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Abstract: Congestion on urban streets has negative impacts on the urban economy, environment, and lifestyle. 
Congestion, in developing countries, will increase despite knowing its cons. One way to control or reduce 
congestion is by sharing traffic information through traffic model congestion. This model includes the 
estimation of the travel time from the desired place of origin-destination. Speed-flow-density parameters 
help to calculate travel time. These fundamental parameters could be estimated using Floating Car Data 
from Google. Therefore, the objective of this research is to calibrate equations for the fundamental 
parameters with traffic state indicators by Google, relating them to ground truth data. Six density-flow 
equations and six speed-density equations were calibrated using power and linear curve, and some of them 
were validated. Other cities can use these equations to build their traffic congestion model. With this model, 
road users can plan the journey and choice the best route or travel in times of low congestion or uptake of 
public transport, decongesting the city and saving traffic costs related. This comprehensive research extends 
the knowledge of how Google traffic information can employ in developing cities. 

1 INTRODUCTION 

Congestion on roads, especially in urban areas, has a 
large negative social and economic impact on the 
community as well as on the environment (Bacon et 
al., 2011). Congestion may cause delay and noise 
that frustrates motorists and commuters, which also 
would have health implications. It may also lead to 
road traffic crashes and the degradation of the road 
infrastructure (Ackaah, 2019). In developed nations, 
traffic congestion is taken seriously, applying 
several measures to reduce it or control it. 
Unfortunately, most cities in developing countries 
are experimented and will be doing, hard times with 
traffic congestions (Yokota, 2004). 

In developing economies, the main problem is 
that congestion keeps on increasing because the 
number of people owning cars keeps increasing 
(Ackaah, 2019; Mfenjou, Abba Ari, Abdou, Spies, 
& Kolyang, 2018). The scenario is complicated 
when many people live in these cities, intensifying 
transportation of good and passengers (Jain, Jain, & 
Jain, 2017). Also, when public transportation does 
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not offer enough quality for drivers to leave their 
cars at home, or road infrastructure does not 
encourage drivers to change the mode of transport. 
Although the problems of vehicular congestion are 
known, very little has been done, due to the lack of 
personnel and technology, and especially to financial 
constraints (Yokota, 2004; Singh, Bansal, & Sofat, 
2014).  

Congestion can be tackled either by increasing 
street capacity or through demand management. 
Increasing capacity is very difficult in urban 
environments and very expensive that developing 
countries cannot afford (Baratian-Ghorghi & Zhou, 
2015). A more practical means of handling the 
existing infrastructure to optimize its use has 
become necessary (Ackaah, 2019). Some demand 
must be reduced, displaced to other routes, or move 
to other days if users have access to timely, accurate, 
and reliable traffic information (Bagloee, Ceder, & 
Bozic, 2014). This information could influence 
travel behaviour (Reza & Kermanshah, 2005; 
Andersson, Hiselius, & Adell, 2018) and could 
reduce journey time; and traffic congestion along 
with reduced vehicle emissions and fuel 
consumption (Hall, 1996). To build a successful 
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traffic congestion model is necessary to collect 
some. 

Data collection could be performed using 
traditional on-road sensors such as inductive loops 
or road tube counters. These sensors require 
specialized equipment for their installation in the 
outdoor. Moreover, maintenance requires that 
personnel visit the locations and repairs disrupt 
traffic. Those sensors are limited in terms of their 
coverage because it is prohibitively expensive to 
instrument representative road sections in the city. 
Floating Car Data (FCD) is an alternative data 
resource, that has high coverage (Altintasi, Tuydes-
Yaman, & Tuncay, 2017; van den Haak et al., 2018). 

FCD is possible due to the rise in the number of 
mobile phones (Gunawan & Chandra, 2014) and the 
increase in Internet use (Jiang, 2019). An indirect 
measure of the number of mobile phones is the 
mobile cellular telephone subscriptions (for every 
100 people) that employ cellular technology. In 
2018, in Ecuador, the subscriptions were 92, while 
in the whole world was 104.94 (World Bank, 
2019b). Other countries that, according to the World 
Bank (World Bank, 2019a), have similar income had 
98 (Serbia), 106 (Tonga), 132 (Argentina), 153 
(South Africa), and 180 (Thailand). Internet use was 
also increased worldwide, and in 2017, around 50% 
of the population used it via a computer, mobile 
phone or digital TV (World Bank, 2019b). In the 
same year, Ecuador had 57%, 73% for Serbia, 41% 
for Tonga, 74% for Argentina, 56% for South 
Africa, and 57% for Thailand. Regarding 
smartphones, in 2017, the percentage of people who 
use them was 63% in Serbia, 73% in Argentina, 60% 
in South Africa, and 71% in Thailand (Google, 
2018). Considering these values and its growing 
trend, FCD has a very good opportunity to be used 
in developing countries. 

FCD collects real-time traffic data by locating 
the vehicle via mobile phones or GPS over the road 
network (Altintasi et al., 2017). This data is then 
processed, to calculate travel time or average speeds 
in every road segment. This information is sharing to 
users through an online map or mobile phone 
applications. For example, Google’s application 
combines location data taken from participants’ 
GPS-equipped mobile phones with a traditional 
sensor (Google, 2009). Car location is map-matched, 
and speed and direction of travel are sent 
anonymously to a central processing centre. Their 
aggregated results are shown overlaying road maps 
with congestion information through four colour 
codes. Traffic information provided by Google is 
85% accurate for cars and 71% for motorbikes 

(Ahmed, Mehdi, Ngoduy, & Abbas, 2019). This 
traffic congestion information is valuable by road 
users and road system managers. 

Road users can plan the journey and choice the 
route, while road system managers view travel time 
as an essential network performance indicator (Rose, 
2006). Travel time is calculated using the segment 
length, the number of intersections in the route, 
traffic flow, speed, and traffic density. The last three 
ones are the fundamental parameters in traffic 
engineering (Garber & Hoel, 2014). This 
information helps to identify different traffic states 
(congested, free-flow, etc.) and events (i.e., entering 
or exiting from a queue/bottleneck, shockwave 
propagation, etc.) (Altintasi et al., 2017). Despite the 
importance of these fundamental relationships, some 
cities in developing nations have not invested in 
getting them. One option for those cities is to use 
Google traffic information to calculate speed-flow-
density parameters. Google shares aggregate data, 
after applying some “noise” (Knoop, Van Erp, 
Leclercq, & Hoogendoorn, 2018), and only shares 
that information with few institutions in the world 
(university, institutes or transportation centre’s) in 
their program Better Cities (Eland, 2015). These 
institutions belong to developed countries, so it is 
difficult to obtain this numerical information for 
cities in developing nations. 

However, Google codes the numerical 
information using four colours and gives it for free 
through its platforms (web and mobile app). This 
colour-coded traffic (live and typical) is available in 
several cities worldwide. Google traffic information 
is a result of shared data from more than 2 billion 
monthly active users (Matney, 2017). By default, the 
user shares their location data by Google's location 
service and sent to the Google database for further 
processing. It may be stored on the device until it 
has an Internet connection. For traffic, users’ 
information is classified based on speed. It is worth 
mentioning that the user can turn it off this option to 
avoid sharing his/her location data. In spite of the 
growth of smartphone use, Internet access, and the 
number of Google active users, it is not known if the 
colour-coded traffic indicator is accurate in 
developing countries. 

The aim of this research is to calibrate equations 
for the colour-coded traffic indicators provided by 
Google using ground truth data. Data were collected 
in urban streets from a medium city (Loja-Ecuador). 
As a result, several equations were calibrated y 
validated. In order to show this research, the rest of 
this paper is structured as follows. Section 2 gives an 
overview of the materials and methods. It describes 
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the sample size, data collection variables, and 
procedure, data processing. Also, it analyses the 
relationship between speed data and the colour-
coded condition. Section 3 shows the model 
calibration process and validation. Lastly, the final 
part presents the principal conclusions. 

2 MATERIALS AND METHODS 

2.1 Sample Size 

Loja, a medium city from Ecuador, was selected for 
this study. Ecuador is a developing country located 
in South America. Loja has about 215,000 
inhabitants (INEC, 2010) and around 50,000 
registered vehicles (INEC, 2014). In its urban area, 
collection data process included two stages: the 
calibration and validation. For calibration it 
collected data in 16 urban streets, while, for 
validation it collected in 3 urban streets from the 
same city (see figure 1). Streets from both data 
collection had two lanes and one direction of traffic 
circulation, and less than 5% of the longitudinal 
slope. Also, streets had a speed limit of 50 km/h.  

2.2 Data Collection Variables 

Two groups of variables were collected: Google 
traffic information and ground truth data. First, from 
Google applications (web or mobile app), the 
colour-coded was recorded. Four colours are 
available: green = no traffic delay, orange = medium 
amount of traffic, red = traffic delays and darker red 
= the slower speed of traffic on the road (Google, 
2019). Also, it was collected when the street was 
closure and when the application did not show any 
colour. In the ground truth data were collected the 
traffic flow and vehicles speeds. 

2.3 Data Collection Procedure 

Data were recorded from 5 January 2019 to 18 
January 2019 in the 19 selected streets. Colour-
coded was collected manually during the daytime 
(06h00 to 22h00). It was selected this time range due 
to the typical traffic information in Google for this 
city is between those hours. This range also avoids 
the noise that occurs in low flows that are in the 
night (Knoop et al., 2018). Traffic flow and vehicle 
speeds were collected manually in situ in the middle 
of the street.  

 

Figure 1: Map of the downtown of Loja city (Ecuador) 
with the studied streets. 

Traffic flow was estimated with the collected 
vehicles in a time interval (mostly 10 minutes). The 
vehicle speed was estimated from two marks on the 
pavement (usually 2 meters) and with the time that 
the vehicle spent passing that marks. All data 
collection was performed under good weather 
conditions. 

2.4 Data Processing 

Speeds of every vehicle were estimated using the 
ground truth data. It calculated the average speed 
and traffic flow every 10 minutes. It selected this 
period time due the Google typical traffic 
information is given in that range. Density was 
estimated using calculated speed and flow. The 
colour-coded was related to those parameters, and 
their results are shown in a section later. 

2.5 Speed Analysis 

Google only presents traffic conditions as colour-
coded. Exactly it cannot be said what parameters 
considered in their calculation or what are their 
thresholds. Speed behaviour patterns were explored 
using several boxplots, plotting the ground truth 
speed and the colour-coded traffic indicator, as can 
be seen in figure 2.  

 

Figure 2: Boxplots of average ground truth speed clustered 
by several traffic indicators from Google. RC: road 
closure, NTI: no traffic information, NTD: no traffic 
delay, MAT: medium amount of traffic, TD: traffic delays, 
TSSTR: the slower speed of traffic on the road. 
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Google does not provide any colour when it does 
not have enough information, or the street is closure; 
however, in-situ vehicles were circulating in those 
indicators. So, boxplots also included the indicator 
of no traffic information and road closure sign. This 
leaves doubts about the reliability of Google traffic 
information in this city. However, another study 
found that Google data can be used for analysing 
traffic management scenarios and for informing and 
signalling users on the road, after comparing in-situ 
speed and Google information in The Netherlands 
(van den Haak et al., 2018). 

Consequently, figure 2 shows that the speed 
decreases from "no traffic delay" (green colour) to 
"the slower speed of traffic" (darker red). However, 
boxplots have a wide range of speeds and the same 
speed is found in another boxplot. For example, 40 
km/h is found in green colour (no traffic delay), 
orange colour (medium amount of traffic), and red 
colour (traffic delays). This particularity makes it 
difficult to calibrate equations, as there are no 
unique data for each condition. Thus, it analysed the 
speed-flow-density relationships with the colour-
coded indicators. Then, in the next section, its results 
are shown. 

A cluster analysis was performed to get a better 
understand of Google traffic indicators. Ground truth 
speed and colour-coded conditions were used in this 
analysis employing statistical Software R (R Core 
Team, 2013). Google offers four colours, so in the 
first analysis was assumed four clusters (>83.5% of 
similarity) with average linkage and Euclidean 
distance. It shows its results in table 1.  

Table 1: Cluster analysis results between ground truth 
speeds and colour-coded traffic indicators. 

Four clusters analysis 

Cluster 
Number 
of obs. 

Similarity 
(%) 

Average 
speed 
(km/h) 

Speed 
thresholds 
(km/h)* 

1 158 83.5 44.33 >38 
2 330 87.5 31.06 26-38 
3 929 89.1 20.70 16-26 
4 189 89.8 11.38 <16 

Six clusters analysis 
1 21 91.9 51.65 >47 
2 137 90.8 43.21 39-47 
3 100 93.9 35.37 32-39 
4 230 92.4 29.19 25-32 
5 929 89.1 20.70 16-25 
6 189 89.8 11.38 <16 

*Adding or resting half of the average speed difference 
among clusters. 

An alternative cluster analysis was added to the 
table 1, considering six clusters (>89.1% of 
similarity) in analogy to the six levels of service 
(LOS) from the Highway Capacity Manual for urban 
streets (TRB, 2010) (see table 2). Also, it used the 
average linkage and Euclidean distance as 
parameters for the analysis. 

In table 2, clusters from 1 (green = no traffic 
delay) to 4 or 6 (darker red=the slower speed of 
traffic on the road). Speed thresholds are calculated 
adding or resting half or the speed difference among 
the clusters. For example, the speed difference 
between cluster 4 and 5 is 8.49 km/h, so half of this 
is 4.25 km/h, and then lower thresholds will be 
29.19-4.25 = 24.9 ≈ 25 km/h. The upper threshold 
will be calculated using 3 and 4 cluster speeds. 
According to table 2, streets in this study should be 
classified as class III or IV, because their speed limit 
is 50 km/h. According to the four cluster analysis 
from table 1, the four average speeds do not fit in III 
or IV class. If the speed thresholds from Table 3 are 
rearranged, data could fit in class III, for example, A 
and B (green), C and D (orange), E (red), F (darker 
red). However, with six clusters, almost every value 
matches with the thresholds of urban street class III. 
In this way, Google could offer traffic information in 
terms of the level of service. Also, it would solve the 
problem that it found one speed on several levels or 
colour codes, so it can be used in the practice. 

3 RESULTS 

Although some traffic indicators from Google have a 
trend with speed, and it has some relationship with 
the level of service, there is not clear how this can be 
used to build a traffic congestion mode from Google.  

Table 2: Level of service (LOS) of urban streets. 

Urban street
class 

I II III IV 

Speed* 
(km/h) 

90-70 70-55 55-50 55-40 

FFS** 
(km/h) 

80 65 50 45 

LOS Average travel speed (km/h) 
A > 72 > 59 > 50 > 41 
B > 56-72 > 46-59 > 39-50 > 32-41
C > 40-56 > 33-46 > 28-39 > 23-32
D > 32-40 > 26-33 > 22-28 > 18-23
E > 26-32 > 21-26 > 17-22 > 14-18
F ≤ 26 ≤ 21 ≤ 17 ≤ 14 

* Range of free-flow speed, ** Typical FFS. 
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Therefore, other analyses were conducted to 
calibrate equations from speed-density-flow 
variables. After calibrated them, a validation process 
was performed to evaluate the quality of the 
developed equations. Those equations will help to 
build the traffic congestion model. 

3.1 Calibration of Equations 

Figure 3 plotted density and flow data clustering by 
Google traffic indicators. Also, a power trend line 
was also plotted in that figure; in order to compare 
R-squared with other trend lines. The power curve 
was chosen due to its consistency when density is 
zero flow is also zero. Table 3 shows the power 
curve equations. 

The regular shape of the curve of density-flow 
relationship is an inverted U. In these cases, the data 
only covers the first part of the curve. When the flow 
gets higher, also, density gets higher until an 
inflection point, where the flow starts decreasing 
when density continues growing. The trends in 
figure 3 are not close to the inflection point. It is 
interesting that data slope is getting flattered when is 
more congested (NDT, MAT, TD, and TSSTR). 
This trend is consistent with the theory of 
fundamental diagrams because when it is more 
congested, adding more vehicles will increase the 
density more slowly than traffic without delay. 
NDT, MAT and TD have similar flow data until the 
density of 20 veh/km. It is also interesting that the 
highest density in every figure (NDT, MAT, TD, 
and TSSTR) increases approximately from 20 in 20: 
green colour is up to 40 veh/km, orange colour is up 
to 60 veh/km, red colour is up to 80 veh/km and 
darker red is up to 100 veh/km. The curves in RC 
and NTI have similar shape than the others even 
when there is no traffic information or it has the road 
closure sign. 

Secondly, figure 4 plotted density and speed data 
clustering using the same Google traffic indicators. 
Furthermore, a linear trend line was plotted 
according to the fundamental diagram theory. Table 
3 also shows these linear equations. The data trends 
from figure 4 are consistent with the fundamental 
diagram. Most conditions (NTI, NTD, MAT, TD, 
and TSSTR) have higher R-squared with 
exponential or power trend line. However, there is a 
straight line used in the flow-density relationship, so 
it selected that regression. The trend line in each 
indicator has a different slope than the others, 
similar in figure 3.  

Models from table 3 are applicable in the showed 
range. Equations 8 and 9 have similar parameters, so 

only one equation can be calibrated. However, in 
this investigation, the models have been left in their 
original version, to see the traffic indicators 
separately. In general, R-squared from density-flow 
equations is bigger than density-speed models. 

3.2 Validation of Calibrated Equations 

A validation process was performed to evaluate the 
quality of the calibrated models from table 3. For 
this validation, it was collected data from three 
streets in the same city. These streets had similar 
characteristics to the ones in the calibration process. 
Collecting data and data processing was the same 
than in the calibration process. 

 

Figure 3: Density and flow data clustered by several traffic 
indicators from Google. RC: road closure, NTI: no traffic 
information, NTD: no traffic delay, MAT: medium 
amount of traffic, TD: traffic delays, TSSTR: the slower 
speed of traffic on the road. 

 

Figure 4: Density and speed data clustered by several 
traffic conditions from Google. RC: road closure, NTI: no 
traffic information, NTD: no traffic delay, MAT: medium 
amount of traffic, TD: traffic delays, TSSTR: the slower 
speed of traffic on the road. 
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Table 3: Calibrated equations for density/flow and 
speed/density for several Google traffic indicators. 

Traffic 
indicator 

Colour- 
coded 

Calibrated  
equation 

R2 # 

RC None q = 27,25k0.87 0,83 (1) 
NTI None q = 39,46k0.85 0,94 (2) 
NTD Green q = 42,80k0.77 0,88 (3) 
MAT Orange q = 70,65k0.58 0,64 (4) 
TD Red q = 65,36k0.57 0,71 (5) 

TSSTR Darker red q = 184,14k0.27 0,29 (6) 
RC None s = -0,33k + 24,77 0,20 (7) 
NTI None s = -0.82k + 38,20 0,45 (8) 
NTD Green s = -0,87k + 36,36 0,41 (9) 
MAT Orange s = -0,57k + 32,91 0,42 (10)
TD Red s = -0,33k + 26,98 0,57 (11)

TSSTR Darker red s = -0,19k + 21,71 0,65 (12)
q = traffic flow (veh/h), k = traffic density (veh/km), s 
= average speed (km/h), RC: road closure, NTI: no 
traffic information, NTD: no traffic delay, MAT: 
medium amount of traffic, TD: traffic delays, TSSTR: 
the slower speed of traffic on the road. 

 

The prediction errors were calculated to validate 
the previous calibrated speed models. Those errors 
were: mean absolute error (MAE) and mean absolute 
percentage error (MAPE) (see table 4). An analysis 
of variance (ANOVA) was carried out to validate 
the models, determining whether the difference 
between predicted values (equations) and collected 
data from validation means are statistically 
significant. Those values should not differ in a 95% 
level of confidence. It shows in table 4 the predicted 
errors and ANOVA results. 

Table 4: Calibrated equations for density/flow and 
speed/density for several Google traffic indicators. 

# MAE* 
MAPE  

(%) 
ANOVA 

95% CI P value
(1) - - - - 
(2) - - - - 
(3) 2.05 21.17 (8.67; 13.34) 0.138 
(4) 4.19 27.01 (14.65; 18.39) 0.057 
(5) 7.19 31.68 (21.56; 24.85) 0.050 
(6) - - - - 
(7) - - - - 
(8) - - - - 
(9) 5.61 27.68 (20.69; 24.01) 0.051 
(10) 4.57 22.41 (20.18; 23.05) 0.011 
(11) 2.92 17.11 (18.07; 19.83) 0.409 
(12) - - - - 
- Not enough data to validate models, MAE = mean 
absolute error, MAPE = mean absolute percentage 
error, 95% CI= confidence interval, * In equations 
3-5 MAE is in veh/h and in equations 9-11 is in 
km/h. 
 

Table 4 does not have prediction errors or 
ANOVA analysis for equations 1, 2, 6-8 and 12; 
because the collected data from the validation 
process were not enough to do it. The highest 
density error was 7.19 veh/h, while the highest speed 
error was 5.61 km/h. Predicted error was away 
31.68% and 27.68% from the calibrated values. 
Despite these high values, the p-value exceeds from 
the assumed level of significance (α=0.05) in almost 
all equations. This means that the average predicted 
values do not differ from the collected validation 
ones; in consequence, those models are valid. 
However, caution is suggested in equations 5 and 9, 
because they are close to that level of significance. 

4 CONCLUSIONS 

The aim of this article was to calibrate equations for 
the colour-coded traffic indicators provided by 
Google using ground truth data. After analysing the 
results, it presents the following conclusions: 

Colour-coded from Google have a reasonable 
trend with the ground truth speeds. However, their 
data dispersion makes it difficult to calibrate 
equations. Therefore, a new analysis was conducted 
with variables from fundamental diagrams (speed-
flow-density) and the colour-code traffic indicators. 
In the density-flow analysis, data were consistent 
with the theory of traffic engineering and equations 
were calibrated using the power curve. Data were 
also consistent in the density-speed analysis, and 
calibrated some linear models. The density-speed 
models have lower R-squared values than the 
density-flow models, so it recommended taking 
caution when using. Those models were validated 
using prediction errors and ANOVA analysis. 

After the cluster analysis of average speed 
ground truth and traffic indicators from Google, 
their relationships are unclear. The HCM has 6 LOS, 
and Google offers 4 levels (four colours). However, 
if it is divided the speed data into six levels, Google 
could offer the information in terms of the level of 
service, considering the average speed thresholds 
approximately fits in the urban street LOS. An 
advantage of this arrangement is that a speed range 
will belong to a particular LOS and therefore to a 
single colour. In contrast, in Google traffic 
information, the same speed range belongs to several 
colour-coded indicators. This information will be 
helpful for cities that want to build a low-cost traffic 
congestion model. 

This study has a number of limitations. First, it 
performed collection data in just one city, which 
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probably will not have the same urban environments 
than in others. Also, the urban streets have a speed 
limit of 50 km/h, have two lanes, one direction, and 
are flat. Additionally, this study starts from the 
assumption that the data in the middle of the tangent 
belong to the whole street, while other elements 
should consider when approaching or exiting from 
the intersection. Furthermore, the calibrated 
equations are valid in a specific range, so they 
should not use out of those ranges. 

Despite these limitations, the present study helps 
to understand the use of Google traffic indicators in 
urban streets, offering useful information for urban 
planners and street designers. It showed the 
relationship between LOS and the average speed 
ground truth. It showed that when Google does not 
provide colour or in a road closure sign, real traffic 
was circulating through those streets. Also, based on 
the growth of smartphone use, Internet access, and 
the number of Google active users, the calibrated 
equations can be used by other cities to create their 
traffic model. This methodology could employ in 
other places or help to develop ITS. 
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