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Abstract: A significant barrier to the combined use of simulation and machine learning (ML) is that practitioners in 
each area have differing backgrounds and use different tools. From a review of the literature this study 
presents five options for software architectures that combine simulation and machine learning. These 
architectures employ configurations of both simulation software and machine learning software and thus 
require skillsets in both areas. In order to further facilitate the combined use of these approaches this article 
presents a sixth option for a software architecture that uses a commercial off-the-shelf (COTS) DES software 
to implement both the simulation and machine learning algorithms. A study is presented of this approach that 
incorporates the use of a type of ML termed reinforcement learning (RL) which in this example determines 
an approximate best route for a robot in a factory moving from one physical location to another whilst 
avoiding fixed barriers. The study shows that the use of an object approach to modelling of the COTS DES 
Simio enables an ML capability to be embedded within the DES without the use of a programming language 
or specialist ML software.  

1 INTRODUCTION 

This article considers the combined use of simulation 
and machine learning (ML) which can be considered 
as two general approaches to computationally 
predicting the behaviour of complex systems (Deist 
et al., 2019). A widely used simulation technique is 
discrete-event simulation (DES) (Law, 2015). 
Robinson (2014) describes three options for 
developing DES of spreadsheets, programming 
languages and specialist simulation software 
otherwise known as commercial off-the-shelf 
software (COTS). Hlupic (2000) reported that the 
majority (55.5%) of industrial users employ 
simulators (COTS). However the number of 
examples of the combined use of COTS DES and ML 
is low and one reason for this may be due to the 
challenge of coding ML algorithms for DES 
practitioners who may have little coding experience 
due to the common adoption of drag and drop 
interfaces in COTS DES tools (Greasley and 
Edwards, 2019). Another challenge to the combined 
use of DES and ML put forward by Creighton and 
Nahavandi (2002) is the need to provide an interface 
between the ML agent and the (COTS) DES software.  
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To address these challenges this article 
investigates current options for combined DES and 
ML architectures and explores what these options can 
provide. In addition in order to remove the need for 
an interface with external ML software and to further 
remove the need to code ML algorithms this article 
presents a case study that demonstrates a software 
architecture of a DES that embeds an ML capability 
implemented entirely within the COTS DES software 
Simio v11 (Smith et al., 2018) using the software’s 
standard process logic facilities. 

The article is organized as follows. The literature 
review covers the combined use of COTS DES and 
machine learning software and categorises them into 
six options for software architecture 
implementations. A further software architecture that 
implements an ML algorithm within COTS DES is 
presented. The study then outlines a use-case of this 
architecture with the integration of ML algorithms 
within the COTS DES software Simio. The ML 
algorithms direct the movement of a robot, in the 
form of an automated guided vehicle (AGV), in a 
factory setting. The discussion section then evaluates 
the current and presented architectures for combining 
COTS DES and ML applications. 
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2 LITERATURE REVIEW 

ML techniques can be classified into supervised 
learning techniques that learn from a training set of 
labelled examples provided by a knowledgeable 
external supervisor and unsupervised learning which 
is typically about finding structure hidden in 
collections of unlabelled data. The main machine 
learning techniques are defined by Dasgupta (2018) 
as association rules mining (ARM) which uses a 
rules-based approach to finding relationships 
between variables in a dataset, decision trees (DT) 
generate rules that derive the likelihood of a certain 
outcome based on the likelihood of the preceding 
outcome. In general, decision trees are typically 
constructed similarly to a flowchart and belong to a 
class of algorithms that are often known as CART 
(Classification and Regression Trees). Support vector 
machines (SVM) are used to classify data into one or 
another category using a concept called hyperplanes, 
artificial neural networks (ANN) are a network of 
connected layers of (artificial) neurons which mimic 
neurons in the human brain that “fire” (produce an 
output) when their stimulus (input) reaches a certain 
threshold and naïve Bayes classifier (NBC) employs 
a training set for classification. Reinforcement 
learning (RL) can be classified as a third paradigm of 
machine learning, not within the supervised and 

unsupervised learning categories, but as a technique 
that looks to maximise a reward signal instead of 
trying to find hidden structure (Sutton and Barto, 
2018). 

A literature review was undertaken to identify 
implementations of big data analytics applications 
such as ML in conjunction with COTS DES based on 
the criteria stated in Greasley and Edwards (2019). 
This review is specific to COTS DES software and 
machine learning applications. Machine learning 
applications are distinguished from data mining 
examples in that machine learning uses algorithms 
that can learn from data and therefore can build 
decision models that try to emulate regularities from 
training data in order to make predictions (Bishop, 
2006). The scope of the review means that a number 
of articles that cover the combined use of simulation 
and ML are not included in this review. These articles 
either cover different types of simulation such as 
System Dynamics (Elbattah et. al, 2018) or non-
COTS DES implementations such as DEVSimPy 
(Capocchi et al., 2018), C (Chiu and Yih, 1995), 
SimPy (Fairley et al., 2019), Psighos (Java) (Aguilar-
Chinea et al., 2019) and DESMO-J (Java) (Murphy et 
al., 2019). Articles from the review that meet the 
criteria of using a COTS DES are now categorised 
into 6 software architectures for employing COTS 
DES and ML with a further category to be presented 
in this article (Table 1).  

Table 1: Architectures for combining COTS DES and ML software. 

SOFTWARE ARCHITECTURE FOR 
COMBINING DES AND ML 

DES COTS          
SOFTWARE 

MACHINE 
LEARNING 
SOFTWARE 

INTERFACE REFERENCE 

1. DES ‐> ML (OFFLINE)  TECNOMATIX R DATA FILE Gyulai et al. (2014)
ANYLOGIC
ARENA 

KNIME
SPSS 

DATA FILE
DATA FILE 

Jain et al. (2017) 
Acqlan et al. (2017) 

2. ML ‐> DES (OFFLINE)  SIMPROCESS SPSS DATA FILE Glowacka et al. (2009)
   

3. DES ‐> ML ‐> DES
(OFFLINE)  

TECNOMATIX  MATLAB DATA FILE  Bergmann et al. (2017)
ANYLOGIC
WITNESS 

SCIKIT‐LEARN
RAPIDMINER 

DATA FILE
DATA FILE 

Cavalcante et al. (2019)
Priore et al. (2018) 

     
4. DES ‐> ML (ONLINE) 

 
5. ML ‐> DES (ONLINE) 

TECNOMATIX
 
ARENA 

MATLAB WRAPPER
 
SERVER 

Bergmann et al. (2015)
 
Celik et al. (2010) 

     
6. DES ‐> ML ‐> DES

(ONLINE) 
TECNOMATIX
TECNOMATIX 

MATLAB
MATLAB 

WRAPPER
WRAPPER 

Bergmann et al. (2014)
Bergmann et al. (2017) 

QUEST
  

MATLAB
 

SERVER Creighton et al. (2002)

7. INTEGRATED 
DES ‐> ML 
ML ‐> DES 
DES ‐> ML ‐> DES 

SIMIO  NONE NONE  
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Figure 1 shows how the architectures are 
employed to enable synthetic data generated by a 
simulation to be used by an ML algorithm and the use 
of an ML algorithm to provide decisions for a 
simulation. These two roles are combined in 
architectures 3, 6 and 7 where simulation data is used 
by an ML algorithm which is subsequently used to 
generate decisions for a simulation model. Each of the 
7 architectures will now be described in more detail.  

Architecture 1 uses synthetic data generated by a 
simulation and held in a data file that is then used by 
ML algorithms. These algorithms are used stand-
alone and are not employed in the simulation model. 
Gyulai et al. (2014) use the Tecnomatix Plant DES 
software in conjunction with the random forest tree-
based machine learning technique using the R ML 
software. Jain et al. (2017) train ANN using the 
Knime ML software from simulation output saved in 
CSV files. Aqlan et al. (2017) use a traditional 
simulation methodology to develop a model of a 
high-end server fabrication process. The model 
reports on a number of performance measures 
including cycle time and defective work. The defect 
parameters obtained from the simulation, such as 
product number and root cause for the defect, are 
written to an Excel spreadsheet. The spreadsheet then 
serves as an input data file for a neural network 
(ANN) model which predicts the defect solution 
(such as scrap, repair or return to supplier) and the 
corresponding confidence value of the prediction. 
The case study uses an Arena COTS DES model and 
the ANN model is implemented using the IBM SPSS 
modeller.  

Architecture 2 enables the use of ML as an 
alternative to the traditional DES input modelling 
method of sampling data for theoretical distributions 
and deriving decision rules from domain knowledge 
(documents, interviews etc.). An example is provided 
by Glowacka et al. (2009) who use association rule 
mining (ARM) to generate decision rules for patient 
no-shows in a healthcare service. The ARM method 
generates a number of rules and a subset of these were 
embedded as conditional and probability statements 
in the DES model. The authors state that when 
establishing the nature of the association between 
variables, the use of a rule-based approach such as 
ARM has advantages over a linear regression 
approach in that the variables (model factors) do not 
need to be traded off against each other and the rule-
based model is easy to explain to practising managers. 
The ARM method is undertaken in SPPS Clementine 
10 which generates rules that were embedded as 

conditional and probability statements in the 
SimProcess COTS DES model.  

Architecture 3 uses simulation to generate 
synthetic data that is used by ML algorithms which 
are subsequently employed in the simulation. If this 
option is chosen then a data file may be used for 
offline analysis such as in Bergmann et al. (2017) 
who outline the identification of job dispatching rules 
built using a decision tree using the CART algorithm 
implemented in the MatLab toolbox. The decision 
tree is converted into decision rules which can then be 
codified in the simulation software, in this case the 
Tecnomatix Plant scripting language Sim Talk. 
Cavalcante et al. (2019) use an Anylogic DES model 
to generate a database file which is subsequently used 
by the SciKit-Learn Python ML module. The results 
of the ML analysis are then saved as a file which 
serves as an input file for a simulation experiment. 
Priore et al. (2018) use simulation to generate training 
and test sets which are used for a variety of machine 
learning techniques in scheduling a flexible 
manufacturing system (FMS). The simulation is used 
to randomly generate 1100 combinations of 7 control 
attributes (such as work-in-progress and mean 
utilisation of the FMS). The simulation is then used 
to compare the scheduling performance of the trained 
machine learning based algorithms and further 
traditional scheduling rules such as SPT (shortest 
process time). The study uses the Witness COTS DES 
software and the RapidMiner ML software. 

Architecture 4 enables an online version of 
architecture 1. Here Bergmann et al. (2015) 
investigate the suitability of various data mining and 
supervised machine learning methods for emulating 
job scheduling decisions. Training data is generated 
using a Tecnomatix DES simulation and the machine 
learning software is implemented in Matlab. 

Architecture 5 enables an online version of 
architecture 2 in which ML algorithms generate 
decisions for a simulation model. Celik et al. (2010) 
identifies an example where sensors installed in 
machines obtain data from the real system and 
process this using four algorithms. The first algorithm 
deals with abnormal behaviour of machinery detected 
from sensors, the second and third algorithms deals 
with determining data needs and resource 
requirements to operate successfully in real-time 
model and the fourth algorithm provides a prediction 
of the future mean time between failures of machines. 
This information is transmitted to an Arena DES 
model which provides a preventative maintenance 
schedule. 

 

Architectures for Combining Discrete-event Simulation and Machine Learning

49



DES SOFTWARE
MACHINE 
LEARNING 
SOFTWARE

DES SOFTWARE
MACHINE 
LEARNING 
SOFTWARE

DES SOFTWARE
MACHINE 
LEARNING 
ALGORITHM

DATA

DATA

DATA

DECISIONS

DECISIONS

DECISIONS

DECISIONS

3. DES ‐> ML ‐> DES

DES SOFTWARE

1. DES ‐> ML (OFFLINE)

DATA

DATA

DECISIONS

MACHINE 
LEARNING 
SOFTWARE

DATADATA

MACHINE 
LEARNING 
SOFTWARE

DES SOFTWAREDECISIONS

2. ML ‐> DES (OFFLINE)

DECISIONS

O
FF‐LIN

E
O
N
‐LIN

E

6. DES ‐> ML ‐> DES (ONLINE)

7. INTEGRATED
DES ‐> ML
ML ‐> DES
DES ‐> ML ‐> DES

DES SOFTWAREDECISIONS

5. ML ‐> DES (ONLINE)

MACHINE 
LEARNING 
SOFTWARE

DECISIONS

DATA FILE

DATA FILE

DATA FILE DATA FILE

DATA INTERFACE

DATA INTERFACE DATA INTERFACE

DES SOFTWARE

4. DES‐> ML (ONLINE)

MACHINE 
LEARNING 
SOFTWARE

DATADATA DATA INTERFACE

 

Figure 1: Architectures for combining COTS DES and ML software. 

Architecture 6 provides an online real-time 
interaction between simulation software which 
generates data for ML software which in turn 
communicates decisions back to the simulation 
software as it executes over simulated time. 
Creighton and Nahavandi (2002) implement RL in 
MatLab with communication over a Visual Basic 
server to the Quest DES software. Bergmann et al. 
(2014; 2017) show the example of how the C 
interface of the Tecnomatix Plant Simulation can be 
used to access the functions of MatLab. This is 
achieved through the use of a wrapper library that 
encodes and decodes the different data formats used 
by the Plant Simulation and Matlab.  Bergmann et al. 

(2014) shows the use of neural networks to 
implement simulation decision rules during runtime 
and Bergmann et al. (2017) shows the use of neural 
networks and a number of supervised machine 
learning algorithms to implement simulation decision 
rules during runtime.  

Architecture 7 is implemented by codifying 
the ML algorithms directly in the COTS DES 
software using the software’s standard process logic 
facilities and is the option presented in this study. 
This option provides an online capability without the 
need for a data interface between the DES and ML 
software. 
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3 THE SIMULATION STUDY 

A traditional approach to controlling the movement 
of robots in a DES would be to repeatedly assess the 
Euclidean distance between the current and target 
location as the robot progresses towards its location. 
However the use of RL offers the potential to provide 
a more efficient path between locations by 
considering a strategy for traversing the entire path 
rather than moving in the general direction of the 
target to only be obstructed by barriers within the 
factory. The aim of the simulation study is to 
implement a RL algorithm to guide the path of an 
autonomous robot moving around a factory.  Previous 
studies that use RL to inform the movement of 
autonomous robots are Khare et al. (2018) who 
present the use of reinforcement learning to move a 
robot to a destination avoiding both static and moving 
obstacles,  Chewu and Kumar (2018) show how a 
modified Q-learning algorithm allowed a mobile 
robot to avoid dynamic obstacles by re-planning the 
path to find another optimal path different from the 
previously set global optimal path and Troung and 
Ngo (2017) show how reinforcement learning can 
incorporate a Proactive Social Motion Model that 
considers not only human states relative to the robot 
but also social interactive information about humans. 
The study is structured around the four main tasks of 
a simulation study outlined by Pidd (2004) of 
conceptual model building, computer 
implementation, validation and experimentation. 

3.1 Conceptual Model Building 

Conceptual modelling involves abstracting a model 
from the real world (Robinson, 2014). Figure 2 shows 
the train and move robot processes which take place 
in the observation space. The train robot process 
updates the transition matrix using the reward 
structure implemented by the RL algorithm. The 
reward structure is repeatedly updated for the number 

of learning passes defined. The move robot process 
moves the robot to the next grid location within the 
action space and defined by the transition matrix. The 
move robot process repeats until the destination 
station is reached.  

The elements that implement the RL algorithm are 
now outlined in greater detail in terms of the 
observation space, action space and reward structure 
of the factory and the agents (robots) that move within 
it (Sartoretti et al., 2019). 

3.1.1 Observation Space 

The approach involves placing a agent on a grid made 
up of cells termed a grid-world which covers a full 
map of the environment within which the agent will 
travel. An alternative configuration is to have a 
partially-observable gridworld were agents can only 
observe the state of the world in a limited field of 
vision (FOV) centred around themselves. This might 
be utilised when reducing the input dimension to a 
neural network algorithm for example, but still 
requires the agent to acquire information on the 
direction (unit vector) and Euclidean distance to its 
goal at all times (Sartoretti, 2019). In this study the 
observation space is based on a layout for an AGV 
system presented in Seifert et al. (1998) which 
incorporates 10 pick and delivery stations, numbered 
1 to 10. Static obstacles, or no-go areas are also 
defined. In the original configuration in Seifert et al. 
(1998) the AGV routing is confined to nodes at each 
station connected by direct path arcs. In this 
implementation the grid system permits more flexible 
movement of the autonomous agent. The observation 
space represents a relatively challenging operating 
area for the agents as there is only a narrow opening 
between two areas of the factory. This makes it 
difficult for a simple step-by-step algorithm to direct 
efficient movement around the factory but this 
problem can be avoided by pre-computing complete 
paths (Klass et al., 2011) which is the approach taken 
here. The model does not currently incorporate 

TRAIN ROBOT
UPDATE 

TRANSITION 
MATRIX USING 

REWARD 
STRUCTURE

MOVE  ROBOT
MOVE TO NEXT 

GRID CELL WITHIN 
ACTION SPACE

LEARNING 
PASSES 

COMPLETE?

REACHED 
DESTINATION 
STATION?

START YES

NO

NO

ENDYES

 

Figure 2: Conceptual Model of Train and Move Robot Processes. 
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collision detection with dynamic (moving objects) as 
although the method of pre-computing paths avoids 
the problem of incremental planning in a complex 
layout there is still a requirement for checking at each 
agent move for other moving objects such as other 
agents or people. There are a number of ways of 
achieving this, for example Klass et al. (2011) put 
forward three rules to prevent collision between 2 
AGVs when they get into proximity. An alternate 
strategy is to re-activate the RL algorithm to find a 
new path when a blockage occurs (Chewu and 
Kumar, 2018). 

3.1.2 Action Space 

Agents in the gridworld can move one cell at a time 
in any of 8 directions representing a Moore 
neighbourhood. This is used rather than the 4 
direction von Neumann neighbourhood to represent 
the autonomous and free moving capabilities of the 
agents and provides a greater level of locally 
available information (North and Macal, 2007). 
Agents are prevented from moving into cells 
occupied by predefined static objects and will only 
move when a feasible cell is found. The action space 
of the factory layout is represented by a 10x10 
gridworld with each agent occupying a single grid 
cell at any one time. The gridworld is implemented in 
the simulation by a 10x10 2-dimensional array which 
is populated with a ‘0’ value for cells that are 
available to travel and a ‘1’ value for cells which 
contain a static object and thus must be avoided. The 
action space is easily increased in size in the model 
by increasing the size of the array holding the cell 
values. In this example a cell in the gridworld 
represents 1m2 of factory floorspace and a agent 
(robot) travels at a constant speed of 0.6m/s between 
cells. 

3.1.3 Reward Structure 

Marsland (2015) describes a RL algorithm as one that 
gets told when the answer is wrong but does not get 
told how to correct it. It has to explore and try out 
different possibilities until it works out how to get the 
answer right. Thus RL algorithms in general face a 
dilemma in that they seek to learn action values 
conditional on subsequent optimal behaviour, but 
they need to behave non-optimally in order to explore 
all actions (to find the optimal actions). In terms of 
action selection a number of options are available, 
including for free-space movement (Jiang and Xin, 
2019) but the most recognised ones are: 
Greedy Pick the action with the highest value to 
always exploit current knowledge. 

ϵ - greedy Same as greedy but with a small probability 
ϵ to pick some other action at random thus permitting 
more exploration potentially finding better solutions.  
Soft-max A refinement of the ϵ - greedy option in 
which the other action is chosen in proportion to their 
estimated reward, which is updated whenever they 
are used. 

The reinforcement learner is trying to decide on 
what action to take in order to maximise the expected 
reward into the future where the expected reward is 
known as the value. An algorithm that uses the 
difference between the current and previous estimates 
is termed a temporal difference (TD) method 
(Marsland, 2015). In this case we implement a type of 
reinforcement learning using the TD method of Q-
learning (Watkins and Dayan, 1992) which 
repeatedly moves the agent to an adjacent random cell 
position and provides a reward if that moves the agent 
closer to our intended destination cell. A large reward 
is allocated when the agent finds the target cell. Each 
cell is allocated a Q value as the agent moves to it 
which is calculated by the Bellman equation: 

Q(s,a) = r + ƴ(max(Q(s’,a’)) ) 

The equation expresses a relationship between the 
value of a state and the values of its successor states. 
Thus the equation calculates the discounted value of 
the expected next state plus the reward expected 
along the way. This means the Q value for the state 
‘s’ taking the action ‘a’ is the sum of the instant 
reward ‘r’ and the discounted future reward. The 
discount factor ‘ƴ’ determines how much importance 
you give to future rewards and is set to a default value 
of 0.8 in this study. The Q values are held in a 2-
dimensional array (termed the Q-matrix or transition 
matrix) that matches the size of the action space array 
and holds a Q value for each available cell in the 
factory layout. The following Q-learning algorithm 
implements the RL method using the greedy action 
selection: 

1. Initialise the Q-matrix to zeros. Set the start 
position and target position for the agent.  

2. Move the agent to the start position. 

3. The agent makes a random move to an 
adjacent cell (which is available and not an 
obstacle). 

4. The reward ‘r’ is calculated based on the 
straight line distance between the new cell 
position and the target cell position. 

5. The maximum future reward max(Q(s’,a’)) is 
calculated by computing the reward for each 
of the 8 possible moves from the new cell 
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position (which are available and not an 
obstacle). The future reward value is 
discounted by the discount factor ‘ƴ’. 

6. The Q value for the new cell position is 
calculated using the Bellman equation by 
summing the reward and discounted future 
reward values. 

7. If the target cell has been reached end. 
Otherwise repeat from step 3. 

When the target cell is reached this is termed a 
learning pass. The agent is then placed back at the 
starting cell and the process is repeated from step 2. 
After a number of learning passes the Q values in each 
grid cell should be stabilised and so the training phase 
can be halted. The agent can now follow the 
(approximate) shortest path by choosing adjacent 
cells with the highest Q values in turn as it travels to 
the destination. The number of learning passes 
required will be dependent on the size and complexity 
(number of obstacles and position of obstacles) of the 
gridworld. When the agent is required to move from 
its new position it re-enters training mode to 
determine a movement path to the next station and the 
algorithm is implemented from step 1. 

3.2 Computer Implementation 

A simulation was built using the Simio v11 discrete-
event simulation software using an object oriented 
approach to modelling. Simio allows the use of object 
constructs in the following way. An object definition 
defines how an object behaves and interacts with 
other objects and is defined by constructs such as 
properties, states and events. An object instance is an 
instantiation of an object definition that is used in a 
particular model. These objects can be specified by 
setting their properties in Simio. An object runspace 
is an object that is created during a simulation run 
based on the object instance definition. In this case an 
instance of the Simio entity object definition is 
defined in the facility window as ModelEntity1 which 
is associated with a robot animation symbol. A source 
node is used to create a robot arrival stream and each 
robot then enters a BasicNode and is then transferred 
into what is termed ‘FreeSpace’ in Simio. Here no 
entity route pathways are defined but entities move in 
either 2D or 3D space using x,y,z coordinates at a 
defined heading, speed and acceleration. This allows 
flexible routing to be specified without the need for a 
predefined routing layout. 

Entities can have their own behaviour and make 
decisions and these capabilities are achieved with the 
use of an entity token approach. Here a token is 

created as a delegate of the entity to execute a process. 
Processes can be triggered by events such as the 
movement of entities into and out of objects or by 
other processes. In this case, what Simio terms ‘Add-
on Processes’, are incorporated into the ModelEntity1 
(Robot) object definition allowing data and processes 
to be encapsulated within each entity definition 
within the simulation. This means each entity (robot) 
runspace object simulated in the model will have its 
own process execution and data values associated 
with it. The process logic (algorithms) for the 
simulation contained in the add-on processes train 
and move each robot through a number of predefined 
pick and deliver locations. Most DES software 
packages allow data to be associated with an entity 
(through what are usually termed entity attribute 
values) but do not provide the ability to embed 
process definitions within the entity. However the use 
of ‘dummy’ entities in DES software such as Arena 
can be used to implement some of the features of the 
token entity approach (Greasley and Owen, 2015). 

3.3 Verification and Validation 

The main method used for verification of the RL 
algorithms in Simio was to project the Q value 
transition matrix for a robot on to the Simio animation 
display of the factory. The user can then observe the 
Q-values updating on each learning pass and confirm 
the path derived from the RL algorithm and to ensure 
that the robot moves along this path (figure 3). 

 

Figure 3: Simio display of grid Q-values and route taken by 
robot generated from RL algorithm. 

When using RL one decision to be made is to specify 
the number of learning passes or attempts that the 
robots will make to find an efficient path between 2 
stations. Here a maximum learning pass figure of 50 
was chosen although it was found that the number of 
steps to move between 2 stations quickly converges 
within 15 learning passes. 
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3.4 Experimentation 

With verification and validation complete the model 
can be run with the training mode operating in the 
background and the animation showing the 
movement of the trained robots between pick and 
deliver stations. Figure 4 shows the model running 
with 2 autonomous robots with each robot moving in 
response to its individual schedule of pick and deliver 
stations and transition matrix of Q values. In terms of 
performance, currently when running the simulation 
for each robot when a movement has been completed, 
the RL algorithm is executed in training mode to find 
the ‘best’ path to the next destination. In the current 
layout configuration a processing delay of around 1 
second was apparent when running the simulation in 
animation mode on a Lenovo ThinkPad with an Intel 
Core i7-6500U CPU @ 2.50 GHZ with 8.00GB 
RAM. This delay time could increase with a larger 
grid size, more complex layout design or increased 
learning passes. This issue however only affects the 
smoothness of the animation display as simulation 
time is not progressed during the training phase. Also 
when the simulation is run in fast-forward mode 
(without animation) for the compilation of results 
then the delay has only a small effect on runtime 
speed. 

The model provides a testbed to explore a number 
of scenarios, in terms of the RL algorithm possible 
experiments include: 

• An investigation of the operation of the RL 
algorithm by adjusting the discount factor and 
number of learning passes and observing the 
effect on the generation of an approximate best 
route strategy.  

• An investigation of the use of different action 
selection rules such as softmax.  

• An investigation of the use of the Sarsa On-
Policy algorithm (Sutton and Barto, 2018). 

Further experimentation is also possible in term of 
the simulation model: 

• An investigation on the effect of robot travel 
speed (which could vary according to loading) 
and the incorporation of acceleration and 
deceleration of the robot on performance.  

• An investigation of the performance of the 
model for applications that require a larger 
gridworld 

• An investigation of the performance of the 
model for applications that require a greater 
number of robots.  

 

Figure 4: Simio display of 2 robots with movement directed 
by RL algorithm. 

4 DISCUSSION 

When used simulation and ML are used for 
prediction, simulation is the preferred method if the 
dynamics of the system being studied are known in 
sufficient detail that one can simulate its behaviour 
with high fidelity and map the system behaviour to 
the output being predicted. ML is valuable when the 
system defies accurate simulation but enough data 
exist to train a general black-box machine learner 
(Deist et al., 2019). This section will discuss the 
combined use of the capabilities of simulation and 
ML facilitated by the 7 architectures presented in 
figure 1.  

Architecture 1, 2 and 3 use an off-line approach 
in which ML software produces a data file which can 
be subsequently employed by the simulation. Vieira 
et al (2011) found that 80% of industrial users 
employed manual data sources in text or spreadsheet 
files and so this option is feasible for many users. 
However the off-line architecture is not suitable for 
techniques that require continuous online learning 
such as RL and for real-time applications such as 
Digital Twins. These architectures also cover the 
generation of synthetic data by a simulation which is 
used to train a machine learning algorithm. The 
synthetic data provided by simulation for ML is safe, 
available and clean as there can be uncertainty/noise 
in real data values making testing of ML algorithms 
difficult, although real-world experience cannot be 
replaced by learning in simulations alone and at some 
stage the algorithms must be tested in the real world 
to ensure validity (Kober et al., 2013). This approach 
offers a useful supplement to traditional simulation 
input modelling methods with Cavalcante (2019) 
stating that with the advent of Big Data, abstractions 
can be replaced by a ML model. Examples in this 
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category also includes using data file output in the 
form of decision tree structures which are then 
manually translated into decision logic (if..then 
statements) for subsequent use in a simulation model 
(Bergmann, 2017). A different approach is taken by 
Acqlan et al. (2017) who use a ML algorithm to 
analyse data generated by a simulation to predict a 
defect solution. In effect the ML algorithm is being 
used as an experiment and analysis tool for the 
simulation output data. 

Architecture 4, 5 and 6 use an online approach. In 
architecture 5, Celik et al. (2010) shows how a 
simulation can provide data in terms of a preventative 
maintenance schedule. An online architecture for the 
use of simulation and ML is often termed a Digital 
Twin where the architecture provides for the 
interaction between the physical and simulated 
system which is considered under the term Symbiotic 
Simulation System (SSS) (Onggo et al., 2018). In 
addition there is a need to enable fast simulation 
execution speed when enabling a Digital Twin. 
Examples of cloud platforms that can facilitate rapid 
simulation execution include COTS DES packages 
such as Simio (https://www.simio.com/software/ 
simio-portal.php) which uses the Microsoft Azure 
platform and Anylogic (https://www.anylogic.com/ 
features/cloud/) which uses the Amazon Web 
Services platform. Taylor et al. (2009) discuss 
interoperability between models using identical 
COTS simulation packages and between models 
using different COTS simulation packages. A further 
requirement for a Digital Twin is the ability for real-
time model adaption, in effect enabling a model 
building capability. The implementation of adaptable 
data-driven models can be achieved through the use 
of a data-driven simulation approach (Goodall et al, 
2019). This is primarily achieved using COTS 
software such as Simio by the definition of generic 
model objects with key data passed into the 
simulation from external files (Smith et al., 2018).  

Using Architecture 6, Bergmann et al. (2017) 
conduct input modelling by implementing the online 
approach using a wrapper interface (software coding 
to ensure compatibility between interfaces) between 
the simulation and the Matlab Neural-Network 
Toolbox and Creighton and Nahavandi (2002) use a 
server. Vieira et al. (2011) outlines the use of 
databases, data interchange standards such as CMSD 
and integration technologies such as MES to enable 
this approach. One option is to employ the Library-
based application programming interfaces (APIs) 
provided in COTS DES packages which offers 
programming language extensions to permit interface 
with external software including databases and 

machine learning programs. For example the Simio 
software offers Visual C# user extensions in areas 
such as user defined model selection rules and 
AnyLogic offers Java user extensions that can make 
use of Java-based libraries such as Deeplearning4j 
(https://deeplearning4j.org/). Arena offers a VBA 
extension. The main advantage of this method is that 
the machine learning method employed is separated 
from the simulation implementation allowing a 
number of ML software options to be employed for 
the chosen ML approach (e.g. clustering, ANN, ARM 
Bayes etc.). Another benefit is that the ML software 
can deal with complex ML algorithms that would 
require complex coding logic and data structures to 
be embedded in the simulation software (Bergmann 
et al. 2017). A potential problem with the approach is 
the effect on runtime performance when 
communicating between the simulation and ML 
software in runtime, although Bergmann et al. (2017) 
report that they were not able to detect major negative 
implications on runtime performance in their test 
scenario.  

The integrated architecture 7 presented in this 
study provides real-time training of the ML 
algorithms directly in the simulation language which 
negates the need for the use of external ML software. 
A reason to employ this option is to ensure that the 
large industrial user base of COTS DES software 
(such as Arena, Simio and Witness) are able to 
implement this capability without recourse to 
programming code such as Java or requiring an 
interface with external ML software. This requires an 
on-line capability to train the ML algorithms during 
simulation execution and the ability to embed the ML 
algorithm within each entity object, in this case each 
robot. The DES software make this approach feasible 
with its ability to animate entities by x,y,z coordinate 
in 2D or 3D space and thus eliminate the need to 
predefine every possible route taken by the entity in 
advance. The software also implements an object-
oriented approach and allows encapsulation of both 
the data and process logic definitions within the entity 
object. Encapsulation of data allows each robot to 
generate its own Q value matrix and if required each 
robot’s own static obstacle or ‘no-go’ locations can 
be defined. Encapsulation of process logic through 
the use of add-on processes allows multiple entities 
(robots) to each follow their individual training and 
move cycles. 

Figure 5 summarises the role of simulation and 
machine learning and relates these approaches to both 
the simulation study stage and the architecture 
employed. In general DES can be used by a ML 
algorithm as a source of data. This can be simply for 
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training and testing of the ML algorithm which can be 
achieved using architectures 1 (offline), 4 (online) 
and 7 (integrated) or when the simulation output data 
can be analysed by the ML algorithm. If the ML 
algorithm is subsequently employed by the 
simulation model for modelling input data or building 
the model then this can be achieved using 
architectures 3 (offline), 6 (online) or 7 (integrated). 
If the simulation is not used by a ML algorithm as a 
source of data there remain applications in which a 
previously trained ML algorithm can be used by the 
simulation. Here the ML algorithm can be employed 
by the simulation for modelling input data and 
building the model using architectures 2 (offline), 5 
(online) and 7 (integrated). 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: The role of DES and ML in DES methodology. 

Thus the article has identified offline and online 
architectures for the combined use of COTS DES and 
ML, identified an integrated architecture which is 
demonstrated by a use-case and related the use of 
simulation with ML and the architectures employed 
to simulation study stages. This has demonstrated that 
whatever architectures are employed there is the 
potential for ML to improve the capability of 
simulation in the areas of modelling input data, model 
building and experimentation and simulation study 
methodologies should incorporate ML techniques 
into these stages. Furthermore to overcome barriers to 
use in terms of coding and interfacing with ML 
software, architecture 7 can be employed. In addition 
simulation software providers should consider 
integrated ML capabilities within their software 
packages which do not require the use of computer 
programming coding in languages such as Java. 

5 CONCLUSIONS 

In this article six architectures for the combined use 
of COTS DES and ML have been identified. Off-line 
approaches involve using intermediate data files to 

pass data between the DES and ML software. This is 
found to be suitable for applications such as the 
training and testing of ML algorithms with the use of 
synthetic data generated by the simulation. It is then 
possible to either codify the ML algorithms within the 
simulation or to provide an interface between the 
simulation and trained algorithm. However the off-
line architecture is not suitable for techniques that 
require continuous online learning such as RL or for 
real-time applications such as digital twins. 
Architectures that use an online approach may be 
facilitated by a wrapper interface or the use of a server 
but this option requires technical knowledge to 
implement. Recent developments in COTS DES 
provide them with an online interface through the use 
of APIs but require knowledge in programming 
languages such as C# and Java. In addition all of the 
above offline and online options requires the ability 
to use ML software such as MatLab and R. This 
article proposes an additional architecture that uses 
the facilities of a COTS DES package to integrate an 
ML capability using an object modelling approach to 
embed process logic. The advantages of this approach 
is that it requires coding in the DES process logic with 
which the DES practitioner is familiar and does not 
require the use of an intermediate interface or 
knowledge of external ML software. Thus the article 
aims to contribute to the methodology of simulation 
practitioners who wish to implement ML techniques. 
The work should also be of interest to analysts 
involved in ML applications as simulation can 
provide an environment in which training and testing 
can take place with synthetic data safely and far 
quicker than in a real system. In terms of further work 
the feasibility of providing this capability in 
alternative COTS DES such as Arena needs to be 
investigated. There also needs to be an investigation 
of the integrated approach and the use of simulation 
process logic to implement alternative ML algorithms 
such as Neural Networks. 
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