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Abstract: The bike-sharing systems have been attracting increase research attention due to their great potential in 
developing smart and green cities. On the other hand, the mathematical aspects of their design and operation 
generate a lot of interesting challenges for researchers in the field of modeling, optimization and data 
mining. The mathematical apparatus that can be used to study bike sharing systems is not limited only to 
optimization methods, space-time analysis or predictive analytics. In this paper, we use temporal network 
methodology to identify stable trends and patterns in the operation of the bike sharing system using one of 
the largest bike-sharing framework CitiBike NYC as an example. 

1 INTRODUCTION 

The bike-sharing systems have been attracting 
increase research attention due to their great 
potential in developing smart and green cities. On 
the other hand, the mathematical aspects of their 
design and operation generate a lot of interesting 
challenges for researchers in the field of modeling, 
optimization and data mining. In this paper, we use 
temporal network methodology to analyze the 
workload of a bike-sharing system over time. To this 
end, we present a bike-sharing system as a temporal 
network, considering stations as nodes, and trips 
between stations as edges. We use only two 
characteristics of temporal networks - centrality by 
degree and centrality by betweenness. We calculate 
each of these characteristics at two levels - at the 
level of individual stations and at the level of 
clusters, and then use them to reveal workload 
patterns both for stations and clusters of stations. 

We use two simple but powerful tools for 
revealing patterns, these are heat maps and trends. 
Heat maps are used to visualize the average 
centralization of station clusters over certain time 
span (over hours and over weekdays). They collapse 

cluster centralization measurements for one hour of 
a certain day of the week into one value and decode 
it into a color cell. In order to make heat map more 
contrast and effective, we propose an unusual way of 
collapsing data, in which only the highest cluster 
centralization values are taken into account. In 
addition, we use the time series tools in order to 
determine whether there is a steady trend in 
changing the centralization values of stations in the 
cluster. We try to answer the question “Do the trends 
of different clusters differ from each other?”. 

The structure of this paper is as follows: Section 
II outlines the background of the bike-sharing 
systems. Section III describes methodology of 
estimating temporal network centralities. Section IV 
describes the data and experiment results. In Section 
V, we summarize our present work and propose the 
potential directions in the future work. 
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2 BACKGROUND 

2.1 Bike-sharing Systems and Main 
Issues Related to Their Design and 
Use  

Bike-sharing system is a system that allows people 
to rent a bike at one of the automated stations, go for 
a ride and return the bike to any other station 
installed in the same city. As noted in (Shaheen S.A. 
et.al., 2010), all bike-sharing systems work on the 
basis of a simple principle: people use bikes as 
frequently as circumstances dictate, without the 
expenditures and responsibilities that they would 
have borne if they owned these bikes. The evolution 
of bike-sharing systems has already spanned four 
generations, the systems of the last – fourth – 
generation present the advanced digital frameworks 
equipped with smart sensors that completely track 
all user actions in the system (Lozano A et.al., 
2018). However, in the design and operation of these 
systems there are still certain challenges that can be 
conditionally divided into three large classes 
discussed below (Shaheen S.A. et.al., 2010). 

The problems of the first class are related to the 
design and redesign of bike-sharing networks. 
Design of bike-sharing networks, including planning 
the layout of stations, determining their number and 
capacity, is a complex process that must take into 
account many factors, from topographic features of 
the city, forecasting user demand and ending with 
the principles of social justice (Lozano A et.al., 
2018). These issues have to be addressed not only 
during the initial design of the network, but also 
during its operation, when it is necessary to make 
improvements to existing layout schemes. 

The problems of the second class are related to 
incentivizing users of bike-sharing systems. 
Stimulating users is a necessary part of the bike 
rental service in conditions of busy stations (for 
example, when there are no bikes or free docks at 
the stations, while the user wants to take the bike or 
return it) (Raviv T. et.al., 2013). User incentives, as 
a rule, are based on a flexible pricing policy, 
depending on the current situation (time of day, 
weather or seasonal events, calendar events). The 
solution to these issues is based not only on the data 
generated by the bike-sharing system itself, but also 
on data received from external services, for example, 
weather data, traffic jams, repairs carried out on the 
city streets, etc. 

The problems of the third class are related to the 
rebalancing of bike-sharing stations (reallocations of 
bikes between stations). These problems are caused 

by so-called commuting patterns as, for example, 
regular trips of citizens to work, as a result of which 
there are not enough bikes in the morning in the 
residential areas of the city, and not enough in the 
evening in the business areas of the city 
(Oppermann M. et.al., 2018; Zhou X., 2015; 
Papazek P. et.al., 2014). The reallocation of bikes 
among the stations should, on the one hand, match 
the predicted needs of the stations, and on the other 
hand, minimize the cost of managing the bike park, 
including the cost of transporting bikes (Raviv T. 
et.al., 2013). 
In the next section, we will consider analytical, 
predictive, and optimization models and methods 
aimed at solving the listed three classes of problems. 
Despite of the fact that bike-sharing services have 
been deployed in hundreds of cities around the 
world for a long time, nevertheless, the development 
of such models and methods remains relevant. 

2.2 Analysis, Prediction and 
Optimization Models to Address 
the Main Issues of Bike-sharing 
Systems 

Models for designing and redesigning bike-sharing 
networks are offered in (Frade I. & Ribeiro A., 
2015; Yuan M. et.al., 2019; Kloimüllner C. et.al., 
2017; Park C. et.al., 2017; Wang J. et.al., 2016; 
Celebi D. et.al., 2018). The authors of (Frade I. & 
Ribeiro A., 2015) offer an optimization model that 
ensures maximum satisfaction of user demand with 
taking into account restrictions in the cost and 
maintenance of the system. The model is a target 
function where the input variables of which are 
demand, maximum and minimum throughput of 
stations, cost of bikes, operating costs and budget. 
The output of the model– the number of stations and 
bikes in each zone of the city, the throughput of the 
stations, the number of bikes movements, annual 
income and expenses. The model does not indicate 
the specific location of the stations, but determines 
their number in each zone. The authors of (Yuan M. 
et.al., 2019) argue that the disadvantage of the above 
model is the representation of demand as a fixed 
value. So they offer another model of mixed integer 
linear programming in which demand is a stochastic 
variable. Their model gives not only the number of 
stations at the output, but also their locations, based 
on the concept of subjective distance. The authors of 
(Kloimüllner C. et.al., 2017) also use mixed integer 
linear programming, but instead of separate stations 
consider enlarged geographical cells into which the 
city is divided. The authors of (Park C. et.al., 2017) 
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solve the problem of optimal station placement in 
two ways: using the p-median search algorithm and 
the maximal covering location model. The designed 
stations are dispersed throughout the region in the 
first case (spatial equality is achieved), and they are 
concentrated in the center in the second case (the 
maximum of satisfied demand is reached). The 
authors conclude that the city authorities can 
independently choose which option is preferable for 
them. The authors of (Wang J. et.al., 2016) use 
spatial-temporal analysis to search for stations that 
do not march demand and then identify the most 
disadvantaged areas. They use retail location theory 
to design stations in these areas. The authors of 
(Celebi D. et.al., 2018) solve the problem of 
determining the optimal capacities of stations using 
the Markov decision process. 

Models of incentivizing users and redistribution 
of user flows are considered in (Singla A. et. al., 
2015; Pan L. et. al., 2019; Yang Y. et. al., 2019; 
Angelopoulos A. et. al., 2016). The authors of 
(Singla A. et. al., 2015) offer an incentive scheme 
that encourages users to change their behavior using 
micropayments. The system offers to a user an 
alternative nearby and a better price when he or she 
wants to use an overloaded station. Deep learning is 
used in the incentive scheme, on the basis of which 
the optimal price offered to users is determined. The 
authors of (Pan L. et. al., 2019) model this problem 
as a Markov decision process taking into account 
both spatial and temporal characteristics. The 
authors propose a new deep learning algorithm 
named Hierarchical Reinforcement Pricing to 
determine the optimal price. In (Yang Y. et. al., 
2019), spatial statistics and graph-based approaches 
use to quantify changes in travel behaviours and 
generates previously unobtainable insights about 
urban flow structures. The authors of (Angelopoulos 
A. et. al., 2016) offer model of incentivizing users 
based on the priorities of moving vehicles from 
station to station, taking into account fluctuating 
demand and the time-dependent number of free 
docks at stations.  

Models of rebalancing stations (redistribution of 
bikes between stations) are considered in (Alvarez-
Valdes R., et. al., 2015; Liu J. et. al., 2016; Xu F. et. 
al., 2019; Zheng Z. et. al., 2018). The authors of 
(Alvarez-Valdes R., et. al., 2015; Liu J. et. al., 2016) 
propose a two-stage procedure consisting of 
predictive and optimization parts to solve the 
rebalancing problem. In work (Alvarez-Valdes R., 
et. al., 2015), the offered procedure at the first stage 
predicts the unsatisfied demand for free docks and 
bikes of each station in a given period of time in the 

future by changing the possible number of bikes at 
the beginning of the simulated period. At the second 
stage the procedure develops the most suitable 
routes for moving free bikes by combining the 
forecasts obtained with the current state of the 
system. In (Liu J. et. al., 2016), the procedure uses 
mixed integer non-linear programming to search for 
bike transportation routes at the second stage by 
minimizing the total covered distance. The authors 
of (Xu F. et. al., 2019) also solve the problem of 
redistributing bikes in two stages. At the first stage, 
they perform a cluster analysis of stations using an 
Affinity propagation algorithm with Adaptive 
Constrains that determines where the bike loader is 
responsible for which stations. The algorithm takes 
into account a complex landscape, obstacles in the 
form of hills and rivers, and groups the stations into 
clusters based on the concept of real distances. At 
the second stage, simulated annealing with power 
limitation is used to solve the routing problem of 
vehicles with a limited capacity. The authors of 
(Zheng Z. et. al., 2018) clustered neighboring 
stations with similar patterns of use and simulate the 
influence of weather conditions on the number of 
users. They use multivariate regression analysis to 
predict the number of bikes in each cluster over a 
period of time.  

2.3 Open Data of Bike-sharing Systems 

Not all existing bike-sharing systems provide their 
accumulated data in the public domain. At the same 
time such data, if it is open, quickly acquire 
independent value as a resource that allows 
researchers to hone their skills using the methods of 
intellectual analysis and forecasting, and developers 
and engineers to conduct experiments when 
developing new, more advanced models of the 
functioning of bike rental systems. One of these 
valuable resources is the open source CitiBike NYC 
bike-sharing system. 

The CitiBike NYC bike-sharing system in New 
York opened in May 2013 and initially included 
6,000 bikes and 332 stations (Kaufman S.M. et. al., 
2015). As of January 2020, the number of bikes has 
increased to 13,000, and the number of stations to 
850. Information on the use of this system is 
published on the Amazon cloud server 
(https://www.citibikenyc.com/system-data). 
Understanding that open data is an additional 
incentive to popularize bike rental in New York and, 
in general, to develop the tourism industry, the 
system developers monthly generate reports on the 
use of their bikes. 
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Each report is a data set consisting of 15 fields: 
 tripduration – trip duration (in seconds); 
 starttime – start of the trip (start date and time 

accurate to milliseconds); 
 stoptime – end of trip (date and time of the 

finish accurate to milliseconds); 
 start station id & start station name – code and 

name of the station where the bike started 
from; 

 start station latitude & start station longitude – 
geographic coordinates of the station where 
the bike started from; 

 end station id & end station name – code and 
name of the station where the bike was 
finished; 

 end station latitude & end station longitude – 
geographical coordinates of the station where 
the bike finished; 

 bikeid – bike code;  
 usertype – user type (client - 24-hour or 3-day 

user; subscriber - user with a subscription for 
a year); 

 birth year – user year of birth; 
 gender – user gender (0 – unknown; 1 – man; 

2 – woman).  
You can get answers to various questions by 

analyzing these data: “Where can I ride CitiBike 
bikes? What routes are most often used? What are 
the travel times? Which stations are the most 
popular? What days of the week do most trips take 
place? What type of users prevail in the morning, 
afternoon or evening? ” As noted above, thanks to 
this, the CitiBike system concentrates not only users, 
but also developers, engineers, researchers, who can 
not only analyze and visualize the available 
information, but also carry out forecasting and carry 
out experiments to test new methods and models 
aimed at optimizing the system. 

3 METHODOLOGY 

3.1 Temporal Measures of Centrality 
for Bike-sharing Stations 

In this paper, we use temporal network tools to 
dynamically measure the importance of nodes 
(stations) of a bike-sharing network. By dynamic 
measures we mean time-distributed estimates of the 
centrality. We are considering two options for 
estimating centrality: by degree and by betweenness. 
Firstly we define these options for calculating the 
centrality of nodes of a static network, and then 

extend them to the case of a dynamic one, i.e. 
temporal network. 

The degree centrality is the simplest indicator for 
assessing the "importance" of a node in a static 
network. It is enough to know the degree of the node 
to calculate it, i.e. the number of its direct 
connections with neighboring nodes (the number of 
single transitions from a given node to neighboring 
nodes): 

C୧
ୈ ൌ degሺiሻ (1)

where ݅ - the node for which centrality is calculated, 
and degሺiሻ  - its degree. This measure is 
recommended for searching for strongly connected 
nodes. For example, in social networks, the degree 
of centrality is used to search for the most sociable 
people, i.e. people who have the most friends 
(contacts). 

Betweenness centrality - more complex 
indicator, which, as noted in (Nicosia V. et. al., 
2013), plays a key role in many real-world 
applications. To calculate it, we need to know the 
number of shortest paths in the network that pass 
through this node. Firstly, all shortest path in the 
network are identified and then for each node it is 
calculated how many times it has appeared on the 
shortest paths:  

௜ܥ
஻ ൌ ∑ ∑

ఙೕೖሺ௜ሻ

ఙೕೖ
௞∈௏
௞ஷ௝

௝∈௏ , (2)

where ߪ௝௞ - the number of shortest paths from node ݆ 
to node ݇, and ߪ௝௞ሺ݅ሻ -  the number of shortest paths 
that pass through node ݅ . Summation is over all 
nodes. It is recommended that this measure be used 
to search for nodes that are “bridges” or connecting 
links between other network nodes, thereby speeding 
up the flows within the network. For example, 
betweenness centrality is used in social networks to 
search for people who are intermediaries between 
separate unrelated communities, thanks to it the 
information from one community is transferred to 
another, where it is already spreading lightning fast. 

A simple way to extend the concept of 
centralities to the case of a temporal network is to 
calculate them at each time interval (Li Y. et. al., 
2015). Then formulas (1) and (2) will remain 
unchanged, only the method for determining direct 
links and shortest paths will change. They will be 
calculated on the basis of only those links that exist 
in the temporal network in a specified period of 
time. 

Above we gave interpretations of centralities for 
the case of social networks. Obviously, in relation to 
a bike-sharing network, the temporal degree 
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centrality indicates how many bikes have arrived at 
a given station and how many have traveled over a 
specified time period. In other words, it determines 
the time-distributed intensity of the incoming and 
outgoing bike flows at this station. At the same time, 
the temporal betweenness centrality indicates how 
intensively this station participated in the turnover of 
bikes between stations in a given period of time. In 
other words, it determines the time-distributed 
intensity of the exchange of bikes between stations, 
produced through this station. 

3.2 Temporal Measures of Centrality 
for Clusters of Bike-sharing 
Stations 

There are a large number of works in which the 
analysis or prediction of bike-sharing network traffic 
is preceded by the clustering of stations (Feng S. et. 
al., 2018; Dai P. et. al., 2018; Caggiani L. et. al., 
2016; Jia W. et. al., 2018; Freeman L. 1978). The 
need for clustering is explained by the fact that 
under the influence of a large number of complex 
factors, the traffic of one particular station looks too 
chaotic to make any conclusions or predictions 
based on it, it also seems impossible to find any 
periodicity or regularity in the departure or arrival of 
bikes (Feng S. et. al., 2018). As most researchers 
note (Feng S. et. al., 2018; Dai P. et. al., 2018; 
Caggiani L. et. al., 2016), after grouping individual 
stations into a cluster, the frequency and regularity 
of traffic become much more obvious than in the 
case of individual stations, and, therefore, more 
predictable. The nature of the movement of bikes 
between individual clusters also acquires robustness. 

Thus, the grouping stations into clusters will 
provide a smoother and less chaotic picture of 
traffic, but for this it is necessary to move from 
many separate estimates of the centrality of stations 
to one general estimate of the centrality of the 
cluster. For this purpose, the Freeman centralization 
measure is often used (Borgatti S.P. & Everett M.G., 
2005). It reflects the degree to which a network 
(cluster) consists of a single node with high 
centralization surrounded by peripheral nodes 
(Borgatti S.P. & Everett M.G., 2005). This measure 
is the sum of the differences between the centrality 
of the central node of the network (cluster) and the 
centralities of all other nodes, divided by the 
maximum possible difference that can exist in the 
network (cluster) with this set of nodes:  

ܨ ൌ
∑ ሺܿ∗ െ ܿ௜ሻ௜∈௏

ݔܽ݉ ∑ ሺܿ∗ െ ܿ௜ሻ௜∈௏
 (3)

where ܿ∗ – the centrality of the most central node in 
the network (cluster), and ܿ௜  – the centrality of the 
next node ݅ in the network (cluster).  

It should be noted that not all clustering 
algorithms are applicable for clustering bike stations. 
For example, the K-means algorithm, which 
combines stations into clusters based on the 
compactness of their location, does not take into 
account the terrain. Meanwhile, very often the real 
distance between two stations is determined not by a 
straight line, but bypassing some obstacles, for 
example, a river, a hill or railway tracks (Dai P. et. 
al., 2018). Accordingly, the two stations are close to 
each other in the sense of compactness of their 
location on the map, are actually very far from each 
other, if we take into account the route between them. 
It is recommended to use spectral clustering 
algorithms instead of the K-means algorithm to 
eliminate such shortcomings, as well as use not only 
the geographical coordinates of stations for 
clustering, but also take into account traffic between 
stations. 

4 EXPERIMENTS 

4.1 Data  

An experimental dataset has been selected from 
CitiBike NYC system for one month (April 2019). It 
consists of 1 766 094 records, describing bike trips 
between 791 stations.  K-means algorithm has been 
applied to cluster these stations by their coordinates. 
Despite the observation in Section 3.2.2 that k-means 
is not appropriate for clustering urban objects,  we 
use it for the sake of simplicity, i.e. just to split 
dataset into 6 more smaller fragments (see fig.1). 

 

Figure 1: Clustering stations by their location (latitude and 
longitude). 

After running k-means, each cluster is 
represented as a temporal network with stations as 
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nodes and trips between stations as edges. Within 
the each cluster, temporal centrality values for each 
station are calculated according to formulas (1-2). 
Therefore, our final data to analyze consists of 791 
pairs of matrices, one pair per station. All matrices 
have the same dimension – 480 rows (by the number 
of 3-minute intervals in a day) and 30 columns (by 
the number of days in a month) in order to store 
temporal measures of the centrality for stations. For 
example, figs. 2-3 show betweenness centrality 
measures for two stations in Cluster 2, that have the 
highest daily totals. Measures are performed during 
the morning hours on Sunday and Monday (we do 
not present here more plots for reasons of space 
saving).  

 

Figure 2: Selected data from Cluster 2 (Sunday). 

 

Figure 3: Selected data from Cluster 2 (Monday). 

4.2 Cluster Centralizations 

Once temporal measures of centrality have been 
calculated on the individual station level, they can be 
aggregated on the cluster level to find clusters 
centralizations in accordance with formula (3). 
Thereafter, we can select the highest centralization 
values for each cluster and use them to visualize 
cluster load. For example, the heat maps in figs. 4-8 
represent the averaged values of the top 100 highest 
cluster centralizations by weekdays and hours. As it 
shown from the figures, all heatmaps display white 
spots in the lower left corner that means the intensity 
of bike sharing on Saturday and Sunday mornings is 

low for any cluster. Heat map of cluster 1 contains 
much less white spots than heat maps of other 
clusters, it means that the load on cluster 1 is more 
uniform. Nonetheless, the heaviest load on cluster 1 
falls on morning and evening hours from Monday to 
Wednesday, which indicates a high turnover of bikes 
among stations of the cluster in these periods.  

 

Figure 4: Heat map of intensity of betweenness 
centralization for Cluster no. 1. 

 

Figure 5: Heat map of intensity of betweenness 
centralization for Cluster no. 2. 

 

Figure 6: Heat map of intensity of betweenness 
centralization for Cluster no. 3. 

4.3 Cluster Trends  

The obtained temporal values of the centralities of 
the stations can be represented as time series, the 
comparison of which may be useful in terms of 
highlighting the trend. To this end, in each cluster, 
we took the top 10 stations with the highest average 
temporal centrality and built monthly trends for each 
of them. It turned out that the monthly trends of the 
top 10 stations of all clusters, except the first, retain 
their stable pattern inside the cluster, while the 
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trends of the stations of the first cluster do not have a 
stable pattern. The graphs below show the trends of 
the top-4 stations in cluster 6 and cluster 5. The 
difference in trends is visible to the naked eye, while 
the trends of cluster 6 sharply decrease after April 
17th and then have a peak around April 22th, then 
all the trends of cluster 3 after the same decline have 
a low peak around April 25th. 

 

 

Figure 7: Trends for stations of rank 1 in Clusters no. 3 
and 5. 

 
Figure 8: Trends for stations of rank 2 in Clusters no. 3 
and 5. 

 

Figure 9: Trends for stations of rank 3 in Clusters no. 3 
and 5. 

5 CONCLUSION AND FUTURE 
WORK 

Despite the fact that in this work we used the small 
dataset limited only one month, and cluster the data 
in a very simple manner, we believe that the goal of 
our work has been achieved. We have proved the 
applicability of the tool of temporal centralities to 
the identification of patterns and trends in the 
operation of the bike sharing system. Therefore, our 
future work will consist in expanding data sets, in 
improving clustering methods, as well as in a 
detailed comparison of centrality measures. 
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