Keywords:

Abstract:

Gamification based Learning Environment for Computer

Science Students

Imre Zsigmond, Maria Iuliana Bocicor and Arthur-Jozsef Molnar

Faculty of Mathematics and Computer Science, Babes-Bolyai University,
1 Mihail Kogdlniceanu, RO-400084 Cluj-Napoca, Romania

Gamification, Digital Badges, Static Analysis, Learning Environment, System Design.

In the present paper we propose an integrated system that acts as a gamification-driven learning environment
for computer science students. Gamification elements have been successfully applied in many fields, resulting
in increased involvement of individuals and improved outcomes. Our idea is to employ a well-known aspect of
gamification - awarding badges, to students who solve their assignments while observing best practices. The
system is deployed as a standalone server having a web front-end through which students submit assignment
source code. The system checks submissions for plagiarism using Stanford’s MOSS, and statically analyzes
it via SonarQube, where a custom set of rules is applied. Finally, the program is executed in a sandboxed
environment with input/output redirection and a number of predefined test cases. Badges are awarded based
on the results of static and dynamic analyses. Components of the proposed system were previously evaluated
within several University computer science courses and their positive impact was noted by both students and

teaching staff.

1 INTRODUCTION

Our increased reliance on technology during the past
decades has left a market impact on all facets of
life. Education is no exception and e-learning systems
have proven their worth in this domain, as they pro-
mote accessibility, personalised learning, adaptability
as well as many other advantages. Computer science
is one such field where online learning environments
are most beneficial and convenient. They provide ef-
fective tools for students, who can work on and up-
load assignments remotely, can receive instant feed-
back, as well as for teaching staff, through automated
verification, detection of plagiarism and grading.

Gamification is defined by the use of game de-
sign elements in non game contexts and is getting
increased attention and use in e-learning environ-
ments (Deterding et al., 2011). While the definition
allows for various implementations, in practice the
most common game mechanics are points, badges and
leaderboards (Raftopoulos et al., 2015). Game me-
chanics are methods users can invoke to interact with
the game state in order to produce gameplay (Sicart,
2008).

Originally, badges were coat of arms subsets that
denoted outstanding skill or merit (Halavais, 2012).

556

Zsigmond, |., Bocicor, M. and Molnar, A.
Gamification based Learning Environment for Computer Science Students.
DOI: 10.5220/0009579305560563

Other instances of historical inspiration were medals,
trophies or ranks. In the modern context of gamifi-
cation, badges are used to the same effect, with the
qualifier that they tend to be available online, contain
information on how they were achieved, and have a
representational image and title (Gibson et al., 2015).
A list of all achievable badges can usually be found
in the application that uses them, and they tend to be
different enough to be categorized into distinct types.
From a user experience or system design perspective,
badges:

* Record user progress.

* Encourage alternative behaviors defined by the
designer.

» Highlight specific user experience elements that
are not covered by tutorials.

* Hint at advanced features or additional content.
¢ Serve as important metrics on application use.

As an illustration of the use and usefulness of digi-
tal badges consider the work of (Majuri and Hamari,
2018). Out of the 128 gamification papers analyzed
by the authors, 47 implemented some kind of digital
badges and 91 reported results. Out of the 39 papers
that detailed the use of badges 64.10% reported posi-
tive, 30.77% reported mixed and only 5.13% reported

In Proceedings of the 15th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2020), pages 556-563

ISBN: 978-989-758-421-3

Copyright (© 2020 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

Gamification based Learning Environment for Computer Science Students

negative results. Studied papers tended not to report
on specific badge usage, and did not have a clear de-
scription of why almost a third of them have ended
up with mixed results. We keep this issue in consid-
eration by tracking how badges are awarded and their
impact on student involvement and the learning pro-
cess.

Our approach extends previous work presented in
(Zsigmond, 2019) in order to create a generalized
badge awarding system to be used within University-
level courses on computer programming and software
engineering. The system must provide sufficient cus-
tomization to support the results of up-to-date re-
search in the field. It must be extensible in order to
cover relevant coursework within a 3-year undergrad-
uate program. Adding and configuring new courses,
assignment types and gamification elements must be
well supported.

2 BACKGROUND

2.1 Gamification

In most gamification literature, badges appear as a
secondary consideration. In our case, they repre-
sent the main gamification element of the proposed
platform. The main proposed innovation stems from
its integration within the platform, together with the
usage of both static and dynamic code analyses for
awarding them.

Existing literature shows that the applications of
gamification are not limited to e-learning. (Johnson
et al.,, 2016) analyze 19 papers on gamification in
health and well-being, and find that 59% report pos-
itive, and 41% report mixed results. Behaviors re-
lating to physical health were overwhelmingly posi-
tive while those focused on cognition were positive
and mixed. Studies that investigated badge use in
education tended to emphasize improved interaction
with the material and friendly competition with one’s
peers.

A computer engineering master level course was
gamified in (Barata et al., 2013), with the result
of increased forum engagement between 511% to
845% compared to the previous year. A data struc-
tures course was gamified with the use of badges in
(Fresno et al., 2018). Authors found positive effects
on trial and error as well as task submission behav-
ior. A freshman’s orientation application was created
in (Fitz-Walter et al., 2011), with badges being the
motivator to attend events, befriend new people and
explore the campus. Authors report positive attitude
towards the activities in the surveys.

High school students participated in a gamified
online vocabulary study group in a work described
by (Abrams and Walsh, 2014). Authors reported in-
creased time spent by students on the site and an in-
creased number of words learnt. (Cavusoglu et al.,
2015) argued that badges are valuable in stimulat-
ing voluntary participation. The authors of (Anderson
et al., 2013) provide empirical data to show that users
not only value badges, but modify their behavior in an
attempt to earn them. In (Huynh et al., 2016), authors
conducted data analysis on Duolingo’s’ milestones,
and found statistically significant correlation between
user progress and badges. In a subsequent analy-
sis, the same authors investigated badges and win-
ning streaks, noting that advanced users found them
less interesting than beginners. (Abramovich et al.,
2013) supported these findings, as they discovered the
existence of a connection between the students prior
knowledge and how they valued badges.

Some existing works also reported mixed or pre-
dominantly negative results. (De-Marcos et al., 2014)
reports that a cooperation based social network out-
competed a competition based gamification group.
(Ruipérez-Valiente et al., 2017) implemented their
own metric for badge usage on their engineering
course, and after grouping students by performance
found no overall clear correlation between badge use
and success. (Hamari, 2013) added badges to a purely
utilitarian trading service and found no behavioral
change in users, concluding that badges would be
more suitable within a more hedonistic usage context.

2.2 Static Code Analysis

Source code is meant to be computer interpreted. Well
understood best practices and increased processing
power lead to the development of software tools that
enforce coding standards. Many of them also attempt
to find bugs before and during program execution.
Tools such as FindBugs” and Programming Mistake
Detector® support multiple languages and cover an
extensive list of source code issues by parsing the pro-
gram’s abstract syntax tree. Such tools are integrated
within most IDEs in the form of source code linters
such as SonarLint*. From an educational perspec-
tive, these tools are preferable as they provide stu-
dents with immediate feedback and encourage early
development of good coding practices.

One of the most widely used such tools is the

"Duolingo language learning platform - https:/www.
duolingo.com/

Zhttp://findbugs.sourceforge.net/

3https://pmd.github.io/

“https://www.sonarlint.org/

557

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

SonarQube platform. Freely available in the form
of a Community Edition® that supports 15 popular
programming languages, SonarQube is available as a
multi-platform server application accessible through
a web interface. A command-line tool is available for
scanning project source code and uploading it to the
server for analysis. SonarQube checks source code
against an extensive list of possible errors, security
issues, code duplication, and proposes possible refac-
torings. The platform also provides an evaluation of
key software product characteristics such as Main-
tainability, Reliability and Security.

In addition to its open-source nature, there were
two important reasons for selecting SonarQube as our
platform’s static analysis tool. First, source code anal-
ysis is implemented using a plugin system. Plugins
can be created in order to cover new languages or to
improve the analysis of already supported languages
by implementing new rules and guidelines. This al-
lows us to customize the set of analysis checks at both
course and assignment level. As an example, it allows
us to ensure that user interaction is confined to a user
interface module, and that program functions commu-
nicate using parameters and return calls, as opposed
to global variables. Second, SonarQube includes the
required tools to automate source code analysis and
result extraction, which allows us to seamlessly inte-
grate it within our platform. We assign high impor-
tance to both these requirements in order to ensure
the proposed platform covers the maximum number
of computer programming and software engineering
courses.

3 GAMIFICATION BASED
LEARNING ENVIRONMENT

3.1 Gamification Study

This work is a continuation of (Zsigmond, 2019). The
platform was already prototyped within a successful
experiment in the spring semester of the 2018/2019
school year. Technical details are available in Section
3.4. This work further develops the presented solution
by incorporating a mechanism to employ both static
and dynamic code analysis in order to award digital
badges. Code analysis is described in Sections 3.2
and 3.4, while the awarding algorithm is detailed in
Section 3.3.

The popularity of digital badges can easily be
linked with the ubiquity of video games (Hilliard,

Shttps://www.sonarsource.com/plans-and-pricing/
community/

558

2013), where they are used in most genres. A wel-
come side effect of this usage is that we can be rea-
sonably confident that both students and the teaching
staff have already become familiar with the concept.
One of the leading theories on why badges work is so-
cial comparison theory (Festinger, 1954). It emerges
from people comparing their digital social status, in
the form of earned badges, to other people. Alterna-
tively it is used as a benchmark for themselves. More
recent and specific theories on the subject, influenced
by the previous one, are social influence theory and
that of planned behavior (Ajzen, 1991).

We aim to create 2 groups of badges: achievement
and style. Badges in the achievement group target
performance and mastery. Their aim is to be non triv-
ial, optional and worth extra points toward the final
grade. For example, a typical badge in this category
would be awarded for extending an assignment that
requires persistent storage to text files, to also work
with JSON files. Badges in the style group target mi-
nor achievements or desired behavior. Their aim is
for students to try small deviations from the optimal
study plan as well as to reinforce desired behaviors.
A typical badge in this category would be awarded
for completing a specific assignment on time. Badges
from both categories fall under the types defined in
(Facey-Shaw et al., 2018): motivation and engage-
ment, awareness and behavior change, and recogni-
tion of achievement.

We aim to carry out an experimental evaluation of
our approach by enrolling all 14 student formations®
who take programming courses. Student formations
will be assigned randomly into one of 4 groups, 3 ex-
perimental and 1 control, as summarized in Table 1.
The experimental question is how does student behav-
ior change in relation to being exposed to either, both,
or none of the aforementioned badge groups. Data
will be collected about their behavior on the site, their
grades, as well as a Likert scale survey to infer details
we cannot deduce otherwise.

Table 1: Number of student formations in each experimen-
tal group.

Achievement badges
With [Without

© & [With 3 3
> 2 X
& S | Without 3 5

3.2 Static Code Analysis

As detailed in Section 2.2 and shown in Figure 2, our
platform integrates a SonarQube Community Edition

6 Approximately 200 students in total.

Gamification based Learning Environment for Computer Science Students

server instance for static code analysis. The commu-
nity version supports most popular programming lan-
guages with the notable exception of C/C++, which
is covered through a third party open-source plugin
(Sonar Open Community, 2020). Assignment source
code is extracted server-side and imported into Sonar-
Qube automatically. The server configuration em-
ployed for analysis can be configured at both pro-
gramming language and assignment level, allowing
different rules to be enforced within the same course,
depending on the current assignment. The server can
be accessed through the same rich API that is used
by its web front-end. This provides programmatic
access to project and rule configurations, as well as
detailed information regarding rule violations, code
smell information and technical debt calculated using
the SQALE method (Letouzey and Ilkiewicz, 2012).

All submitted assignments undergo static analysis.
The result represents one of the inputs for the badge
awarding algorithm, as shown in the examples within
Table 2.

3.3 Awarding Algorithm

Defining an awarding system involves identifying and
recording the achievements, as well as their trig-
ger conditions. A good set of achievements is not
straightforward to define, as it must take into ac-
count course objectives, the students’ difficulties,
challenges and ambitions. Important criteria in defin-
ing achievements are represented by clearly stating
the achievement’s requirements, in order to drive a
good understanding of what needs to be done to gain
the associated badge. Although a complete set of
achievements is not yet available, Table 2 illustrates
a few relevant examples, based on our preliminary
studies. The requirement represents the condition that
must be fulfilled in order to get the badge. The re-
ward represents what can be obtained together with
the badge, provided the requirement is satisfied; not
all achievements have a reward. The value is a numer-
ical amount that can be gained with the badge, while
the accumulated values may lead to some new reward
for the student.

Available achievements and their associated
badges can be consulted by students at any time.
Students can also consult already earned badges.
Achievements are defined using clear, straightforward
language. This makes it easy for students to under-
stand them, and allows new achievements to be added
in a straightforward manner. Once the solution to an
assignment is uploaded, students are awarded badges
according to achievement requirements.

The awarding scheme described represents the

Tests that pass < 55%

gini=0.5

samples = 10

value = [5,5]
class = -

True

False

\

gini = 0.0
samples =3
value = [3,0]

class = -

True

Doc ace < 0.5
gini = 0.408
samples =7
value = [2,5]

class = Stylish coder

I False

\

L

Specified functions < 85.5%

gini = 0.444

gini

=0.0

samples =3
value = [2,1]

samples = 4
value = [0,4]

lass = Stylish
. class = Stylish coder

True |

False

v

gini = 0.0
samples =1
value = [1,0]

class = -

Tests that pass < 99%

gini=0.5
samples =2
value = [1,1]

class = -

True

| False

v

gini=0.0
samples =1
value = [1,0]

gini = 0.0
samples =1
value = [0,1]

class = -

class = Stylish coder

Figure 1: Example of decision tree, built for a mock data
set. Each node contains the test attribute, the number of
samples and the majority class of samples associated to that
node. Blue nodes indicate that all samples are classified as
Stylish coder, while light-blue indicates that the majority of
samples are in this category. The same is true for orange and
light-orange, with the difference that the samples are not
awarded the Stylish coder badge. Grey nodes indicate that
the two categories are equally represented (equal number of
Stylish coder and non-Stylish coder samples).

first phase in the implementation of our long-term
plans. The next phase is to define and employ
more complex, progressive meta achievements, which
recognise student achievements in a certain sub-field
such as testing, documentation, or coding style. This
will also be linked with other accomplishments of
the student that did not merit issuing a standalone
badge. This second, more complex achievement
type employs more elaborate rules for which we
expect a more complex server-side implementation.
For this reason, instead of directly defining a set
of intricate conditionals, we propose a more gen-
eralised approach, in which starting from an ini-
tial set of manually assigned progressive and meta-
badges, the system will be able to learn the rules by
which these are assigned and to further automatically
award badges to new users, according to learnt cri-
teria. For this task we propose using decision trees

559

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

Table 2: Achievement examples with associated badges.

Id Requirement Badge title Reward Value Category
1 Function specifications Doc ace - 5 style
for > 90% of functions
2 Five bonus activities Rising star One less requirement 100 achievement
for the next assignment
3 Percentage of Test master Bonus points for - achievement
code coverage > 95% the final grade
4 Among the first 10% of students Road Runner - 50 achievement
to submit the assignment
5 All assignments on time Time manager - - style
6 Functions communicate without Rightful - 10 style
using global variables transferer
7 No functions or classes above the Complexity guru - 30 achievement
maximum allowed complexity level

(Quinlan, 1986; Quinlan, 2014), classification mod-
els that are incrementally constructed from input data
and that can also be linearized into rules of type
IF conditiony and condition, and - -- and condition,,
THEN result, if needed.

The system described in Section 3.4, enriched
with the badge awarding and static code analysis com-
ponents will be put into operation during the spring
semester of the current academic year’. Collected
and anonymised data, including the students’ achieve-
ments and received badges will be curated in a data
set where each instance represents a student. Each in-
stance is characterised by the same set of attributes:
recorded realisations and received badges. These will
be available since the system keeps a complete history
of students’ delivered assignments and the results of
their evaluation. Some features are numeric, such as
the number of assignments completed on time, or the
percentage of code coverage. Others are boolean in
nature such as being among the fist 10% of students
to submit an assignment, or already having a certain
badge. The number of features is not yet fixed, but
it will be the sum of all recorded realisations and all
badges that we defined in the system during the first
phase. This is the input data for the decision tree.
Its creation also requires the target variable, whose
values will be represented by the new set of progres-
sive, meta-achievement badges. Initially these will be
devised and manually assigned by the teaching staff,
who understand the importance and context of the
students’ realisations as well as the gamification me-
chanics. Once these outputs are available, the deci-
sion tree will be generated and further validated by
means of the DecisionTreeClassifier from scikit-learn
(Pedregosa et al., 2011), which uses an optimised ver-
sion of the CART algorithm (Breiman, 2017). The
tree thus trained is intended to be used for the follow-

7Second semester of 2019/2020.

560

ing generations, to automatically award progressive
and meta-badges. This constitutes the second phase
of our proposed awarding system. Nonetheless, this
second phase is not the final one. As the system is
dynamic, more and more data will be recorded each
semester and new elements, including achievements
will be added. Therefore the classifier will have to be
retrained periodically using the new data available.
For better illustrating our idea, we built a mock
data set with 10 instances and 14 attributes (for each
feature we specify in brackets whether it is boolean
- B - represented by of O or 1, or numeric - N): Ac-
tivities attended (N), Assignments on time (N), Time
manager Badge (B), Specified functions (%) (N), Doc
ace Badge (B), Documentation delivered (B), Code
coverage (%) (N), Test master Badge (B), Number of
bonus activities (N), Rising star Badge (B), Tests that
pass (%) (N), All tests pass from first submission (B),
Among the first 10% of students who complete all as-
signments (B), Layered architecture (B). The output
is represented by a meta-achievement which indicates
whether the student’s coding style is proper or not.
It is influenced by aspects such as the presence of
function specifications and tests, program structure,
as well as other elements extracted using static code
analysis. For the current example we decided to use
a binary output variable, whether the coding style is
good or not, with the associated Stylish coder meta-
badge. In reality, the data set will include at least 200
students together with their assignment data. More
meta-badges will be created, leading to the problem of
multi-class classification. Figure 1 shows the created
decision tree, using the mock data set. Its most rele-
vant attribute is placed at the root and as one moves
further down the tree the splitting measure helps in
deciding which is the best split at every node. This
is computed using a splitting measure such as infor-
mation gain or the Gini impurity index. Each node
contains its associated Gini index (Raileanu and Stof-

Gamification based Learning Environment for Computer Science Students

fel, 2004), the number of samples associated to that
node, a "value” that represents how many of the sam-
ples sorted into that node fall into each of the two
categories, as well as the majority class of samples
associated to that node.

3.4 System Design

VV\./ SonarQube MOSS

LN\ | Server Server

Students A<<async>> A <<async>>
Upload 4.Static] 3.Plagiarism,
Solution analysis! check b

T o
2.Persist
AspNETMve | LUPl0ad [ppaiysis ersis
Website Service Database

6.Dynamic
analysis

5.Compile

Monitor
Service

Compiler/
Interpreter

Assignment
Process

7.Monitor
~ Process

Server

Figure 2: High level system architecture.

Technical design was driven by the requirement that
the system is available over the web, so that stu-
dents can access it at their convenience. The need for
this tool to be usable in many courses led to frame-
work independent compiler/interpreter calls, and ex-
ternal program execution, as well as a pluginable ar-
chitecture. Anti-plagiarism requirements led to us-
ing the freely available MOSS server®, that integrates
code similarity detection for many programming lan-
guages. The integration of the badge-awarding sys-
tem required extracting the results of source code
analysis, for which SonarQube provides the required
APIs. Figure 2 illustrates a high level view of the so-
lution.

For a typical use case a student accesses the site,
where they see their list of assignments and pick one
they want to attempt. The site displays personalized
versions of the text for each assignment based on what
gamification settings are enabled for the respective
course. After coding a solution they upload it. On the
server side, verification and pre-processing start on
the code, followed by compilation and execution, or
direct interpretation depending on the programming
language. We ran our semester long experiment with
C++, and we also prototyped C# and Python. The
next step is testing. Three tests are run in parallel, de-
pending on server settings: correctness, coding style

8https://theory.stanford.edu/ aiken/moss/

and plagiarism. Coding style and plagiarism tests in-
volve asynchronous API calls to the SonarQube and
MOSS servers, respectively. In our case, testing as-
signment correctness implies using separate threads
with redirection of the application’s standard input
and output streams. Each assignment has a number
of predefined test cases. For each of them, the server
launches a new instance of the generated executable
to ensure a clean run. An external service monitors
and terminates runaway processes. Results are saved
to the database and displayed to the student together
with any badges they earned throughout the process.
Figure 3 provides a simplified illustration of this pro-
cess.

With regard to static analysis, we carried out an
initial evaluation using the source code for several
first year programming assignments. We used Sonar-
Qube’s default rules for Python. Our empirical ob-
servation is that many students write methods having
very high cyclomatic complexity, combined with su-
perfluous use of branching statements. In addition,
we found methods having varying return types that
depend on execution code path, which leads to de-
fects difficult to identify for beginners in dynamically
typed languages.

In parallel to static analysis, the server also ver-
ifies submission correctness. Requirements for each
assignment clearly specify input/output requirements.
As an example, one assignment requirement was to
catalogue old maps. This had to be achieved using
the ”add” and ”display” console commands, speci-
fied to take the following form:

add_mapNumber, state, type, yearsOfStorage
display

As part of one test case, the server writes
to standard input "add 1234, used, geographic,
207, followed by ”display”. If the regular
expression 7. * (1234) * . *used. *geographic.*20”
matched the standard output, the test case was con-
sidered successful.

4 CONCLUDING REMARKS

Gamification has proven to be a beneficial tactic in
various areas of activity besides video games. Gam-
ification elements applied in learning environments
often provide better learning experiences, increased
motivation and can trigger behavioural changes. To
promote these benefits among students studying com-
puter science, a gamification based learning system
was first implemented during the spring semester of
the 2018/2019 academic year.

561

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

g Static
7| analysis
e . \J
Ver|f|cat|o_n, Compiler/ Run test Database
Upload »| Preprocessing, »| Interpreter - . > :
scenarios persistence
Storage setup
A
_ | Plagiarism
o check

Figure 3: Solution workflow.

The current paper extends the learning system by
adding two significant components. The first one is
the static analysis component. We consider it es-
sential for having an unbiased measurement of stu-
dent assignment source code quality, as well as free-
ing up teaching staff by helping students avoid many
common coding mistakes. The availability of mea-
surements allowed us to implement the badge-driven
achievement system, which represents the second in-
novative component of the system.

Awarded badges will belong to one of two groups:
achievement, which target mastery, and style, which
target minor achievements or desired behaviour. A
number of badges have already been defined; how-
ever, the system allows the introduction of new
badges based on the students’ difficulties, challenges
and ambitions. The badge awarding algorithm con-
sists of two phases. The first phase is based on simple
rules that define the conditions in which the badge and
its associated reward and value can be achieved. The
second phase includes progressive and meta-badges
and relies on a decision tree to learn more complex
awarding rules.

The static code analysis component allows our
system to statically analyse submitted code and pro-
vide near real-time reports on rule violations, code
smell information and accumulated technical debt.
Furthermore, the results of these analyses will be in-
tegrated with the badge awarding algorithm to reward
students who follow good programming practices and
write clean code.

The improved system will be evaluated during the
spring semester of the 2019/2020 academic year to
provide an answer to our experimental question: how
do badges influence student behaviour and perfor-
mance? These will be analysed, taking into account
the badge groups students were exposed to (or lack
of exposure, for one of the groups), as well as their
grades, conduct and feedback. The badge awarding
algorithm will be further refined according to the out-
put analysis. As further work is concerned, we con-

562

sider applying data mining on collected feedback in
order to enhance the system and its user experience.
We also intend to add support for more program-
ming platforms, as well as new gamification tech-
niques such as quizzes, challenges and new measures
for progress.

REFERENCES

Abramovich, S., Schunn, C., and Higashi, R. M. (2013).
Are badges useful in education?: It depends upon the
type of badge and expertise of learner. Educational
Technology Research and Development, 61(2):217—
232.

Abrams, S. S. and Walsh, S. (2014). Gamified vocabulary.
Journal of Adolescent & Adult Literacy, 58(1):49-58.

Ajzen, 1. (1991). The theory of planned behavior. Or-
ganizational behavior and human decision processes,
50(2):179-211.

Anderson, A., Huttenlocher, D., Kleinberg, J., and
Leskovec, J. (2013). Steering user behavior with
badges. In Proceedings of the 22nd International Con-
ference on World Wide Web, pages 95-106. ACM.

Barata, G., Gama, S., Jorge, J., and Gongalves, D. (2013).
Engaging engineering students with gamification. In
2013 5th International Conference on Games and Vir-
tual Worlds for Serious Applications (VS-GAMES),
pages 1-8. IEEE.

Breiman, L. (2017). Classification and regression trees.
Routledge.

Cavusoglu, H., Li, Z., and Huang, K.-W. (2015). Can gam-
ification motivate volun-tary contributions?: the case
of Stackoverflow Q&A community. In Proceedings
of the 18th ACM Conference Companion on Com-
puter Supported Cooperative Work & Social Comput-
ing, pages 171-174. ACM.

De-Marcos, L., Dominguez, A., Saenz-de Navarrete, J., and
Pagés, C. (2014). An empirical study comparing gam-
ification and social networking on e-learning. Com-
puters & Education, 75:82-91.

Deterding, S., Dixon, D., Khaled, R., and Nacke, L. (2011).
From game design elements to gamefulness: Defin-
ing gamification. In Proceedings of the 15th inter-
national academic MindTrek conference: Envisioning

Gamification based Learning Environment for Computer Science Students

future media environments, volume 11, pages 9 — 15.
ACM.

Facey-Shaw, L., Specht, M., van Rosmalen, P., Brner, D.,
and Bartley-Bryan, J. (2018). Educational functions
and design of badge systems: A conceptual literature
review. IEEE Transactions on Learning Technologies,
11(4):536 — 544.

Festinger, L. (1954). A theory of social comparison pro-
cesses. Human relations, 7(2):117-140.

Fitz-Walter, Z., Tjondronegoro, D., and Wyeth, P. (2011).
Orientation passport: Using gamification to engage
university students. In Proceedings of the 23rd
Australian Computer-Human Interaction Conference,
OzCHI ’11, pages 122 — 125, New York, NY, USA.
ACM.

Fresno, J., Ortega-Arranz, H., Ortega-Arranz, A.,
Gonzalez-Escribano, A., and Llanos, D. R. (2018).
Applying gamification in a parallel programming
course. In Gamification in Education: Breakthroughs

in Research and Practice, pages 278-302. IGI Global.

Gibson, D., Ostashewski, N., Flintoff, K., Grant, S., and
Knight, E. (2015). Digital badges in education. Ed-
ucation and Information Technologies, 20(2):403 —
410.

Halavais, A. M. (2012). A genealogy of badges: Inherited
meaning and monstrous moral hybrids. Information,
Communication & Society, 15(3):354 — 373.

Hamari, J. (2013). Transforming homo economicus into
homo ludens: A field experiment on gamification in
a utilitarian peer-to-peer trading service. Electronic
Commerce Research and Applications, 12(4):236 —
245. Social Commerce- Part 2.

Hilliard, K. (2013). Activision badges - the original gaming
achievement (2013, october 23). Retrieved October,
2019, from Game Informer:
https://www.gameinformer.com/b/features/archive
/2013/10/26/activision-badges-the-original-gaming-
achievement.aspx.

Huynh, D., Zuo, L., and Iida, H. (2016). Analyzing gamifi-
cation of ”Duolingo” with focus on its course struc-
ture. In International Conference on Games and
Learning Alliance, pages 268-277. Springer.

Johnson, D., Deterding, S., Kuhn, K.-A., Staneva, A., Stoy-
anov, S., and Hides, L. (2016). Gamification for health
and wellbeing: A systematic review of the literature.
Internet interventions, 6:89-106.

Letouzey, J.-L. and Ilkiewicz, M. (2012). Managing tech-
nical debt with the sqale method. IEEE Softw.,
29(6):44-51.

Majuri, Jenni, K. J. and Hamari, J. (2018). Gamification of
education and learning: A review of empirical litera-

ture. In Proceedings of the 2nd International Gam-
iFIN Conference, GamiFIN 2018. CEUR-WS.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P, Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825-2830.

Quinlan, J. R. (1986). Induction of decision trees. Machine
learning, 1(1):81-106.

Quinlan, J. R. (2014). C4. 5: programs for machine learn-
ing. Elsevier.

Raftopoulos, M., Walz, S., and Greuter, S. (2015). How
enterprises play: Towards a taxonomy for enterprise
gamification. In Conference: Diversity of Play:
Games—Cultures-Identities. DIGRA. Recuperado de
https://goo. gl/3PD4f9.

Raileanu, L. E. and Stoffel, K. (2004). Theoretical com-
parison between the gini index and information gain
criteria. Annals of Mathematics and Artificial Intelli-
gence, 41(1):77-93.

Ruipérez-Valiente, J. A., Mufioz-Merino, P. J., and Del-
gado Kloos, C. (2017). Detecting and clustering
students by their gamification behavior with badges:
A case study in engineering education. Interna-
tional Journal of Engineering Education, 33(2-B):816
—830.

Sicart, M. (2008). Defining game mechanics. Game Stud-
ies, 8(2).

Sonar Open Community (2020). C++ plugin.

Zsigmond, I. (2019). Automation and gamification of com-
puter science study. Studia Universitatis Babes-Bolyai
Informatica, 64(2):96-105.

563

