
Patterns for Serverless Functions (Function-as-a-Service):
A Multivocal Literature Review

Davide Taibi1 a, Nabil El Ioini2 b, Claus Pahl2 c and Jan Raphael Schmid Niederkofler2

1Tampere University, Tampere, Finland
2Free Univeristy of Bozen-Bolzano, Bozen-Bolzano, Italy

Keywords: Serverless, Function as a Service, Serverless Functions, Cloud.

Abstract: [Context] Serverless is a recent technology that enables companies to reduce the overhead for provisioning,
scaling and in general managing the infrastructure. Companies are increasingly adopting Serverless, by mi-
grating existing applications to this new paradigm. Different practitioners proposed patterns for composing
and managing serverless functions. However, some of these patterns offer different solutions to solve the same
problem, which makes it hard to select the most suitable solution for each problem. [Goal] In this work, we aim
at supporting practitioners in understanding the different patterns, by classifying them and reporting possible
benefits and issues. [Method] We adopted a multivocal literature review process, surveying peer-reviewed and
grey literature and classifying patterns (common solutions to solve common problems), together with benefits
and issues. [Results] Among 24 selected works, we identified 32 patterns that we classified as orchestration,
aggregation, event-management, availability, communication, and authorization. [Conclusion] Practitioners
proposed a list of fairly consistent patterns, even if a small number of patterns proposed different solutions to
similar problems. Some patterns emerged to circumvent some serverless limitations, while others for some
classical technical problems (e.g. publisher/subscriber).

1 INTRODUCTION

Serverless computing is a new paradigm that allows
companies to efficiently develop and deploy applica-
tions without having to manage any underlying in-
frastructure (Lloyd et al., 2018). Different serverless
computing platforms such as AWS Lambda, Azure
Functions, and Google Cloud Functions have been
proposed to the market. Such platforms enable de-
velopers to focus only on the business logic, leaving
all the overhead of monitoring, provisioning, scaling
and managing the infrastructure to the cloud service
providers [S1].

The most prominent implementation of server-
less computing is Function-as-a-Service (FaaS) (also
called ”serverless functions”). When using FaaS, de-
velopers only need to deploy the source code of short-
running functions, and define triggers for executing
them. The FaaS provider then, on-demand, executes
and bills functions as isolated instances and scales

a https://orcid.org/0000-0002-3210-3990
b https://orcid.org/0000-0002-1288-1082
c https://orcid.org/0000-0002-9049-212X

their execution. In the remainder of this work, we
refer to FaaS with the term ”Serverless Functions”.

One of the main issues with serverless functions is
the lack of patterns for composing different functions
in order to create a complete application or part of
it. Previous works also highlight the lack of patterns
in serverless functions (Leitner et al., 2019)[S1], and
practitioners are commonly pointing out this problem
in technical talks, often proposing patterns that are
discordant.

Therefore, in order to help practitioners and re-
searchers to map the current state of the art on server-
less patterns, in this work, we propose a review and a
classification of patterns proposed both by practition-
ers and by researchers.

We adopted a Multivocal Literature Review pro-
cess (Garousi et al., 2019), to capture both the state of
the art and the state of practice in the field, including
both white literature (i.e., peer-reviewed papers) and
grey literature (i.e., blog posts, industrial whitepapers,
books and practitioner’s talks). We selected 24 stud-
ies, published from 2017 to the end of January 2019.
Then, we proposed a taxonomy of architectural pat-
terns aimed at solving a set of common problems, to-

Taibi, D., El Ioini, N., Pahl, C. and Niederkofler, J.
Patterns for Serverless Functions (Function-as-a-Service): A Multivocal Literature Review.
DOI: 10.5220/0009578501810192
In Proceedings of the 10th International Conference on Cloud Computing and Services Science (CLOSER 2020), pages 181-192
ISBN: 978-989-758-424-4
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

181



gether with their benefits and issues.
The contributions of this work, mainly targeted to

practitioners and researchers, are two-folded:

• 32 serverless patterns, classified into five cate-
gories, that practitioners can adopt in their work.

• Benefits and issues of the patterns reported in the
literature and by practitioners.

• Identification of trends and open issues on server-
less patterns.

The remainder of this paper is structured as fol-
lows. In Section 2 we compare our work with the ex-
isting literature reviews and we present related works.
In Section 3 we describe the study process we adopted
while in Section 4 we report the results. Section 5
discusses the results and threats to validity. Finally,
Section 6 draws conclusions.

2 RELATED WORK

Despite the very recent introduction of the serverless
technology, the research in this field is very active.
As reported by the Serverless Literature Dataset1(Al-
Ameen and Spillner, 2018), almost 200 papers have
been published between 2017 and 2019.

In this Section, we present the literature reviews
already conducted on this field, and we introduce the
related work that investigated serverless patterns.

2.1 Literature Reviews on Serverless

Five different works already surveyed the literature on
Serverless.

• Lynn et al. (Lynn et al., 2017) compared the
features of seven serverless computing platforms
identifying benefits and issues of each of them.

• Alqaryouti and Siyamba (Alqaryouti et al., 2018)
conducted a holistic literature review classifying
the various proposals related to scheduling tasks
in clouds. They identified approaches to minimize
execution time. Differently from our work, they
highlighted issues in scheduling but not investi-
gated patterns.

• Kuhlenkamp and Werner (Kuhlenkamp and
Werner, 2018) conducted a systematic literature
review to map the empirical evidence on server-
less functions. They identified nine studies that

1The Serverless Literature Dataset
http://serverless.research-output.org/

conducted a total of 26 experiments on five qual-
ities such as performance, scalability, and avail-
ability. Also in this case, their goal was not tar-
geted to the identification of architectural patterns.

• Sadaqat et al. (Sadaqat et al., 2018) proposed
a non-peer reviewed multivocal literature review
to identify the core technological components of
serverless computing, the key benefits and the
challenges. Also in this case, they did not focus
on patterns.

• Leitner et al. [S10] performed a mixed-method
study, which brings value to this new field by
looking at both peer-reviewed and gray literature
on serverless patterns. Their goal was to iden-
tify the type of applications that mostly benefit
from serverless technology, and the patterns that
have been used to implement them. As a result, 5
patterns have been identified when implementing
serverless-based services. The authors also dis-
cuss the drawbacks in terms of development over-
head, configuration and performance that each of
the pattern can cause. Differently than in our
work, they elicited the patterns from a survey,
while we aim at understanding the patterns re-
ported in the literature. While an empirical eval-
uation of the patterns can be of very high value,
we especially aim at classifying the patterns pro-
posed by the practitioner’s talks, that might highly
influence other practitioners in the adoption of the
patterns they will use in their applications.

2.2 Serverless Patterns

Six peer-reviewed works already investigated server-
less patterns while one work investigated anti-
patterns (Nupponen and Taibi, 2020).

In [S7], the authors have focused on serverless-
based design patterns to improve the security of
cloud-based services. They have presented six de-
sign patterns that can be combined in order to build
a threat intelligent services such as intrusion detec-
tion and virus scanning. Rabbah et al. [S24] pub-
lished a patent where they proposed patterns dealing
with composing serverless functions to build new ap-
plications. Bernstein et al. [S6] present an example of
a possible pattern that can be built relying on server-
less services. The goal is to process event-streams
using single-threaded virtual actors, which increases
performance and parallel execution of tasks. Gade-
palli et al. [S15] outlined an architectural pattern deal-
ing with the possible applications of serverless tech-
nology in combination with Edge Computing (Pahl
et al., 2019). Nupponen and Taibi (Nupponen and
Taibi, 2020) presented an industrial survey where they

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

182



distilled a set of anti-patterns from common prob-
lems experienced by practitioners while developing
serverless-based applications.

As for non-peer reviewed literature, a recently
published book [S8] provides a more in-depth expla-
nation of serverless computing and the different de-
sign patterns to consider when architecting an appli-
cation. In particular, the book discusses four major
pattern classes, namely web application patterns, ex-
tract transform load (ETL) patterns, big data patterns,
and automation and deployment patterns. In [S13] the
author presented guidelines to help companies em-
brace serverless technology by showing concrete use
cases, architectural designs, and patterns. The book
details five specific patterns and how they can be im-
plemented. We note that all the five patterns are not
unique to serverless technology, however, implement-
ing them using serverless components and services
can be considered a good contribution.

Our work differs from the existing literature not
only by focusing on patterns from a specific domain
(e.g., security) or to solve a particular problem (e.g.,
streaming data), rather, we applied a systematic ap-
proach identifying all existing patterns in the state of
the art including both peer-reviewed and non-peer re-
viewed works.

3 STUDY DESIGN

Architectural patterns exist for several architectural
styles. There are patterns for object-oriented mono-
lithic systems (Gamma et al., 1994), patterns for
service-oriented architectures (Erl, 2008), patterns
for microservices (Taibi et al., 2018)(Taibi et al.,
2019a)(Taibi et al., 2019b) and patterns for sev-
eral other architectural styles. Practitioners recently
started to discuss patterns in serverless functions.

In order to elicit the existing patterns for server-
less functions, we conducted a Multivocal Literature
Review (Garousi et al., 2019). In particular, we focus
on answering the following questions:

RQ1. What are the different serverless-based archi-
tectural patterns?

RQ2. What benefits and issues have been highlighted
for these patterns?

The first question revolves around defining the
concept of Serverless technology and how researchers
and practitioners were able to define specific patterns
to build Serverless based services. RQ2 explores the
pros and cons of each of the patterns taking in consid-
eration two main points of views, namely researchers

who have been exploiting the new technology and
practitioners who have used it in real settings.

3.1 Multivocal Literature Review

Multivocal Literature Review (MLR) is a type of lit-
erature review that considers not only academic and
peer-reviewed literature, rather, it includes also practi-
tioners’ opinions and literature produced by industrial
professionals. MLR is a double-sided blade in that,
differently from the classical systematic literature re-
view (SLR), it does not rely solely on peer-reviewed
studies. This could bring high value to answer ques-
tions from an industrial and practical point of view.
However, it could also lead to biased conclusions if
taking into account non-founded claims and views.

MLR relies on what is called gray literature (GL),
which could take many forms including industrial,
government and organizational reports, as well as
publicly available resources such as blogs and online
articles. When new fields are still not well estab-
lished, it is more common to find more GL on the
topic that its peer-reviewed counterpart, this is mainly
due to the fact that academic studies rely on a more
systematic process that requires longer time (e.g.,
conference or journal submissions, notifications, and
publication). In our context, given the fact that server-
less technology is still relatively new, only a few stud-
ies have touched on the topic of serverless patterns.
Therefore, including GL in our study enables us to
combine academic studies with the state of the prac-
tice given by the GL.

In order to minimize the bias in the section
process, we follow the MLR protocol proposed by
Garousi et al. (Garousi et al., 2019).

3.2 The Search Process

The MLR protocol is divided into three main steps i)
define the search process, ii) source selection, and iii)
literature assessment, as illustrated in Figure 1.

Based on our RQs, the following search string was
generated

(”serverless” OR ”function as a service” OR
”function-as-a-service” OR ”IaaS” OR ”Lambda” OR

”Function”) AND (”pattern” OR ”architecture” OR ”best
practice” OR ”smell” OR ”issue” OR ”problem” OR

compos* OR ”anti-pattern” OR ”anti pattern”)

The search string was used both in google search
engine as well as a set of digital libraries. Google
search was used to track grey literature, while digital
libraries targeted peer-reviewed studies. The digital
libraries we considered were IEEExplore, Springer-
Link, Google Scholar, ACM, Science Direct and Sco-
pus. The search process yielded 127 results. Due to

Patterns for Serverless Functions (Function-as-a-Service): A Multivocal Literature Review

183



Google
Search
Engine

Digital
Libraries

Initial Search

RQMLR goal

Search Keywords

Intial pool
(N = 120) Remove duplicates

Pool for voting
(N = 88)

Application of
inclusion/exclusion

criteria

Final pool
(N = 24)Data extraction

Data analysis

MLR results

Raw data

Snowballing unique sources
(N = 76)

St
ep

 I
D

efi
ne

 th
e

se
ar

ch
 p

ro
ce

ss

St
ep

 II
So

ur
ce

 s
el

ec
tio

n
St

ep
 II

I
 li

te
ra

tu
re

 a
ss

es
sm

en

Figure 1: MLR search process.

the significant number of unrelated results in google
search, we limited the results to the first 10 pages. Af-
terward, we filtered the results to remove any dupli-
cates. This process resulted in 76 unique sources. 65
practitioners blogs, 7 peer-reviewed studies, 2 videos,
1 patent, and 1 Powerpoint presentation. From the ap-
plication of the snowballing process on the references
and links contained in the initial set of results, we in-
cluded 12 more blogs obtaining a total of 88 sources.

To select the relevant sources for our process, we
developed a set of inclusion and exclusion criteria. To
test the applicability of the criteria, the authors ap-
plied the criteria independently to the full content of
10 GLs randomly selected from the result pool. Based
on some disagreements and discussions regarding the
inclusion of three GLs, the criteria has been reformu-
lated to be more precise. Using these inclusion and
exclusion criteria, we were able to capture most of
the sources that represent the state of the art in the
area of serverless patterns. The final list of inclusion
and exclusion criteria is listed in Table 1.

All the authors have evaluated the sources inde-
pendently by indicating whether each source i) sat-
isfies, or ii) does not satisfy the criteria. In case of
conflicts, all the authors were involved in clarifying
any doubts about the sources in question.

Table 1: inclusion and exclusion criteria. (All of the follow-
ing criteria must be satisfied by the selected sources).

Inclusion Criteria
GLs on serverless functions describing at least one pattern
Exclusion Criteria
GLs NOT in English
GLs using the term ’FaaS’ or ”serverless” for other purposes (e.g. in
the food service industry)
GLs mentioning a pattern but not describing it
Duplicated GLs
GLs only summarizing other GLs
GLs selling a third party product
GLs reporting only anti-patterns, as they are out of scope of this work

Table 2: MLR extraction Form.

Attribute Description
Source The publication source
Publication date when the source was published
Authors The author or list of authors
Title The source title
Pattern Name The given name of the pattern
Pattern Description A description of the pattern
Problem it solves The specific problem the pattern solves
Advantages Advantages of implementing this pattern
Limitations Limitations (e.g. platform dependent)

Finally, we applied the quality assessment adopt-
ing the criteria proposed by Garousi et al. (Garousi
et al., 2019). All the sources passed the quality cri-
teria and, as a result, we obtained 24 unique sources
from which we extracted the patterns. The attributes
of interest have been extracted based on the extraction
form defined in Table 2.

From the extracted data, we grouped the patterns
based on problems they are aimed to solve. In case the
selected sources adopted different names for the same
pattern, we opt for the most common name, while in
case of equal number of sources reporting the same
pattern, but with different names, we discussed and
selected the name that was more clear to understand.

4 THE PATTERNS PROPOSED BY
PRACTITIONERS

From the selected GLs we identified 32 patterns that
we classified into five categories, namely 1) orchestra-
tion and aggregation, 2) event management, 3) avail-
ability, 4) communication, and 5) authorization.

In order to ease the reading, especially from the
practitioners’ point of view, we answer our RQs for
each pattern independently. For each pattern, we first
describe the problem it is aimed to solve (RQ1), and
then benefits and issues, when reported by the GLs
(RQ2). All the patterns are listed in Table 3 together
with the alternative names adopted in the GLs.

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

184



4.1 Orchestration and Aggregation

These patterns can be used to compose serverless
functions or to orchestrate their execution creating
more complex functions or microservices.
Aggregator [S12][S2][S1] (also known as “Durable
functions” [S3]):
Problem: Exposing a single endpoint for several
APIs.
Solution: A function calls APIs separately, then ag-
gregates the results and exposes them as a singular
endpoint.

Data Lake [S4] [S5]: Problem: Keeping up with
evolving requirements of data transformation and pro-
cessing can be a hassle.
Solution: The data lake is a physical storage for raw
data where data is processed and deleted the least pos-
sible. Organizing it with sensible metadata naming as
times is a must for keeping order.
Benefits: The data remains always the same indepen-
dently from the needs of the moment. It can be trans-
formed just in time as necessary.

Fan-In/Fan-Out [S12][S8](McGrath et al.,
2016)[S2][S4] (also known as “Virtual Actors” [S6],
“Data transformation” [S7], “Processor” [S9], “Fire
triggers and transformations” [S3]):
Problem: Enable the execution of long tasks that ex-
ceed the maximum execution time (similar to Func-
tion Chain).
Solution: Split the work parallel tasks and aggregate
the results in the end. The parallel execution leads to
faster completion.
Issues: Strong coupling between the chained func-
tions. As for function chain, splitting the tasks be-
tween functions can be complex [S10].

Function Chain [S10][S3]:
Problem: Enable to execute long tasks that exceed the
maximum execution time (e.g., longer than 15 min-
utes in Lambda). Solution: Combine functions in a
chain. An initial function starts the computation while
keeping track of the remaining execution time. Be-
fore reaching the maximum execution time, the func-
tion invokes another function asynchronously, pass-
ing each parameter needed to continue the computa-
tion. The initial function can then terminated with-
out affecting the next function in the chain. Issues:
Strong coupling between the chained functions, in-
creased number of functions. Splitting the tasks be-
tween functions can be complex [S10].

Proxy [S11] (also known as “Command pat-
tern” [S13], “Anti-Corruption Layer” [S3]): Problem:
Integration of functions with a legacy system. Solu-
tion: Create a function that acts as a proxy for an-
other service, handling any necessary protocol or data
format translation. Benefit: Clean and easy-to-access
API for clients.

Queue-based Load Leveling [S8][S2][S3] (also
known as “The Scalable Webhook) [S12], “The
Throttler” [S1]): Problem Building scalable web-
hooks with non-scalable back-ends. Webhooks en-
able to augment or alter the behavior of a web page,
or web application, with custom callbacks. Solution:
Similar to the frugal consumer, queue service to trig-
ger a function can be used, which allows queueing the
requests under heavy load.

The Frugal Consumer [S12]: Problem: Increase
scalability of non-scalable backends. Solution: A
function that processes the requests of multiple ser-
vices (or functions) that post messages directly to a
message queue.

Patterns for Serverless Functions (Function-as-a-Service): A Multivocal Literature Review

185



The Internal API [S12]: Problem: Accessing mi-
croservices that are only accessed within the cloud
infrastructure. Solution: Leave the API Gateway and
call the functions HTTP directly using a Invocation
Type. Benefits: Increased security as services are not
accessible from outside.
The Robust API [S2][S12] (also known as “The
Gateway” [S3]): Problem: Sometimes clients know
which services in the back-end they want to use. So-
lution: Use an API Gateway to grant access for clients
to selected services. Benefits: Allows handling more
individually clients. Issues: Increases complexity.
The Router [S12] (also known as “Routing Func-
tion” [S13], “Decoupled Messaging” [S2], “Data
probing” [S9]): Problem: distribute the execution
based on payload, without paying the extra cost of
orchestration systems adopted in the state machine
pattern. Solution: Create a function that acts as a
router, receiving the requests and invokes the related
functions based on payload. Benefit: Easy imple-
mentation. Issues: the routing function needs to be
maintained. Moreover, it can introduce performance
bottlenecks and be a single point of failure. Double
billing, since the routing function needs to wait until
the target function terminates the execution.

Thick Client [S13]: Problem: Any intermediary
layer between client and service increases costs and
latency. Solution: Allow clients to directly access ser-
vices and orchestrate workflows. Benefits: Increased
performances, reduced cost at server-side, increased
separation of concerns (Roberts, 2016).
The State Machine [S7] [S2] [S12]: Problem: Or-
chestration and coordination of functions. Solution:
Adoption of serverless orchestration system such as
AWS Step Functions2, Azure Durable Functions3, or
IBM Composer4 to orchestrate complex tasks. Issue:
The complexity of the system increases, as well we
the development effort.

2AWS Step Functions https://tinyurl.com/ycu84so5
3Azure Durable Functions https://tinyurl.com/uscla27
4IBM Composer https://tinyurl.com/s6b6rbl

4.2 Event-management

These patterns help to solve communication prob-
lems.
Responsibility Segregation [S3]: Problem: When
the same functions are used for queries and data up-
dates, it increases the risk of becoming inflexible. So-
lution: Segregate functions that update and read from
data sources. Use ”Commands and Queries” for the
appropriate function to avoid this congestion.

Distributed Trigger [S12] (also known as ”Event
Broadcast” [S13]): Problem: Coupling a message
queue topic only with its own service. Solution: Cou-
ple multiple services into a single notification func-
tion, possible via message queues. This setup works
well if the topics have only a single purpose and don’t
need any data outside of it’s micro-service. Issues:
The subscriptions to the queue topic remains the re-
sponsibility of the individual services.

FIFO [S12], [S13]: Problem: Create a FIFO Queue
for serverless functions. Several messages do not
work with a FIFO approach (first in, first out). Solu-
tion: Use a crontab such as AWS Cloudwatch that pe-
riodically invokes the function asynchronously. Then,
set the function’s concurrency to 1 so that there are
no attempts to run competing requests in parallel.
The function polls the queue for (up to 10) ordered
messages and does whatever processing it needs to
do. Once the processing is complete, the function re-
moves the messages from the queue and then invokes
itself again (asynchronously). This process will re-
peat until all the items have been removed from the
queue. Benefits: Simple sequentialization. Issues:

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

186



Cascading effect [S12]: if the function is busy pro-
cessing other messages, the cronjob will fail because
of the concurrency setting. If the self-invocation is
blocked, the retry will continue the cascade.
The Internal Hand-off [S12]: Problem: Use invo-
cation Type (Event) for an asynchronous event. So-
lution: Function stops automatically when the execu-
tion is finished and automatically retries when it needs
to. Using a message queue to attach a Dead Letter
Queue enables to capture failures.

Periodic Invoker [S7]: Problem: Execute tasks pe-
riodically. Solution: Subscribe the function to a
scheduler, such as AWS Cloud Watch, Google Cloud
Scheduler, or Azure Scheduler. Benefits: Run func-
tions periodically without the need to keep them per-
manently alive.
Polling Event Processor [S11] (also known as
“Polling consumer” [S22]): Problem: React to
changes of states of external systems that do not pub-
lish events Solution: Use the Periodic Invoker pattern
to check the state of the service Benefits: Run func-
tions periodically without the need to keep a function
permanently alive as a listener.

4.3 Availability Patterns

This group of patterns helps to solve availability prob-
lems, reducing the warm-up time, and possible fail-
ures.
Bulkhead [S20], [S3]: Problem: When a crucial,
maybe load heavy, function fails, the complete sys-
tem risks being compromised. Solution: Partition-
ing workloads into different pools. These pools can
be created on the base of consumer load or availabil-
ity. Benefits: This process isolates failure and reduces
risks of a chain reaction of failures.

Circuit Breaker [S12][S14]: Problem: Keeps track
of failed or slow API calls. Solution: When the num-
ber of failures reaches a certain threshold, ”open” the

circuit sends errors back to the calling client immedi-
ately without even trying to call the API. After a short
timeout, the system “half open” the circuit, sending
just a few requests through to see if the API is fi-
nally responding correctly. All other requests receive
an error. If the sample requests are successful, the
system “close” the circuit and start letting all traffic
through. However, if some or all of those requests
fail, the circuit is opened again.Benefits: Cost saving
for synchronous requests.

Compiled Functions [S15]: Problem: Serverless
cloud computing would be a perfect fit for IoT es-
pecially at Edge would it not be so heavy-weight in
memory footprint and invocation time. Solution: A
high level specialized ahead of time compiled Server-
less language can reduce the memory footprint and
invocation time. This might make Edge technology
in the cloud viable.
Function warmer[S12][S16][S23] (also known as
”Function Pinging” [S10], “Warmer service” [S9],
“Cold Start” [S21], “Keeping Functions Warm” [S8],
“keep-alive” [S3]): Problem: Reduction of cold start
time, the delay between the execution of a function
after someone invokes it. Serverless functions are
executed in containers that encapsulate and execute
them. When they are invoked, the container keeps on
running only for a certain time period after the exe-
cution of the function (warm) and if another request
comes in before the shutdown, the request is served
instantaneously. Cold start takes between 1 and 3 sec-
onds [S2][S23]. For example, AWS (Shilkov, 19 b)
and Azure (Shilkov., 19 a) recycle idle function in-
stances after a fixed period of 10 and 20 minutes re-
spectively. Solution: Ping the function periodically to
keep it warm. Benefit: Reduction of response times
from 3 seconds to 200 milliseconds. Issues: In-
creased cost, even if limited to only one call every
10-15 minutes.
Oversized Function [S10]: Problem: In Serverless it
is not possible to choose on which CPU runs. Solu-
tion: Asking for bigger memory grants a faster virtual
machine too, even if no more memory is required.
Read-heavy Report Engine [S12][S2]: Problem:
Overcome the limits of downstream limits of read-
intensive applications. Solution: Usage of data caches
and the creation of specialized views of the data most
frequently queried Benefits Increased performances.

Patterns for Serverless Functions (Function-as-a-Service): A Multivocal Literature Review

187



The Eventually Consistent [S12]: Problem: Repli-
cate data between services to keep them consis-
tent. Solution: Use database stream services (e.g.
DynamoDB stream) to trigger events made on the
database from previous functions and use the data
again for whatever needed.

Timeout [S17]: Problem: The timeout time for API
Gateway is 29 seconds. Which is a long time for
a user and makes for a bad experience with the ser-
vice. Solution: Reduce the timeout to a shorter span,
preferably around 3-6 seconds.

4.4 Communication Patterns

Here, we describe patterns to communicate between
functions.
Data Streaming (also known as ”Stream and
pipeline” [S2], ”I am a streamer” [S12] and
”Event Processor” [S13][S22], “Streaming Data In-
gestion” [S4], “Stream processing” [S3]): Problem:
Manage continuous stream of data. Solution: Server-
less platforms offer possibilities like Kinesis(AWS) to
handle and distribute large streams of data to services.
Issues:Data streams can be expensive in Serverless.
Working outside the platforms eco system can be dif-
ficult too.

Externalized State [S10] [S3] (also known as “Share
State” [S21]). Problem: In some cases, it is needed
to share the state between functions. Solution: Share
the state saving it into an external database. Issues:
High coupling between the functions, latency over-
head [S10], additional programming effort. Solution:
”Apply a continuous stream processor that captures
large volumes of events or data, and distributes them
to different services or data stores as fast as they

come.” [S2] Romero [S2] and Dali [S12] propose an
AWS specific example, using the AWS API Gateway
as a Kinesis proxy5. In this way, it is possible to
use any number of services to pipe data to a Kine-
sis stream. Finally, Kinesis can be used to aggregate
the results.

Publish/Subscribe [S2][S3][S18] (also known as
“The Notifier”[S12]): Problem: Forward data for in-
ternal services (or APIs). Solution: Use a standalone
topic in the message queue to distribute internal noti-
fications for internal services.

4.5 Authorization Patterns

These deal with user authorization problems.
The Gatekeeper [S3][S12]: Problem: Authorize
Functions. Solution: Use a Gateway to create an
authorizer function that processes the authorization
header and returns the authorization policy.

Valet Key [S19]: Problem: Authorization without
routing all the traffic through a gatekeeper process.
Solution: By requesting first access from a special au-
thorizer serverless function it is granted a token which
is valid for a certain period of time and access rights.

5 DISCUSSION

The results of this work highlight that serverless pat-
terns are still not clear. Different practitioners propose

5Create a REST API as an Amazon Kinesis Proxy in
API Gateway https://docs.aws.amazon.com/apigateway/
latest/developerguide/integrating-api-with-aws-services-
kinesis.html

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

188



Table 3: The patterns identified.

Pattern Peer Reviewed studies Gray Literature
Orchestration and Aggregation

Aggregator [S1], [S2]. Also named: Durable functions [S3]
Data Lake [S4] [S5]
Fan in/Fan out Also named: Virtual Actors [S6],

Data transformation [S7]
[S2] [S4][S8]. Also named: Processor [S9], Fire triggers and transformations [S3]

Function chain [S10] [S3]
Proxy [S11]. Also named: Command pattern [S13][S24]
Queue-Based Load Leveling [S2][S3]
The Frugal consumer [S12]
The Internal API [S12]
The Robust API [S2][S12]
The Router Also named: Routing Func-

tion [S10]
[S12]. Also named: Decoupled Messaging [S2], Data probing [S9], Routing
function [S13][S11]

The State machine [S12]
Thick Client [S13]
Event Management

Responsibility Segregation [S3]
Distributed Trigger [S12]
FIFO [S12][S3]
Internal Handoff [S12]
Periodic Invoker [S7]
Polling Event Processor [S11]. Also named: Polling consumer [S22]
Availability

Bulkhead [S20][S3]
Circuit Breaker [S12], [S14]
Compiled Functions [S15]
Function Warmer Also named: Function ping-

ing [S10][S16]
[S12] [S23]. Also named: Warmer service [S9], Cold Start [S21], Keeping Func-
tions Warm [S8], keep-alive [S3]

Oversized Function [S10]
Read-heavy report engine [S12] [S2]
The eventually consistent [S12]
Timeout [S17]
Communication

Data streaming They Say I am A Streamer [S12], Streams and Pipelines [S2] Streaming Data
Ingestion [S4], Stream processing [S3]

Externalized state [S10] Share State [S21][S3]
Pub/Sub [S2] [S18][S3]

Also named: Notifier [S12]
Authorization

The Gatekeeper [S12], [S3]
The Gateway [S12][S3]
Valet key [S19]

similar and often discordant patterns, to solve similar
problems.

Some patterns are mentioned only by one source
while others are mentioned by different sources, con-
firming the importance given by the practitioners.

While the continuous evolution of serverless plat-
forms, such as the introduction of new tools, can be
beneficial for practitioners, it probably confuses prac-
titioners to understand which solution is more benefi-
cial to adopt. As an example, AWS lambda adapted
their queue service (SQS) to enable FIFO messages
and therefore it is no longer necessary to manage your
re-drive policies (Frugal Consumer pattern). How-

ever, up to now, FIFO messages still need to be man-
ually managed in Azure. Other tools have been in-
troduced in the last years, and will probably continue
to be introduced in the future, increasing the decision
complexity when deciding which pattern to adopt.

It is interesting to notice that several patterns have
been created to work around serverless limitations.
As an example, the function warmer has been created
to circumvent the long startup problem of functions.
Other patterns are inherited from other cloud-domains
or monolithic systems. As an example, the gatekeeper
and valet key are also used in microservices.

Thanks to this work, practitioners will be able to

Patterns for Serverless Functions (Function-as-a-Service): A Multivocal Literature Review

189



access the description of all patterns in one report, to-
gether with an analysis of the perceived usefulness of
each pattern, and possible problems that can raise us-
ing them. Researchers can further validate the pat-
terns, considering their usefulness or extending them.

5.1 Threats to Validity

The results of a MLR may be subject to validity
threats, mainly concerning the correctness and com-
pleteness of the survey, and the subjectivity of in-
terpretations. Moreover, the fast-evolving domain
of serverless, might also influence the results of this
work.

• Evolution Pace: Because of the fast evolution
of the serverless topic, the list of patterns might
become outdated very quickly. Some patterns
might be implemented directly by tools provided
the cloud providers, while other patterns might be
proposed in the future.

• Correctness and Completeness A first issue is a
possible bias in the selection of GL’s. To limit
this bias, we followed the guidelines for Mul-
tivocal Literature Reviews proposed by Garousi
et al. (Garousi et al., 2019). A first measure to
limit the bias in the selection of GL’s regarded the
search for relevant sources. To this end,

– We perform the search for grey literature in
Google and for scientific literature with auto-
matic searches in multiple digital libraries.

– We applied a broad search string, which re-
sulted in a large set of results. The fact that
finally less than one-tenth of the retrieved GLs
were selected for the survey demonstrates that
the search string allowed for quite a broad
search.

– We applied the snowballing process to identify
GLs that may have not detected by the auto-
matic search.

To increase the confidence that all relevant
sources were identified, we did not rely exclu-
sively on titles and abstracts to determine whether
the article reported serverless patterns. Instead,
three authors carefully read the full text indepen-
dently. In case of disagreements, the GLs were
reviewed collaboratively.

• Subjectivity In general, assessing the relevance of
GL’s in a review is partly subjective. In our case,
the main subjectivity issue concerns the identifica-
tion of the patterns. As already mentioned, differ-
ent GL’s address different patterns or investigate
how to solve different problems. Therefore, we

faced the problem of deciding what GL’s could be
considered as solving the same problem at some
level of abstraction.

• Pattern Classification is based on our experience
with cloud-native systems. A different classifica-
tion might have resulted in a different number of
patterns. However, due to similarity in tools and
techniques between serverless and cloud-native,
some transferability can be assumed.

5.2 Trends and Open Issues

Serverless moves us towards continuous development
and delivery. An important observation is that, dif-
ferently than in Microservices, serverless-based ap-
plications do not require to develop a full application
stack. That means that their infrastructure resources
like data stores and networks don’t need to be man-
aged, as they are under the responsibility of the cloud
provider. Resulting from our study, but also discus-
sions in Leitner et al. [S10], we can identify the fol-
lowing emerging issues:

• Comparison between microservices and server-
less functions. A microservice can be composed
of one or more serverless functions. However,
how to combine functions into a complete appli-
cation or into a microservice is still not clear. Re-
searchers might support practitioners by propos-
ing the adoption of previously developed tech-
niques for aggregating distributed systems or ba-
sic software engineering techniques.

• Lack of stable tools. The actual state of tools for
supporting serverless development is still limited.
Different tools are continuously proposed on the
market increasing the complexity of decisions for
long-term development.

• Reuse of Functions. What happens once a grow-
ing system has thousands or millions of functions
is still not clear. Will it be possible to have a
good system understandability with such a com-
plex system? Grouping functions into isolated mi-
croservices might help, but at the moment it is still
not clear how to proceed.

• Negative Results. In which contexts do serverless,
and in particular some specific patterns turn out
to be counterproductive? Are there anti-patterns?
All the aforementioned points require more expe-
rience reports and empirical investigations.

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

190



6 CONCLUSION

As the number of companies developing and deploy-
ing serverless applications continues to rise, a natu-
ral question that everyone joining this direction asks
is what are the best practices or the design patterns
to follow to make the best of this novel technology.
So far, most companies have been exploring the new
territory by applying known methods and patterns
coming from well-established technologies (e.g., mi-
croservices, web services). However, as serverless
technology is becoming mainstream, two classes of
patterns start to emerge. The first class represents
existing patterns that have been adapted from exist-
ing technologies to fit the serverless paradigm, others
instead have been developed specifically to address
serverless implementation needs.

Practitioners proposed several patterns, and the
community is already aware of several of them. We
can observe here a community in an early adoption
stage. However, existing reports highlight the value
of these patterns, although complexities introduced
by serverless are only slowly emerging. In any way,
the pattern catalog that we extracted from the litera-
ture and has been confirmed by the survey provides a
valuable basis for practitioners and researchers alike.

In this fast-evolving technology context, more
tools will be developed, that might require either new
patterns or turn those that are work-around for lim-
itations obsolete. Here, a continuous update of any
pattern catalog is necessary.

Future work includes the validation of the actual
usefulness of these patterns in more concrete appli-
cation contexts as well as the identification of anti-
patterns.

ACKNOWLEDGEMENTS

This research was partially supported by the grant
”SHAPIT” awarded by the Ulla Tuominen Founda-
tion (Finland)

REFERENCES

Al-Ameen, M. and Spillner, J. (2018). Systematic and open
exploration of faas and serverless computing research.
In European Symposium on Serverless Computing and
Applications.

Alqaryouti, O., Siyam, N., et al. (2018). Serverless com-
puting and scheduling tasks on cloud: A review.
American Scientific Research Journal for Engineer-
ing, Technology, and Sciences (ASRJETS), 40(1):235–
247.

Erl, T. (2008). SOA Design Patterns (paperback). Pearson
Education.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. M.
(1994). Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Profes-
sional, 1 edition.

Garousi, V., Felderer, M., and Mäntylä, M. V. (2019).
Guidelines for including grey literature and conduct-
ing multivocal literature reviews in software engineer-
ing. Inf. and Software Technology, 106:101 – 121.

Kuhlenkamp, J. and Werner, S. (2018). Benchmarking faas
platforms: Call for community participation. In Int.
Conf. on Utility and Cloud Computing.

Leitner, P., Wittern, E., Spillner, J., and Hummer, W. (2019).
A mixed-method empirical study of function-as-a-
service software development in industrial practice.
Journal of Systems and Software, 149:340 – 359.

Lloyd, W., Ramesh, S., Chinthalapati, S., Ly, L., and Pal-
lickara, S. (2018). Serverless computing: An in-
vestigation of factors influencing microservice perfor-
mance. In Int. Conf. on Cloud Engineering (IC2E),
pages 159–169.

Lynn, T., Rosati, P., Lejeune, A., and Emeakaroha, V.
(2017). A preliminary review of enterprise serverless
cloud computing (function-as-a-service) platforms. In
Int. Conf. on Cloud Computing Technology and Sci-
ence (CloudCom), pages 162–169.

McGrath, Garrett, M., Short, J., Ennis, S., Judson, B.,
and Brenner, P. (2016). Cloud event programming
paradigms: Applications and analysis. IEEE Com-
puter Society.

Nupponen, J. and Taibi, D. (2020). Serverless: What it
is,what to do and what not to do. In International Con-
ference on Software Architecture (ICSA 2020).

Pahl, C., El Ioini, N., et al. (2019). Blockchain based service
continuity in mobile edge computing. In 2019 Sixth
Int. Conf. on Internet of Things: Systems, Manage-
ment and Security (IOTSMS), pages 136–141. IEEE.

Roberts, M. (2016). Serverless architectures. https://
martinfowler.com/articles/serverless.html.

Sadaqat, M., Colomo-Palacios, R., and Knudsen, L. E. S.
(2018). Serverless computing: a multivocal literature
review. Nokobit.

Shilkov., M. (2019 a). When does cold start happen on azure
functions? https://mikhail.io/serverless/coldstarts/
azure/intervals/.

Shilkov, M. (2019 b). When does cold start happen on aws
lambda? https://mikhail.io/serverless/coldstarts/aws/
intervals/.

Taibi, D., Lenarduzzi, V., and Pahl, C. (2018). Architec-
tural patterns for microservices: a systematic mapping
study. Int. Conf. on Cloud Computing and Services
Science (CLOSER2018).

Taibi, D., Lenarduzzi, V., and Pahl, C. (2019a). Microser-
vices anti-patterns: A taxonomy. Microservices - Sci-
ence and Engineering. Springer. 2019.

Taibi, D., Lenarduzzi, V., and Pahl, C. (2019b). Microser-
vices architectural, code and organizational anti-
patterns. Communications in Computer and Informa-
tion Science, pages 126–151.

Patterns for Serverless Functions (Function-as-a-Service): A Multivocal Literature Review

191



Appendix

The Selected Papers

[S1] Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S.,
Ishakian, V., Mitchell, N., Muthusamy, V., Rabbah,
R., Slominski, A., and Suter, P. (2017). Serverless
Computing: Current Trends and Open Problems.

[S2] Romero, E. (2019). Server-
less microservice patterns for aws.
https://medium:com/@eduardoromero/serverless-
architectural-patterns-261d8743020/.

[S3] Likness, J. (2018). Serverless apps: Architecture,
patterns, and Azure implementation. Microsoft De-
veloper Division, .NET, and Visual Studio product
teams.

[S4] Serverless architectural patterns and best prac-
tices (arc305-r2) - aws re:invent 2018. https://
www.slideshare.net/AmazonWebServices/serverless-
architectural-patterns-and-best-practices-arc305r2-
aws-reinvent-2018.

[S5] Benghiat, G. (2017). The data lake is a design pat-
tern. https://medium.com/data-ops/the-data-lake-is-
a-design-pattern-888323323c66/.

[S6] Bernstein, P. A., Porter, T., Potharaju, R., Tomsic, A.
Z., Venkataraman, S., and Wu, W. (2019). Server-
less event-stream processing over virtual actors. In
CIDR.

[S7] Hong, S., Srivastava, A., Shambrook, W., and Du-
mitras, T.(2018). Go serverless: securing cloud via
serverless design patterns. In 10th USENIX Work-
shop on Hot Topics in Cloud Computing (HotCloud
18).

[S8] Zambrano, B. (2018). Serverless Design Patterns
and Best Practices: Build, secure, and deploy enter-
prise ready serverless applications with AWS to im-
prove developer productivity. Packt Publishing Ltd.

[S9] Shafiei, H., Khonsari, A., and Mousavi, P. (2020).
Serverless computing: A survey of opportunities,
challenges and applications.

[S10] Leitner, P., Wittern, E., Spillner, J., and Hummer,
W. (2019). A mixed-method empirical study of
function-as-a-service software development in in-
dustrial practice. Journal of Systems and Software,
149:340 – 359.

[S11] Pekkala, A. (2019). Migrating a web application to
serverless architecture. Master’s Thesis in Informa-
tion Technology, University of Jyväskylä.

[S12] Daly, J. (2019). Serverless microservice patterns
for aws. https://www.jeremydaly.com/serverless-
microservice-patterns-for-aws.

[S13] Sbarski, P. (2017). Serverless Architectures on AWS
. Manning.

[S14] Nygard, M. T. (2007). Release It!: Design and
Deploy Production-Ready Software (Pragmatic Pro-
grammers). 1 edition.

[S15] Gadepalli, P. K., Peach, G., Cherkasova, L., Aitken,
R., and Parmer, G. Challenges and opportunities for
efficient serverless computing at the edge.

[S16] Bardsley, D., Ryan, L. M., and Howard, J. (2018).
Serverless performance and optimization strategies.
2018 IEEE International Conference on Smart Cloud
(SmartCloud).

[S17] Lumigo (2019). Aws lambda timeout best prac-
tices. https://lumigo:io/blog/aws-lambdatimeout-
best-practices/.

[S18] Pirtle, J. (2019). 10 things
serverless architects should know.
https://aws:amazon:com/blogs/architecture/ten-
things-serverlessarchitects-should-know/.

[S19] Adzic, G. and Chatley, R. (2017). Serverless com-
puting: Economic and architectural impact. In Joint
Meeting on Foundations of Software Engineering ,
ESEC/FSE 2017, page 884–889.

[S20] AWS, A. (2018). Serverless ap-
plication lens aws. https://
d1.awsstatic.com/whitepapers/architecture/AWS-
Serverless-Applications-Lens.pdf.

[S21] Group, I. S. (2019). Aws lambda
serverless coding best practices.
https://www:intentsg:com/awslambda-serverless-
coding-best-practices/.

[S22] Gregor, H. and Woolf, B. (2004). Enterprise inte-
gration patterns: Designing, building, and deploying
messaging solutions. 1 edition.

[S23] Bhojwani, R. (2019). Aws lambda timeout best prac-
tices. https://lumigo:io/blog/aws-lambdatimeout-
best-practices/.

[S24] Rabbah, R., Mitchell, N. M., Fink, S., and Tardieu,
O. L.(2019). Serverless composition of functions
into ap-plications. US Patent App. 15/725,756

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

192


