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Abstract: Power law scaling is a well-defined physical concept in complexity science that has been used to quantified 
the dynamic signals across temporal scales. In this research, we aim to investigate the power law scaling of 
resting-state fMRI signal in schizophrenic and healthy brain and to examine the potential structural properties 
that may correlate to the altered functional complexity. Brain imaging data of 200 schizophrenia patients and 
200 age and sex-matched healthy Han Chinese was retrieved from Taiwan Aging and Mental Illness cohort. 
Power law scaling was extracted by Pwelch function. In schizophrenia, six brain regions with abnormal 
complexity were correlated to the regional structural network of grey matter volume (hub at right superior 
frontal gyrus) and white matter volume at right superior cerebellar peduncle and splenium of the corpus 
callosum. Moreover, the identified power law scaling was correlated with clinical symptom severity.  Our 
findings suggest that a loss of scale-free brain signal dynamics affecting by brain morphometries proposed 
the reduced complex brain activity as one of the neurobiological mechanisms in schizophrenia. This research 
supports “the loss of brain complexity hypothesis” and “the dysconnectivity hypothesis of schizophrenia.”, 
laying potential impact in psychiatry.

1 INTRODUCTION 

The increasing amount of neuroimaging data has been 
established in recent years to understand the complex 
brain functions in mental disorders. To quantify the 
complex brain signal data, an approach that integrates 
mathematics, physics, and computational 
neuroscience is required. Studies have applied 
methods adopted from complexity science to more 
fully understand complex brain activity, as measured 
by resting-state functional Magnetic Resonance 
Imaging (fMRI). Nonlinear dynamical approaches to 
quantify the complexity of brain signal data may have 
the potential to develop brain-based imaging markers 
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to extract fundamental features from spatial-temporal 
neuroimaging data at multiple levels. 

Schizophrenia is a chronic and severe mental 
disorder that affects how a person thinks, feels, and 
behaves. The prevalence is nearly 1% worldwide and 
there have been more than 23 million people 
worldwide diagnosed with schizophrenia up to 2019. 
Base on the Diagnostic and Statistical Manual of 
Mental Disorders, schizophrenia patients would 
exhibit positive symptoms and negative symptoms 
such as hallucinations and delusions, disorganized 
speech and catatonic behavior, and negative 
symptoms such as the decrease in emotional range, 
alogia or apathy.   
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The cause of such complex illness may be 
associated with genetic or environmental factors,  
however, the underlying mechanism remains unclear. 
Previous studies have developed models and 
modalities to tackle the challenge. Dr. Yang and Tsai 
(2013) raised the “loss of brain complexity hypothesis” 
based on empirical evidence (Hager et al., 2017) and 
clinical observation. The brain activity in healthy 
state performs multiscale variability, whereas the 
pathological brain could be associated with the 
breakdown of brain signal dynamics into regular or 
random patterns. These two types of complexity 
change were associated differently with 
psychopathology. The study using multiscale entropy 
analysis on the blood-oxygen-level-dependent 
(BOLD) signal from resting-state fMRI images of 
schizophrenia, Yang et al. (2015) have shown the 
evidence that the regular type of BOLD complexity 
change was associated with positive symptoms of 
schizophrenia, whereas the randomness type of 
BOLD complexity was associated with negative 
symptoms of the illness. the pathologic change of 
resting-state dynamics in schizophrenia contributes to 
the differences of symptoms in clinics. 

The purpose of this research is to investigate a 
well-validated nonlinear phenomenon – power law 
distribution – in brain activity in schizophrenic brain. 
Power law is a ubiquitous principle in physics that 
describe the complex nature of a given system at 
multiple time scales, thus is implicated in modelling 
neuronal activity that is known to have complex 
behaviors. We hypothesized that the spontaneous 
brain activity in schizophrenia may exhibit loss of 
power-law characteristics compared to those 
observed in healthy volunteers. Based on structural 
MRI images, grey matter and white matter volume 
would be quantified to screen the possible 
relationships between structural properties and power 
law scaling for schizophrenic and healthy 
participants. The brain regional structural features 
may be associated with the abnormal functional 
complexity in schizophrenia. 

2 POWER LAW SCALING OF 
THE BRAIN ACTIVITY 

Power law is a distribution that indicates the 
relationship between two variables, where one varies 
as a power of the other (Figure 1). The scaling 
represents the frequency domain of nonlinear 
characteristic in a dynamic system. It is a universal 
phenomenon that can be observed in both social and 

natural contexts. For example, it is also known as 1/f 
signal (pink noise) in signal processing, Pareto 
Principle (80:20 rule) in economics (Pareto, 1897) 
and Zipf’s Law in linguistics (Newman, 2005). In 
topology, signals from the system that exhibits power 
law behavior would organize a scale-free or small-
world network (L. A. Amaral, Scala, Barthelemy, & 
Stanley, 2000; Bassett & Bullmore, 2017).  

 

Figure 1: The typical power law distribution. 

Power-law distribution as a ubiquitous principle in 
physics that describes the complex nature of a given 
system across time scales. Using power law to extract 
the fundamental features from spatial-temporal 
neuroimaging data may holds great potential to 
evaluate the dynamic human nervous system.  

2.1 Functional Complexity in Nervous 
System 

Power-law scaling has been observed in Nervous 
systems across species. In 2000, an investigation on 
structural neural networks of all 302 neurons on 
Caenorhabditis elegans (C. elegans) worm identified 
a power-law distribution of aging speeds in a whole 
nervous system (S. L. Amaral, Zorn, & Michelini, 
2000). The neural networks have elucidated the 
nonlinear dynamical complexity in neuronal signal 
over a range of scales. Bystritsky, Nierenberg, 
Feusner, and Rabinovich (2012) presented the result 
in logarithm with the number of links at x-axis and 
cumulative distribution at y-axis. The slope (the 
power law distribution) in of fast aging neurons is the 
furthest to negative one in compare with the younger 
neurons, which shows the slope approximate to 
negative one.  

Despite of the nature of C. elegans is relatively 
small to human nervous system, power law remains 
relevant to Homo sapiens. In human brain, the power-
law phenomenon was also observed across different 
levels of the human brain, such as neuronal firing rate 
(Buzsaki & Mizuseki, 2014), efficacy of synaptic 
transmission (Mizuseki & Buzsaki, 2014), channel 
density (Bullmore & Sporns, 2012), or neural circuit-
level networks (Marković & Gros, 2014). Eguiluz, 
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Chialvo, Cecchi, Baliki, and Apkarian (2005) studied 
the brain connectivity of fMRI data across different 
mental tasks. The result of average scaling taken from 
22 networks in log-log plot shows a negative slope. 
Piekniewski (2007) adopted a similar methodology, 
studying the dynamic of neuronal spikes by different 
neuronal size groups. The result also shows similar 
distribution: the pattern resembles a negative slope in 
log-log figure with a base of 10.  

The findings of power law behavior across 
various physiological log scale parameters provides 
an evidence on the existence of core phenomenon of 
Homo sapiens sharing properties. Transforming the 
information into logarithm scaling allows multi-level 
data to be operated by compressing large input range 
into a smaller manageable output. 

Power law’s negative slope of brain-network 
activity can be explained by two possible 
mechanisms. First is the underlying population 
spiking statistics (Voytek & Knight, 2015). Brain 
signals in logarithm with two ends of continuous 
distribution extending several orders of magnitude 
indicates that a large number of neurons spike 
simultaneously with a small groups of aberrant 
neurons spiking at different time points. In this way, 
the aggregate local field potential (LFP) would make 
the slope negative. In contrast, the units within the 
population spike relatively asynchronously would 
lead to a flatter slope (Podvalny et al., 2015; Voytek 
& Knight, 2015). The second underlying mechanism 
is the decoupling of population spiking activity from 
the ongoing low-frequency oscillatory neural field, 
which results in neural noise increasing (Tort, 
Komorowski, Manns, Kopell, & Eichenbaum, 2009; 
Voytek & Knight, 2015). Features of cortical circuits, 
such as redundancy and degeneracy, recurrent 
excitatory loops coupled with feedback and 
feedforward inhibition, create substrates for wide-
dynamic range, log-linear computation.  

Quantifying the power law scaling of neuronal 
signals allows the researchers to explain and evaluate 
the nonlinear dynamic system in the frequency 
domain, for which its change in complexity can be 
quantified rigorously via spectral analysis of resting-
state fMRI signal in this research.  

2.2 Bold fMRI Signal 

Base on the physiological mechanism, neurovascular 
coupling, the fMRI technique is established base on 
the mechanism that the activated neuron consumes 
more oxygen to satisfied the energy need. The 
haemoglobin which carries the oxygen is 
paramagnetic due to the presence of oxygen ion. MR 

signal creating the BOLD contrast effect based on 
such paramagnetic state, with the contrast of 
oxyhemoglobin and de-oxyhemoglobin to generate 
the MR signal. The resting-state fMRI image is 
conducted base on the BOLD response in the absence 
of specific task. This research use complexity 
analysis with the resting-state BOLD signal acquired 
by MRI.  

2.3 Quantifying Power Law Scaling 

To extract the power law scaling of BOLD signals in 
each voxel, we first applied the Fourier Transform to 
the resting-state fMRI signal for each voxel to convert 
the time domain data into the frequency domain of the 
power spectrum (bin = 0.002 Hz), in order to quantify 
power-law scaling of the resting-state fMRI signal. 
Second, the data was visualized in a logarithm plot 
with the base equal to 10 on both axes to quantify the 
power spectrum across scales. Third, linear 
regression was deployed to derive a slope estimate, 
which was the scaling property of the given resting-
state fMRI signal.  

Figure 2 shows an example of a 30 years old 
healthy male’s resting-state fMRI image. The 4D 
BOLD time series data of a voxel at (24, 14, 36 of 
MNI coordinate) left precuneus is acquired (A). A 3D 
power spectrum density was acquired after applying 
fast Fourier transform on the result of A (B). After 
transforming the signal distribution to logarithm, we 
use linear regression to acquire the slope of power 
spectrum density distribution, which is power law 
scaling.  

The slope of the frequency scaling approaching 
minus one would provide evidence for the power law 
behavior of the given resting-state fMRI signal. 
Therefore, such scaling analysis will be helpful for 
quantifying the complex dynamics of spontaneous 
brain activity in order to determine the state of brain 
activity at the complex state of 1/f power law scaling 
behavior (Figure 3; left panel), reduced complexity as 
the slope of scaling becomes less steep (middle 
panel), and the brain signal to be an uncorrelated 
noise as the slope of scaling becomes flat (right 
panel). 

In this research, the power law scaling is 
calculated voxel-wise for both schizophrenic patients 
and healthy participants. 
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Figure 2: Quantifying power law scaling of brain BOLD 
signal in a voxel from real data. 

3 METHODS 

3.1 Study Cohort 

Functional brain imaging data of 200 age and sex 
matched schizophrenic patients (age mean = 43.56 ± 
12.64; male = 49.5%) and 200 healthy subjects (age 
mean = 43.56±13.41; male = 49.5%), who were right-
handed Han Chinese, were retrieved from Taiwan  

 

Figure 3: Power law scaling in different states. 

Aging and Mental Illness (TAMI) cohort. Diagnosis 
of schizophrenia was screened and confirmed by two 
psychiatrists based on criteria given in the Diagnostic 
and Statistical Manual of Mental Disorders (DSM–
IV-TR). The schizophrenia patients have the average 
onset of 28 years old and average duration of onset 
being 15 years, and their score of Mini-Mental State 
Examination (MMSE) and the Positive and Negative 
Syndrome Scale (PANSS) is acquired. 

Written informed consent was obtained from all 
participants before the scanning sessions following 
the protocol for TAMI cohort approved by the review 
board at Taipei Veterans General Hospital, Taipei, 
Taiwan. All personal information and imaging data 
are de-identified for the subsequent analyses. It is 
worth mentioning that the TAMI cohort has recruited 
more than 1000 subjects so far, including a large 
sample of patients with healthy aging and patients 
covering major mental illness. All imaging data were 
acquired by the same 3.0T MRI Siemens Tim Trio 
machine with constant protocol at National Yang-
Ming University. 

3.2 Brain Images 

3.2.1 Structure MRI and Resting-state fMRI 
Acquisition 

The fMRI scanning was performed at National Yang 
Ming University on a 3.0 T MRI scanner (Siemens 
Magnetom Tim Trio, Erlangen, Germany). Resting-
state scanning was scheduled in the morning, 
conducted in the darkened scanner room, and lasted 
approximately 10 minutes. The instruction requires 
the subject to relax with eyed open. The reminder was 
asked routinely by the technician during the scans to 
avoid the subject from falling asleep, otherwise, 
rescanning is acquired. 

The MRI scanner is equipped with a 12-channel 
head coil. Whole-brain resting-state BOLD 
functional MRI images were collected using a T2*-
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weighted gradient-echo-planar imaging (EPI) 
sequence with following imaging parameters: 
repetition time TR= 2500 ms, echo time = 27 ms, field 
of view =220×220 mm2, voxel size= 3.4×3.4×3.4 
mm3, flip angle =77°, matrix size =64×64. A total of 
200 EPI images were acquired along the AC–PC 
plane for each run. High-resolution structural MRI 
images were acquired with 3-D magnetization-
prepared rapid gradient echo sequence (TE= 3.5 ms, 
TI = 1100 ms, field of view= 256 ×256 mm2, voxel 
size = 1.0 × 1.0 × 1.0 mm3, flip angle= 7°, matrix size 
= 256×256). All structural MRI scans were visually 
reviewed by an experienced neuroradiologist to 
confirm that participants were free from any 
morphologic abnormality. 

3.2.2 Resting-state fMRI Data Preprocessing 

The functional and anatomical image preprocessing 
was performed by DPARSF and SPM12 under 
MATLAB9.2. The first 5 of 200 data points are 
routinely discarded to eliminate the time difference 
between actual neural activation and cerebral blood 
flow response. Functional images were realigned and 
coregistered to the subjects own anatomical images. 
Slice timing is adopted to correct the scanning time 
between slices. Segmentation is operated and all 
functional images are normalized to standard 
Montreal Neurological Institute (MNI) space. 
Nuisance effect is removed by constant and linear de-
trend in whole brain. BOLD signal of white matter 
and CSF are taken as covariate regressors. Derivative 
12 is adopted as head motion regression model. In 
addition to six rigid body head motion parameters, the 
first six eigenvectors of white matter signal and the 
first six eigenvectors from CSF were regressed out by 
linear regression for each voxel. The band pass 
filtering is set 0.01 to 0.1 Hz. Moreover, fast Fourier 
Transform (fFT) is operated to extract power law 
spectrum from each voxel of functional resting 
images with customized pwelch code in MATLAB. 
Finally, Gaussian smoothing with 8 mm full width at 
half maximum (FWHM) is applied to all functional 
data by SPM 12. The structural properties were 
quantified by T1 image. the Automated Anatomical 
Labeling (AAL) and International Consortium for 
Brain Mapping (ICBM) were used for the 
measurement of regional GMV and white matter 
volume. 

3.3 Software 

The resting-state fMRI images preprocessing was 
operated by DPARSF_V4.3_170105 (Data 

Processing Assistant for Resting-State fMRI; Yan) 
(Yan, Wang, Zuo, & Zang, 2016) and SPM12 
(Statistical Parametric Mapping, Department of 
Imaging Neuroscience, London, UK) under 
MATLAB 2017a (Version 9.2). Statistical analysis 
was conducted by SPM12 and MATLAB. Brain 
image results are reviewed presented by BrainNet 
Viewer (Version 1.53, Beijing Normal University, 
China) and MRIcron (Georgia Tech Center for 
Advanced Brain Imaging, the Georgia state, USA). 

3.4 Statistical Analysis 

T-test is applied to compare the relationship of brain 
structural parameters and signal complexity between 
interested groups. The significance of voxel-wise 
comparison p value is set <0.05 correction for 
multiple comparison by family-wise error (FEW) 
method. Pearson correlation is operated to access the 
relationship between power law scaling and grey and 
white matter volume. The structural network will be 
conducted by Pearson correlation with Bonferroni 
correction. In schizophrenia group, the correlation 
between abnormal power law scaling in identified key 
brain regions and the score of the PANSS was 
analysed. To control possible confounding, age and 
sex of all participants are covariates.  

3.5 Experimental Design 

In this research, we focus on validating power law 
phenomenon in dynamic human brain activity. The 
purpose of the first study is to fundamentally 
understand how power law spectrum of the resting-
state BOLD signal varies in different brain 
morphological tissues in schizophrenic and healthy 
participants. The association between abnormal 
power law scaling and the clinical severity measured 
by PANSS in schizophrenic patients is examined. The 
second study aims to understand how grey matter 
change (such as local or global volume decreased) 
would effect on power law of dynamic BOLD signal. 
In study 2, we firstly access the brain regions where 
both power law scaling and grey matter volume 
(GMV) show significance between groups. 
Following we use Pearson correlation with 
Bonferroni multiple-comparison correction to 
investigate the correlation between power law scaling 
and GMV in the identified brain region. In addition, 
we select the brain regions which show high GMV 
correlation to the identified regions to conduct the 
structural network. The third study aims to screen the 
possible association between white matter volume 
and power law scaling. Such study design will allow 
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us to integrate structural and functional results to 
identify basic principles of multi-scale neuronal 
dynamic and inter-individual variability in mental 
illness patients and healthy groups, uttering a 
comprehensive meaning from a broader view. 

4 RESULTS 

4.1 Power Law Change of rs-fMRI in 
Different Anatomical Regions 

The t-test was used to compare the power-law scaling 
between schizophrenic patients and healthy adults, 
with the extent threshold k = 35 voxels. Parametric 
images were assessed for cluster-wise significance 
using a cluster-defining threshold of FWE p < 0.05. 
The result visualization is shown in Figure 4, 
presenting the distribution of voxel-wise t-value 
across the brain. In Figure 4, red color indicates 
positive t value whereas blue color represents more 
negative t value. The swift of power-law scaling of 
resting-state fMRI signal indicates the state change in 
the brain system. The results reveal that 
schizophrenic patients, with the average onset of 28 
years old and average duration of illness being 15 
years, have significantly four more positive power-
law scaling and two more negative power-law scaling 
than healthy adults at anatomical clusters. 

 
Figure 4: The t-map visualization of different power law 
scaling observed in schizophrenic and healthy participants. 

The four more positive clusters included left 
precuneus (k = 17,555; peak coordinate (mm) = -18, 
-66, 18; t = 7.72), with sub-cluster at left middle 
occipital gyrus (peak coordinate (mm) = -21, -93,18 ; 
t = 6.97), left medial dorsal nucleus (k = 183; peak 
coordinate (mm) = -6,-15, 3; t =5.99), right inferior 
frontal gyrus (k = 160; peak coordinate (mm) = 42, 

21, 30; t = 4.26), and right middle temporal gyrus (k 
= 48; peak coordinate (mm) = 51, -39, -3; t = 3.93). 
All these four clusters have p (FWE-cor) < 0.001 at 
voxel level. The equivalent k = 37 of left Insula 
reached threshold of k = 35, however, at cluster level, 
the uncorrected p remained marginally significant. 
On the other hand, healthy adults demonstrated 
significantly higher power-law scaling than 
schizophrenic patients in two regions: right putamen 
(k = 60; peak coordinate (mm) = 18, 6, -3; t = -3.11) 
and left putamen (k = 44; peak coordinate (mm) = -
18, 9, 3; t = -3.11). 

Two anatomical clusters presenting more 
negative power-law scaling in schizophrenic patients 
are right putamen (k = 60; peak coordinate (mm) = 
18, 6, -3; t = -3.11) and left putamen (k = 44; peak 
coordinate (mm) = -18, 9, 3; t = -3.11). These two 
clusters have p (FRD-cor) < 0.001 at the voxel level.  

4.1.1 Correlation of Power Law Scaling and 
Clinical Severity in Schizophrenia 

The Pearson correlation between the abnormal 
power-law scaling and score of PANSS is calculated. 
Interestingly, significant correlations with p-value < 
0.05 were found in the key regions where the slope of 
power-law scaling was more positive in 
schizophrenic patients. The positive correlation was 
found between the power-law scaling slope in left 
precuneus and score of item G5 (mannerisms & 
posturing, r = 0.15, p = 0.04) and left thalamus and 
score of item N3 (passive/apathetic social 
withdrawal, r = 0.17, p = 0.02). Negative correlations 
were found between right middle frontal gyrus and 
score of item P4 (r = -0.15, p = 0.03) and right middle 
temporal gyrus and score of item P4 (excitement, r = 
-0.15, p = 0.03). 

Pearson’s correlation is used to evaluate the 
relationship between the dosage of antipsychotic 
drugs and power-law scaling of resting-state fMRI 
signals in the identified brain regions. The 
antipsychotic dosage was transformed into 
chlorpromazine (CPZ) equivalence dosage based on 
empirical studies (Danivas & Venkatasubramanian, 
2013; Gardner, Murphy, O'Donnell, Centorrino, & 
Baldessarini, 2010). There was no significant 
correlation between CPZ dosage and the power-law 
scaling in six brain regions. 

4.2 Grey Matter Structural Correlates 
of Power Law Scaling 

Healthy adult and schizophrenic patients have 
significant difference in total grey volume (t = 4.76; 
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p = 0.00) and MMSE score (t = 3.53; p = 0.00). The 
total grey volume is 634.96 cm3 (S.D. = 79.60) in 
healthy adult and 616.75 cm3 (S.D. = 69.66) in 
schizophrenic patients. The mean MMSE score is 
28.00 (S.D. = 4.72) and 26.43 (S.D. = 4.17) in healthy 
and schizophrenia participants, respectively.  

4.2.1 Candidate Brain Regions 
Identification 

Across all AAL regions, we identified the candidate 
brain regions where both groups showing 
significance in GMV and power law scaling. The 
results of t- test showed that schizophrenia patients 
and healthy participants have significant difference of 
power law scaling in 66 AAL regions and difference 
in GMV in 81 AAL regions with significant level less 
than .05. Sixty-one candidate brain regions were 
identified where both group showing significant 
difference in GMV and power law scaling based on 
AAL atlas. 

The relationship between GMV and power law 
scaling in the candidate brain regions was examined 
with Pearson correlation. With Bonferroni correction 
for multiple comparison (p < 0.00056), schizophrenic 
brain showed significant correlation between GMV 
and power law scaling in 32 AAL regions. On the 
other hand, healthy participants had significant 
correlation of GMV and power law scaling in two 
AAL regions, right superior frontal gyrus 
(dorsolateral part) and left inferior occipital gyrus. 
Moreover, the found significant correlation 
coefficient were negative for schizophrenia and 
positive for healthy brain. As a result, right superior 
frontal gyrus (AAL4) was the key region where 
power law scaling and GMV show significant 
correlation in both groups, where the correlation 
coefficient is -0.22 (p=0.000019) in schizophrenic 
brain and 0.17 (p =0.000213) for healthy brain. 

4.2.2 The Possible Structural Network 
Contributing to Abnormal Complexity 

With the dorsolateral part of right superior frontal 
gyrus (AAL4) as the hub, we then explored the 
possible structural network that may support the 
functional complexity change. The grey matter 
structural network is defined by the Pearson 
correlation of GMV in AAL brain regions. In table 3, 
the result shows the top 10 most correlated brain 
regions to AAL4 for healthy and schizophrenic brain. 
As the result, top 1 to top 5 identified satellite regions 
were the same for both groups with the same order. 
The GMV AAL4 is highly positively correlated to the 
GMV of AAL 3 (left dorsolateral part of superior 

frontal gyrus), AAL 6 (right orbital part of superior 
frontal gyrus), AAL 5 (left orbital part of super frontal 
gyrus) and AAL 20 (right supplementary motor area). 
The top five ranking correlated regions are organized 
a cluster at superior frontal gyrus in healthy and 
schizophrenic patients. The top 6 to 10 correlation 
ranking to AAL 4 regions are shared for both groups: 
AAL 10 (right orbital part of middle frontal gyrus), 
AAL 9 (left orbital part of middle frontal gyrus), AAL 
1 (left precentral gyrus), AAL 16 (right orbital part of 
inferior frontal gyrus) and AAL 19 (left 
supplementary motor area), organizing another 
cluster linking to the hub.  

The most different structural connections to 
AAL4 between schizophrenic and healthy brain is 
calculated. The connection difference was quantified 
by subtraction of each Pearson correlation coefficient 
between groups. The result shows in Figure 5. 
Schizophrenia and healthy brain shown most 
correlation difference (Difference > 0.1) to right 
superior-frontal gyrus at bilateral superior temporal 
gyrus, bilateral lenticular nucleus (pallidum) and 
bilateral thalamus.  

 

Figure 5: The Structure Network of Right Superior Frontal 
Gyrus (Blue for Healthy; Red for Schizophrenia). 
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4.3 White Matter Structural Correlates 
of Power Law Scaling 

Thirteen ICBM regions showing significant different 
white matter volume between schizophrenic and 
healthy brain were identified. Pearson correlation 
with multiple comparison correction was used. The 
results showed no significant correlation for healthy 
participants. For the schizophrenic patients, ICBM 13 
(right superior cerebellar peduncle) and ICBM 15 
(splenium of corpus callosum) showed the most 
negative correlation (r = -0.15 to -0.32; p < 0.038) at 
the brain regions where power law scaling shows 
significant difference between groups and that may 
correlate to GMV in schizophrenia. 

5 DISCUSSION 

The key findings in this study include (1) the 
difference in power law scaling behavior in different 
anatomical regions indicates that patients with 
schizophrenia are associated with the abnormal 
complexity of spontaneous brain activity in grey 
matter; (2) the identified brain regions with abnormal 
complexity found in schizophrenic patients are 
correlated to psychotic symptoms such as mannerism 
and posturing, excitement, and passive or apathetic 
social withdrawal; (3) The abnormal functional 
complexity in schizophrenia may be stemmed from 
the  structural network of GMV, with the hub at the 
dorsal lateral part of right superior frontal gyrus. 

The study findings indicate that spectral density 
of resting-state fMRI signals in healthy volunteers 
exhibit a higher power in lower frequency bands and 
lower power in higher frequency bands, compared to 
schizophrenic patients, and such scaling behavior is 
more close to 1/f characteristics in healthy volunteers 
than that observed in patients with schizophrenia. 
These findings suggest that schizophrenic patients 
may have a loss of 1/f power law scaling which 
indicates a possible loss of scale-free brain signal 
dynamics. Our findings may link to the underlying 
pathophysiology of schizophrenia. For example, the 
more negative power law scaling in putamen may 
indicate over-activity of dopaminergic neurons, 
which is associated with cognitive dysfunction in 
schizophrenia. 

From the perspective of complexity science, 
signals observed in a dysfunctional system may show 
random or regular behaviors. Change in power law 
scaling toward a flat slope indicates a loss of multi-
scale complexity, which is possibly associated with a 
lack of thinking or behavioral flexibility commonly 

observed in psychotic patients. Additionally, 
flattened power law scaling observed in 
schizophrenic patients may also indicate an increased 
noise of information flow in the neuronal systems, 
which may be associated with abnormal structural or 
functional connectivity. 

The findings provide the evidences supporting the 
disconnection hypothesis raised by Friston and Frith 
(1995). By analysis the data from schizophrenic 
patients, the functional complexity is effected by 
brain structures. The altered functional complexity, 
quantified by power law, representing the 
discontinuity in time-series. Such dysconnectivity is 
significantly correlated to grey matter and white 
matter structure. 

There are two limitations of this study. The use of 
linear model on power spectrum may overlook certain 
dynamics. Due to relatively short resting-state fMRI 
time series, the frequency resolution of power 
spectrum may be limited by the use of Fourier 
transform. In the future, longer scanning time or 
higher sampling rate at data acquiring may be 
considered to increase the spatial resolution. The 
results from white matter volume may be validated by 
the use of Diffusion Tensor Images.  

6 CONCLUSIONS 

The application of complexity science in 
neuroscience has overcome common concerns of 
typical statistic methods, and has presented insights 
complementary to traditional biological knowledge. 
The power law phenomenon is emerged based on the 
integration of various biological mechanisms across 
temporal and spatial levels, supporting the nonlinear 
behavior of neuronal activity in human central 
nervous system. Based on frequency domain, power 
law scaling plays a role to differentiate schizophrenia 
and healthy brain by analyzing resting-state brain 
imaging signal. The results of this study support “the 
loss of brain complexity hypothesis,” (Yang & Tsai, 
2013) and the “dysconnectivity hypothesis of 
schizophrenia” (Friston & Frith, 1995), suggest the 
reduced complex brain activity as one of 
neurobiological mechanisms in schizophrenia. Such 
abnormal functional brain complexity proposing the 
power law scaling as a ubiquitous principle of 
governing brain signal dynamics, which serves a 
great potential clinical impact in psychiatry. 
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