crypted using this optimized extended request mode
can be decrypted with a classic XTS-AES mode im-
plementation, and vice versa.

4 EXPERIMENTS

4.1 Experimental Platform

We implemented the proposals of section 3. In order
to assess the performance of the various options, we
considered two Atmel boards: the SAMA5D3 (AT-
MEL, 2017b) and the SAMA5D2 (ATMEL, 2017a)
boards. Both cards feature the same single core Cor-
tex A5 ARM processor, 500 MHz, and a specific cryp-
tographic co-processor. The SAMA5D3 co-processor
supports five common AES modes, but not XTS-AES.
On the opposite, the SAMA5D2 co-processor, more
recent, also supports XTS-AES. Otherwise both cards
feature 256 MB of RAM, a Sandisk Class 10 SDHC
card, and run the same Linux/Debian operating sys-
tem with a 4.6 Linux kernel. During all tests, we used
the default key size of dm-crypt: a 256-bit XTS-AES
key, divided into two 128-bit sub-keys, which means
that ECB-AES-128 mode is always used.

Here are the various configurations tested:
SAMA5D3 Board:

• software: existing xts.ko linux kernel mod-
ule;

• mixed, with ECB-AES co-proc. but not ex-
tReq: atmel-aes driver modified to use the co-
processor for ECB-AES operations and CPU
for other operations, with 512-byte request
sizes;

• mixed, with ECB-AES co-proc. and extReq:
same as above, with 4kB request sizes (full
page).

SAMA5D2 Board:
• software: existing xts.ko linux kernel mod-

ule;
• with XTS-AES co-proc.: cryptographic co-

processor for the full XTS-AES processing,
with 512-byte request sizes.

In these tests the two ”full software” configurations
enable us to calibrate the two Atmel boards. As antic-
ipated from the specifications, we show in section 4.3
that these ”full software” configurations exhibit sim-
ilar performances. Therefore the results obtained on

the SAMA5D2 board can be safely compared to re-
sults obtained on the SAMA5D3 board, the main dif-
ference being the cryptographic co-processors, not the
remaining of the execution environment.

4.2 Time Breakdown with or without
Extended Requests

Let us first focus on our mixed implementation using
the ECB-AES co-processor, with or without extended
requests. We measured the total time spent within
the atmel-aes driver for each of the five operations
of XTS-AES mode on the SAMA5D3 board, during
a large 50 MB file encryption and decryption. To
that purpose, we instrumented the driver and collected
timestamped traces with the getnstimeofday() and
printk() Linux kernel functions. In order to as-
sess the practical precision of getnstimeofday()
and printk(), we ran several consecutive calls and
measured a 330 ns overhead per measure, which is an
acceptable precision for our experiments.

The breakdown values reported in Tables 1 and
2 are obtained by summing all the elementary times
for each of the following categories over the full file
encryption or decryption:

• Total time spent in the atmel-aes driver;

• Tweak computation time;

• First XOR time;

• Second XOR time;

• DMA (to and from the co-processor) + encryp-
tion (resp. decryption) time. Note that unfortu-
nately these operations cannot be isolated from
the atmel-aes driver;

• Other time computed as the difference between
the total time and the previous four categories;

Let us focus on the encryption of this 50 MB file first.
From Table 1 we see that the DMA plus encryption
process takes more than the half of the total time in the
default configuration, with 512-byte requests: 5.31s
out of 9.09s, followed by the tweak computation, with
a total of 2.62s. Both of them amount to 87% of the
total time.2

Using the extended request mode, extReq, the total
processing time is reduced by a factor 1.74, down to
5.23s. Looking at the DMA plus encryption process,
if it still represents more than half of the total time,

2 Looking more carefully one can notice that the first
XOR is significantly faster than the second one. This dif-
ference may come from cache behaviors, the second XOR
using a data area initialized by the DMA unlike the first one.
Since the impacts are marginal compared to other process-
ing times, we did not investigate the topic more in details.

Optimizing dm-crypt for XTS-AES: Getting the Best of Atmel Cryptographic Co-processors

267

bio_vec

*bv_page

bv_len

bv_offset

page split into 8
512-byte blocks

by dm-crypt

Atmel aes driver

1

2

3

4...

scatterlist

page_link

offset: 0

length : 512

dma_address
8 ×

cipher_request

 cryptlen

 iv

struct scatterlist *src

struct scatterlist *dst
8 ×

Figure 3: Classic approach for the encryption of a 4kB page with dm-crypt.

Table 1: Time breakdown of 50 MB file encryption with the mixed implementation using the ECB-AES co-processor, without
or with extReq.

Without extReq With extReq
Time (s) % Time (s) %

Total time 9.09 100.00 5.23 100.00
Tweak computation time 2.62 28.90 1.70 32.61
First XOR time 0.31 3.41 0.31 6.08
Second XOR time 0.63 6.99 0.41 7.86
DMA + encryption time 5.31 58.46 2.75 52.72
Other time 0.20 2.24 0.03 0.73

we notice a major improvement by a factor 1.93, now
amounting to 2.75s. The tweak computation is also
significantly reduced by a factor 1.54, now amounting
to 1.70s.

The situation is pretty similar during the decryp-
tion of this 50 MB file. These results show that the
extended request optimization has a considerable im-
pact when we use the dedicated hardware, by reduc-
ing the overhead due to the set up of the cryptographic
co-processor and the multiple data transfers, which is
not surprising.

4.3 Benefits of Extended Requests to the
Global Processing Time

We now consider the global processing time with
our mixed implementation using the ECB-AES co-
processor. This global time now includes dm-crypt
processing, I/O operations, and all the remaining sys-
tem call/kernel processing overheads. In particular we
want to see to what extent the extended request mode
can improve this global time, beyond the benefits it
has on the atmel-aes driver itself (section 4.2).

However the total time for the encryption and de-
cryption of file is difficult to measure because of asyn-
chronous operations and the presence of caches. In

with-extReq without-extReq
0

2

4

6

8

10

12

tim
e(

s)

MD5
I/O + kernel
atmel driver

Figure 4: Time breakdown for the MD5 computation of a
50 MB encrypted file, with our mixed implementation using
the ECB-AES co-processor.

order to circumvent these difficulties, we measured
the time to compute the MD5 digest of an already en-
crypted file, i.e. the time to decrypt and then compute
the MD5 hash. Therefore the total time is composed
of the Atmel driver time (line 1 of table 2), the MD5
digest time which is constant, and the I/O and other
kernel processing time. We have:

ttotal = tmd5 + tI/0 and kernel processing + tatmel driver

Here also, we focus on our mixed implementation us-
ing the ECB-AES co-processor in order to assess the
impacts of the extReq optimization.

SECRYPT 2020 - 17th International Conference on Security and Cryptography

268

Table 2: Time breakdown of 50 MB file decryption with the mixed implementation using the ECB-AES co-processor, without
or with extReq.

Without extReq With extReq
Time (s) % Time (s) %

Total time 9.30 100.00 5.13 100.00
Tweak computation time 3.05 32.78 1.46 28.61
First XOR time 0.29 3.21 0.27 5.32
Second XOR time 0.55 5.98 0.40 7.92
DMA + decryption time 5.22 56.12 2.81 54.83
Other time 0.17 1.90 0.17 3.32

Figure 4 shows the breakdown of the total time. It
confirms that the MD5 hash processing is both con-
stant and small with respect to the total time: the
method followed is not negatively impacted by the
computation of a MD5 digest. Non surprisingly, de-
cryption within atmel-aes driver represents the most
important time, and is significantly reduced as was
shown before. But we also notice that the I/0 and
other kernel processing times is divided by a factor of
almost 2: this is an additional benefit of the extended
request mode.

4.4 Performance Comparison for All
Configurations

So far we only focused on our mixed implementation
using the ECB-AES co-processor. Let us now com-
pare the various ciphers listed in section 4.1, using ei-
ther the SAMA5D3 and SAMA5D2 cards. In order to
perform this comparison, we considered the IOZONE
tool (Norcott and Capps, 2003) that provides encryp-
tion and decryption throughputs for large files (256
MB and 512 MB files in our tests).

Figure 5 shows the results. First of all, the two
”full software” configurations exhibit similar perfor-
mance which means the results can be safely com-
pared even if two different Atmel boards have been
used. These experiments show that our mixed im-
plementation with ECB-AES co-processor and ex-
tReq exhibits similar performance to that of the
SAMA5D2 XTS-AES co-processor: our solution is
slightly slower during encryption, but slightly faster
during decryption, no matter the file size. All other
solutions are clearly behind.

These experiments outline that in the absence of
native XTS-AES co-processor support, an implemen-
tation that can leverage an ECB-AES co-processor
and extReq is highly competitive.

5 CONCLUSION

XTS-AES is complex and can easily become a perfor-
mance bottleneck when dealing with large amounts of

data in the context of Full Disk Encryption (FDE). If
this is a perfect target for a hardware cryptographic
co-processor, XTS-AES is also relatively recent and
not universally supported. For this work we chose two
SAMA5 Atmel boards, in parts because of the avail-
ability of technical information required by our ad-
vanced developments (this is not always the case). If
the two boards feature a cryptographic co-processor,
only the recent SAMA5D2 supports XTS-AES hard-
ware acceleration.

This work focused on FDE in Linux, where the
dm-crypt module is in charge of block device, low
level, encryption/decryption. We studied three XTS-
AES implementations, from a pure software im-
plementation (baseline) to an implementation rely-
ing on the SAMA5D2 XTS-AES cryptographic co-
processor (most favourable case), and in between an
implementation relying on the SAMA5D3 crypto-
graphic co-processor for ECB-AES and CPU for the
other operations. We benchmarked them and identi-
fied that performance was behind expectations.

Therefore we explored the inner working of the
dm-crypt module and identified a possible optimiza-
tion: extended requests. Indeed, sending a single en-
cryption or decryption request to the atmel-aes driver
for a full 4kB page (instead of eight consecutive
requests) enables major performance improvements.
Although this idea is pretty natural, we describe the
architectural implications, and provide detailed per-
formance evaluations achieved with modified the low
level drivers. With this optimization, a mixed imple-
mentation limited to the old SAMA5D3 ECB-AES
co-processor features roughly the same performance
as that of the new SAMA5D2 board with an XTS-
AES co-processor. It therefore opens news perspec-
tives to accelerate FDE on Linux: old systems without
XTS-AES co-processor support will be greatly accel-
erated for intensive encryption/decryption tasks.

This work also discusses the possibility of having
an extended request mode support in the SAMA5D2
XTS-AES cryptographic co-processor. If the current
cryptographic co-processor design, limited to 512-
byte blocks maximum, prevents this optimization, we
explain how to solve the problem. We hope that the

Optimizing dm-crypt for XTS-AES: Getting the Best of Atmel Cryptographic Co-processors

269

256 512
0

2,000

4,000

6,000

8,000

10,000

File size (MB)

T
hr

ou
gh

pu
t(

K
B

/s
)

Encryption (write)

D3 software

D2 software

D3 with ECB-AES co-processor(without extReq)

D3 with ECB-AES co-processor(with extReq)

D2 with XTS-AES co-processor

256 512
0

2,000

4,000

6,000

8,000

10,000

File size (MB)

T
hr

ou
gh

pu
t(

K
B

/s
)

Decryption (read)

Figure 5: IOZONE benchmark, encryption and decryption
throughputs for all configurations.

design of future boards will be updated accordingly to
enable faster XTS-AES and FDE operations with the
proposed extReq optimization.

The interested reader is invited to refer to the full
paper: https://hal.archives-ouvertes.fr/hal-02555457

REFERENCES

ATMEL (2017a). SAMA5D2 board. http:
//www.atmel.com/tools/ATSAMA5D2-XULT.aspx.

ATMEL (2017b). SAMA5D3 board. http:
//www.atmel.com/tools/ATSAMA5D3-XPLD.aspx.

Brož, M., Kozina, O., Wagner, A., Meurer, J., and Vir-
govic, M. (2020). dm-crypt: Linux kernel device-
mapper crypto target. https://gitlab.com/cryptsetup/
cryptsetup/wikis/DMCrypt.

Fruhwirth, C. (2005). Hard disk encryption with dm-crypt,
luks, and cryptsetup. Linux Magazine, 61:65–71.

Fruhwirth, C. (2018). Luks on-disk format spec-
ification version 1.2.3. Technical report.
https://gitlab.com/cryptsetup/cryptsetup/wikis/
LUKS-standard/on-disk-format.pdf.

Gueron, S. (2012). Intel advanced encryption stan-
dard instructions set - rev 3.01. Technical re-
port. https://software.intel.com/sites/default/files/
article/165683/aes-wp-2012-09-22-v01.pdf.

IEEE Computer Society (2008). IEEE standard for cryp-
tographic protection of data on block-oriented storage
devices. IEEE std 1619-2007.

LLC, P. I. (2010). The billion dollar lost laptop prob-
lem: benchmark study of U.S. organizations.
http://www.intel.com/content/dam/doc/white-paper/
enterprise-security-the-billion-dollar-lost-laptop-
problem-paper.pdf.

Martin, L. (2010). XTS: A mode of AES for encrypting
hard disks. IEEE Security & Privacy, 8(3):68–69.

Norcott, W. D. and Capps, D. (2003). Iozone filesystem
benchmark. http://www.iozone.org/.

SECRYPT 2020 - 17th International Conference on Security and Cryptography

270

