
Microservice Decompositon: A Case Study of a Large Industrial
Software Migration in the Automotive Industry

Heimo Stranner, Stefan Strobl, Mario Bernhart and Thomas Grechenig
Research Group for Industrial Software, Vienna University of Technology, Vienna, Austria

Keywords: Microservices, Decomposition Approach, Maintainability, Scalability, Bounded Contexts, Facades.

Abstract: In a microservice architecture a set of relatively small services is deployed, who communicate with each
other only over the network. Monoliths regularly suffer from poor scalability and maintainability. Several
approaches for decomposing them into microservices have been proposed with the aim to improve these char-
acteristics. However, precise descriptions of these approaches in combination with large scale industrial eval-
uations are still rare in academic literature. This case study focuses on a large ERP system in the automotive
industry. We applied an approach based on the concept of bounded contexts for one such decomposition and
documented necessary changes to the system, like the introduction of facades to facilitate incremental migra-
tion towards microservices in a non-distruptive manner. Further we conduct expert interviews to evaluate our
findings. While the migration is still ongoing, we were able to achieve significant adoption rates of the new
paradigm and a clear preference of architects and developers to use it. Development speed has also drastically
improved.

1 INTRODUCTION

Large monolithic software systems commonly have a
number of problems. Among the most prominent and
pressing ones are increasing difficulty in maintaining
and scaling them. Horizontal scaling of monoliths can
only be done in discrete steps for the whole applica-
tion and is not flexible. Relational databases shared
among all instances may become bottlenecks (Poko-
rny, 2013).

Recently microservices have rapidly gained pop-
ularity. They can be seen as a variant of Service-
oriented architecture (SOA) but others claim it is a
new architecture. Technically it can be described
as a more fine grained SOA (Zimmermann, 2017).
In a microservice architecture there is a high num-
ber of small services that each solves only one
task (Xiao et al., 2017). There is no universal con-
sensus how big such a task and the corresponding
microservice should be. Microservices communicate
over lightweight protocols without complicated logic,
commonly referred to as “dumb pipes” (Alpers et al.,
2015).

A good microservice architecture improves main-
tainability because one can more easily reason about a
single microservice in isolation (Dragoni et al., 2016).
Every single service can be scaled independently of

the other services. Highly scaleable data stores can
be used instead of relational databases. Another ben-
efit is reduced technology lock-in. Different microser-
vices only have to be able to communicate with each
other over the network, using mutually understood
protocols. In a monolith all parts of the system are
packaged in one executable and there is far less free-
dom in experimenting with different programming
languages or technologies. Using this freedom is not
without costs unfortunately. Employing a variety of
different tools requires greater know how and there is
a larger potential for running into problems with one
of them. Maintenance also can become more costly
as experts for all used technologies are required. An-
other disadvantage is that this architecture introduces
a distributed system which incurs additional complex-
ity compared to a monolith (Bakshi, 2017).

Creating a well suited software system for a given
task is not easy. Especially if the system is a dis-
tributed system in general or based on a microservice
architecture. The granularity of the services need to
be determined and the borders need to be defined. It
is sensible to draw borders where there are only few
and well defined interactions between modules in a
system. If there is no prior system or given company
structure that can be mimicked, it is challenging to
predict what borders will lead to the most maintain-

498
Stranner, H., Strobl, S., Bernhart, M. and Grechenig, T.
Microservice Decompositon: A Case Study of a Large Industrial Software Migration in the Automotive Industry.
DOI: 10.5220/0009564604980505
In Proceedings of the 15th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2020), pages 498-505
ISBN: 978-989-758-421-3
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



able, scalable or performant result (Hassan and Bah-
soon, 2016).

Conventional criteria for software modularization
proposed by academics like coupling and cohesion
can theoretically be applied to such microservice de-
compositions. However they generally do not satisfy
practitioners. In practice more diverse characteristics
of the software are relevant and not just such one-
dimensional considerations (Carvalho et al., 2019).

Many big corporations already have one or more
monoliths in use which suffer from various problems
such as poor maintainability and scalability (Hassel-
bring and Steinacker, 2017; Villamizar et al., 2015;
Supulniece et al., 2015). It can be desirable to re-
place them with a microservice architecture but doing
this in the most efficient way and achieving good re-
sults is far from trivial. Having access to a number
of well applicable approaches, that have been empir-
ically evaluated and help making the right decisions,
are essential.

2 RELATED WORK

Academics as well as practitioners in the software in-
dustry proposed a number of different approaches to
decompose monoliths (Balalaie et al., 2015; Newman,
2015). While there exist some academic evaluations
of decomposition approaches, they cover academic or
small industrial projects that are refactored into a mi-
croservice architecture (Šūpulniece et al., 2015). De-
composing large projects is complicated by having to
understand a big system in order to determine where
to draw borders between the newly split parts and the
refactoring effort to do so. Most academic approaches
which are focusing on a few formal criteria to decom-
pose monoliths are rarely used in practice. The avail-
able tooling support is not considered helpful by prac-
titioners (Carvalho et al., 2019).

Conway’s law is cited repeatedly in the context of
microservice decomposition. It states that organiza-
tions are bound to create system designs which re-
semble their communication structures (Alpers et al.,
2015; Dragoni et al., 2016).

A migration can cut along existing boundaries be-
tween domain entities. This follows the Bounded
Context (BC) pattern employed by Domain Driven
Design (DDD) (Balalaie et al., 2016; Balalaie et al.,
2015). The BCs should be incrementally decreased
in size. At the beginning the monolith constitutes one
BC and these are iteratively split up to match smaller
domain concerns (Balalaie et al., 2015). A BC should
have relatively few interdependencies with other BCs.

Microservice decomposition is a complex topic

and there are no universal approaches that lead to
good and efficient results for every project. There-
fore a repository of patterns that can be used and that
are proven to be useful under some circumstances is
proposed (Balalaie et al., 2018).

3 METHODOLOGY

The case described below gives us the chance to eval-
uate the approach of utilizing the concept of bounded
contexts to decompose a monolith into a series of mi-
croservices in the setting of a large industrial appli-
cation. We observed how changes to the system are
made and documented them. In order to evaluate the
effects of the decomposition on the day to day devel-
opment work we conducted expert interviews.

3.1 Research Objective

We describe the approach which is used for microser-
vice decomposition in detail in section 4.

We shall focus on the quality aspects of maintain-
ability and scalability because improving them is a
major motivation to decompose large industrial sys-
tems and was crucial in this case.

• RQ1: How is a large industrial monolith affected
by decomposing according to bounded contexts
and introducing facades?

– RQ1a: How is the maintainability affected?
– RQ1b: How is the scalability affected?

• RQ2: Are there other decomposition approaches
for large industrial monoliths that promise better
decomposition results?

3.2 Case Study Subject

We apply the approach for decomposing a monolith
into a microservice architecture to a large Enterprise
Resource Planning (ERP) system in the automotive
industry. The system is a Dealership management
system (DMS) handling both the sales process of cars
and the after sales and maintenance tasks commonly
performed by car retailers. Interoperability with vast
amounts of third party systems is provided both to
comply with local regulations and to exchange infor-
mation with other systems in the automotive ecosys-
tem. In order to satisfy the needs of diverse cus-
tomers from various countries, the system is very con-
figurable including the ability to enable and disable
various components and integrations. Said system is
under active development and suffers from poor main-
tainability and scalability. Its monolithic architecture

Microservice Decompositon: A Case Study of a Large Industrial Software Migration in the Automotive Industry

499



has been identified as major problem and as a result
the decision to decompose the system in smaller parts
and gradually move towards a microservice architec-
ture has been made.

There are two major functional parts of the soft-
ware corresponding with the main process areas of
car dealerships: the processes of selling a car referred
to as sales and the processes of providing services to
customers afterwards, called after sales. No formal
requirements or specifications exists, but only infor-
mal descriptions in different formats spread over mul-
tiple systems including wikis and issue trackers.

The development of the new software began about
ten years ago. Back then the project name was differ-
ent and has since been changed once again. At the
start Subversion (SVN) was used as version control
system but in 2012 Git took over this role. Technol-
ogy wise Java and the Spring Framework are used. As
frontend framework Apache Tapestry is used. Several
deployable web applications are built from the same
code base through a complex graph of Maven depen-
dencies and Spring configurations.

One major issue with the project is slow develop-
ment time. This is to a large extent caused by the size
of the biggest Git repository containing the code for
several executables with lots of shared dependencies
and lots of dependencies on other services. Histori-
cally there was one large SVN source code repository.
Now there is a desire to reduce the size or use multiple
repositories in order to improve the build granularity
and development speed. Due to the monolithic nature
of the application, this is not an easy task. Building
the largest project on a developer workstation takes
about ten minutes at the point of writing and starting
one service takes about another five minutes. Contin-
uous Integration (CI)-builds take between around 45
minutes to an hour, depending on server load. The
high latency between making changes and being able
to run them or having it tested in a reliable CI infras-
tructure makes developing much slower than desired.

Both management and the developers consider
continuous delivery as desirable in the company. The
progress towards fully employing continuous delivery
has not progressed very far however.

3.3 Case Study Design

In order to answer the research questions about the
current approach, a number of developers apply it to
the system at hand and we observe changes to the
system during a period of over two years. This is
possible as the primary author is part of the group
of developers tasked with implementing changes and
new features in the system as well as to modularize

Figure 1: Loc history of the monolith.

its old monolithic architecture into a microservice ar-
chitecture. This allows us to check if the approach is
indeed well suited to the decomposition of large in-
dustrial monoliths following the case study method-
ology (Runeson et al., 2012). We also measure parts
of the research questions, which can be directly mea-
sured, like the duration of a build on the CI server.

In order to answer the research question about al-
ternative approaches, these need to be found which is
done by performing a literature review.

Like any system, the system at hand has some
properties. Primarily there is no formal specifica-
tion available, which is very common in the indus-
try (Ozkaya, 2018).

We assess the approaches for decomposing mono-
liths into microservices found by searching for
“microservice decomposition approach” on Google
Scholar. Their applicability for decomposing the sys-
tem at hand is determined considering the systems
properties. To limit the search extend, only the 25
most relevant entries from the search query are con-
sidered.

4 USED DECOMPOSITION
APPROACH

There are efforts to reduce the size of the current
monolith and split out separate services belonging to
business units which have their own bounded context.
This is intended to increase the speed of development,
the maintainability and scalability. Management ex-
pects teams to more independently own “their” part
of the whole software system. These extraction ef-
forts can be seen starting from 2017 as the number of

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

500



lines of code is abruptly reduced several times. Figure
1 shows that the number of lines of code has started
to repeatedly swiftly decrease by significant amounts.
This stems from the fact that some modules are al-
ready moved out to dedicated services.

4.1 Moving Existing Functionality out
of the Monolith

In order to move a part of a monolith out into a
microservice, architects identify a suitable part first.
They take business considerations into account fol-
lowing the approach and identify a bounded context
within the monolith that is suitable to be moved into a
dedicated microservice or set of services. To make the
migration easier, the bounded context should not be
central in the monolith with huge amounts of chatty
interactions but rather some bordering functionality.
A bounded context with only incoming calls but with
no outgoing calls into the rest of the system would be
ideal. Technical architects make an intuitive decision
supported by dependency statistics and integrated de-
velopment environments (IDEs).

Once the decision is made which bounded context
should become its own microservice, a process con-
sisting of several steps begins.

Lets assume there are three services. Service A
calls Service B which calls Service C. Only Service B
is inside the bounded context which should be trans-
formed to a new service.

4.1.1 Definition of Facades

Generally a facade hides the complex internal matters
behind a clean interface. From the outside the system
should only be accessed through this facade.

For the system at hand the desired communication
pattern are rest calls. Therefore, the facades used have
the form of rest interfaces.

Developers create new Maven modules contain-
ing the application programming interface (API) in
the form of Representational state transfer (REST) in-
terfaces and Data transfer objects (DTOs), which are
transmitted.

Technical architects search for common usage pat-
terns and try to define a small but usable REST API
that can replace all prior usages.

4.1.2 Facade Implementation

As the second major step in the migration process the
facades in the form of REST services have to be im-
plemented.

When the same functionality already exists, this
process is trivial. In most cases simple mappings and

Figure 2: Facade calls are added.

service calls are sufficient but in others more complex
logic has to be implemented.

4.1.3 Using the Facades

The third major step in splitting out a part of a mono-
lith into a microservice is to actually use the facades
in the form of REST endpoints and clients.

Developers search the rest of the monolith with
IDEs for direct usages of the part which is about to
be split out of it. The found usages circumvent the
defined REST facade and have to be replaced.

Figure 2 shows the process of replacing in-
memory calls across the new border with REST fa-
cade calls. Normal arrows represent in-memory calls
and REST calls have arrows with dotted lines.

Many usages can very easily be replaced by REST
calls and the corresponding DTOs. Transactions how-
ever become more complex. Distributed transactions
are not desirable and also not supported in the sys-
tem at hand. In many cases it is possible to move the
whole transaction to one service and to provide aggre-
gated data from the other service.

The visualized case also assumes that the database
tables can be cleanly partitioned between the re-
maining monolith and the new microservice. Since
bounded contexts are used, this is likely the case. In
the remaining few cases the technical architects make
intuitive decisions on how to proceed.

4.1.4 Moving out the Separated Service Part

The final part during the separation process finally re-
sults in a new microservice.

Developers create two separate Git repositories
containing the API and the implementation of new
service. Public and private code and data structures
are cleanly separated that way.

Microservice Decompositon: A Case Study of a Large Industrial Software Migration in the Automotive Industry

501



The new application is also build on Jenkins,
Sonar and the artifacts are deployed. Docker images
are build and Helm Charts configure how the service
should run in a cluster. The Uniform Resource Lo-
cators (URLs) for accessing the new microservices
functionality is changed, as it is no longer a part of
the monolith and therefore has a new base-URL.

4.2 Rewriting Part of the Monolith as a
Microservice

The software quality is better in some areas and worse
in others. Particularly problematic pieces with bad
maintainability lend themselves well not to be moved
out to their own microservice but to be replaced by
a completely new microservice. In the short term it
may be more effort to rewrite that functionality but the
reward is substantial as the bad old code is completely
replaced.

4.2.1 Facade Introduction and Implementation

In the beginning there are a set of services which
should be removed. Lets assume this is just service
B1. Service B2 in the microservice provides similar
functionalities and it is destined to replace B1. Figure
3 visualizes this scenario.

As a first step facades around the functionalities
in the monolith which are about to be replaced are
required. Again these facades also have to be imple-
mented. The first implementation delegates to the ex-
isting implementation within the monolith.

The Facade E is added around the functionality of
the services which are about to be replaced. For sim-
plicity’s sake the example this is just one service, but
in most cases there is more than just one service. The
REST endpoint facade (Facade F) is also added. This
is the interface describing the corresponding REST
endpoint of the new microservice. These facades have
to be implemented.

4.2.2 REST Client Facade Implementation

Since a new microservice is not expected to immedi-
ately have all functionalities the old monolithic imple-
mentation has, the migration process takes some time.
During this time one can use Spring profiles to switch
between the old monolithic implementation and the
new implementation which calls a microservice.

This is possible by providing a second implemen-
tation to Facade E which calls Facade F via REST.

In the end developers remove the old implementa-
tion (Service B1) and the implementation which for-
wards to the other service becomes the only imple-

Figure 3: Profile controlling local or remote implementa-
tion.

mentation. Then the new implementation is always
active, independent from Spring profiles.

4.3 Considering Alternative
Approaches

The used approach is not necessarily optimal. There-
fore, alternative approaches are also considered in the
form of a literature review. The requirements for the
program are rather loose and there is no specification
available, even less so a formal one. It is not econom-
ically viable to create one for this project. It is also
not common practice for projects of such a size (Car-
valho et al., 2019). This rules out some more formal
and automated approaches.

We find a lot of support for using bounded con-
texts. Several papers recommend using business
capabilities and organizational boundaries as inspi-
ration for where the monolith should be split into
microservices, as already practiced. They describe
boundaries between bounded contexts as excellent
choices for microservice boundaries because the de-
sired tight coupling inside a proper bounded con-
text and thus a microservice is implied (Krylovskiy
et al., 2015; Hasselbring and Steinacker, 2017;
Shadija et al., 2017; Newman, 2015; Bakshi, 2017).
One also recommends microservice boundaries be-
tween bounded contexts and additionally more fine
grained boundaries between different storage and per-
sistence requirements and maturities (Carneiro and
Schmelmer, 2016). DDD is recommended in or-
der to get a basic microservice architecture and to
analyse usage patterns to further refine the architec-
ture afterwards (Mustafa et al., 2018). While the
focus of two papers is not about the decomposi-
tion, the papers shortly mention the same approach
favourably (Alpers et al., 2015; Zimmermann, 2017).

Employing service facades are also recommended

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

502



as a first step to recover the architecture within a
monolith. The decisions in which parts to cut follows
DDD (Knoche and Hasselbring, 2018).

More formal approaches also exist and are often
recommended. For large industrial systems without
specification they are not feasible however (Carvalho
et al., 2019).

5 RESULTS

In order to evaluate the answers given to the research
questions, we interview experts on the system at hand
and the modularization procedure. This procedure
follows the well established methodology of an expert
interview.

The experts answers confirm that the chosen ap-
proach is indeed well suitable to improve the situation
at hand.

Nevertheless there are problems with the imple-
mentation of it. Non-technical reasons like a very
limited budget and high pressure to release new fea-
tures quickly cause most problems. Since only lim-
ited resources are used for the modularization effort,
progress is slow.

The experts are content with focussing on busi-
ness capabilities and bounded contexts as a basis for
the modularization. The requirement for good Tech-
nical Architects (TAs) and Product Owners (POs) is
stressed and that technical contexts are also impor-
tant.

The experts consider more formal approaches in-
feasible for a project of the given size and budget.
Creating formal models and specifications is esti-
mated to be prohibitively expensive. While some help
is considered helpful, it should not be too restrictive
to the developers. Another two interviewed develop-
ers state that the overhead would be simply too high
for a sizeable project. Since there is more complexity
involved, the result is not expected to be any better by
one interviewee.

They judge the usage of facades generally in a
positive way, but mention that some issues were
encountered when paired with insufficient domain
knowledge and test automation.

The experts state that scaling the modularization
effort up to multiple teams is easily possible as long as
clear separations between different areas exist. Dur-
ing the modularization, a lot of files are changed and
this leads to hard to solve merge conflicts if multiple
persons are active on the same part of the source code.

Developers perceive working with the newer
smaller services very positively. The main reasons
are easier understandability, greatly improved devel-

opment speed and faster feedback cycles. These qual-
ities have a large positive impact on maintainability.
One interviewee even calls the split inevitable but
warns of overdoing it and creating too much tiny ser-
vices. Those are less maintainable when any reason-
able work spans multiple services and the API has to
be changed all the time.

Working with a smaller service also allows to up-
grade the code more easily as fewer dependencies
have to be taken into consideration. This leads in
the long term to a more modern application with
which developers are more satisfied and prefer work-
ing with.

From a testers perspective the microservice ap-
proach is also preferable as a microservice can be
more easily tested. Test automation is simpler as ser-
vices can be tested in a more isolated way than the
monolith.

5.1 Maintainability

RQ1a: asks how the maintainability is affected.
There is a general consensus that the situation im-
proves a lot, but there is still much to do.

For the new modules the feedback of the experts is
very promising. Smaller modules are easier to under-
stand, start and debug. Testing a smaller application
also becomes easier and more efficient.

As testers primarily use quality assurance deploy-
ments and do not need to work with local code, de-
ployment speed is an important part of the latency
with which a tester can start to examine changes
which also improves maintainability. The newer
smaller modules can be deployed much faster than the
remaining monolith.

A negative aspect mentioned is that some actions
like version updates have to be repeated for many
applications instead of only one monolith. This is
not hard but cumbersome. Maintenance is greatly re-
duced per module but is required for more modules.

Developers understand smaller modules more eas-
ily and thus new developers get productive faster.
This in turn improves the maintainability of these
parts.

When the boundaries of a module are left, debug-
ging becomes harder compared to a monolith where
it is possible to debug across the whole application
inside an IDE.

When developers change the API between mod-
ules, the effort is generally larger than in a monolith
where such an API does not formally exist. As long
as changes are internal to an application, the main-
tainability improves but as soon as multiple applica-
tions are affected the advantages diminish and new

Microservice Decompositon: A Case Study of a Large Industrial Software Migration in the Automotive Industry

503



problems arise. For backwards compatible changes
a new API version has to be released in addition to
the code changes. Other applications have no stress
to upgrade. If a change is not backwards compatible
however, all applications depending on the function-
ality have to upgrade at the same time or API versions
have to be used. The effort is multiplied by the num-
ber of usages. For this reason it is crucial to keep the
number of API changes minimal.

5.2 Scalability

RQ1b: is about how the scalability is affected. Scala-
bility is also a widely given reason for a microservice
architecture. In the project mixed results are reported.
Theoretically once the modularization is finished it
should allow to scale all applications very well ac-
cording to interviewee D, but it is not experienced in
the project yet as the system overall is perceived as
rather slow regardless of the load and more replicas
do not help directly with latency problems. If parts
of the system are identified as under particular high
stress, it is advantageous if this is a microservice, as
administrators can independently scale it up.

While the scalability of a single service in isola-
tion becomes easier, the whole orchestration becomes
more complicated. Once this is properly taken care
of however, the benefits of being able to scale ev-
ery service according to its needs becomes prevalent.
Container platforms and other operational details are
therefore crucial for the success of the scalability im-
provements.

6 THREATS TO VALIDITY

For case studies it is always crucial to ensure the aca-
demic scalability. The results should not be specific
to the system at hand but have to be generally appli-
cable.

A literature review and the judgment of alternative
approaches would come to the same result when con-
ducted independently from the system at hand. Any
approach that is not deemed applicable as potential
alternative to the current approach, is also not appli-
cable to most other large scale industrial monoliths as
well.

Other approaches on more formal methods are
deemed unsatisfactory both by the experts and in the
academic papers (Ozkaya, 2018).

7 FUTURE WORK

Since the decomposition of the system at hand is not
completed at the point of writing and it is expected
that this will take a long time, another analysis once
it is done could provide further insights. Long term
effects of the modularization could be observed and
the scalability improvements better evaluated when
the system is deployed with a much larger user base
and thus higher scalability demands.

Future work may include performing more case
studies, further evaluating the chosen approach for
other large scale industrial systems and combining the
knowledge in larger meta analyses that generate re-
sults with statistical significance.

Since some alternative approaches found in the
literature lack good tool support required for their
widespread application to large systems, fully devel-
oping these tools, integrating them with practitioners
tools like IDEs and performing case studies to evalu-
ate their practical applicability could be further stud-
ies.

8 CONCLUSION

The evaluated large ERP system in the automotive in-
dustry was historically developed as monolith. It suf-
fered from poor maintainability and scalability. In or-
der to improve the situation, management made the
decision to migrate to a microservice architecture.

The chosen approach is to use bounded business
contexts in order to determine what should become
a microservice. Developers then either rewrite rele-
vant parts of the system as a microservice or extract
them from the existing monolith. In order to minimize
the disruption and allow gradual changes, they use fa-
cades to switch between different implementations of
the same functionality as desired.

Developers started to move out pieces of the
monolith into microservices while also rewriting
some parts in the form of a completely new microser-
vice. When a new microservice is created, which re-
places old functionality, both implementations have to
be maintained until the migration is complete. There-
fore it is desirable that any such migration finishes
soon.

Performing changes to a microservice is faster
compared to a monolith. When working with the
monolith, the IDE often lags, startup times are high
and newer developers need to understand a lot about
the architecture in order to be productive. The newer
microservices in contrast are easier to understand,
state of the art technologies are used and developers

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

504



get faster feedback both from local tools as well as the
CI server.

To evaluate the results, we conducted expert in-
terviews of stakeholders involved in the development
of the system. They are familiar or directly involved
with the modularization effort.

They agree that maintainability for the already
modularized parts has greatly improved. Drastic
changes in scalability are currently not visible but
they agree that in general the smaller services are
much more scalable.

The developers greatly prefer working on smaller
services and are content with the applied approach.
More formal approaches are largely disliked by the
interviewed experts.

REFERENCES

Alpers, S., Becker, C., Oberweis, A., and Schuster, T.
(2015). Microservice based tool support for busi-
ness process modelling. Proceedings of the 2015
IEEE 19th International Enterprise Distributed Ob-
ject Computing Conference Workshops and Demon-
strations, EDOCW 2015, (January 2017):71–78.

Bakshi, K. (2017). Microservices-based software archi-
tecture and approaches. IEEE Aerospace Conference
Proceedings.

Balalaie, A., Heydarnoori, A., and Jamshidi, P. (2015). Mi-
croservices Migration Patterns. (1):1–21.

Balalaie, A., Heydarnoori, A., and Jamshidi, P. (2016).
Microservices Architecture Enables DevOps: Migra-
tion to a Cloud-Native Architecture. IEEE Software,
33(3):42–52.

Balalaie, A., Heydarnoori, A., Jamshidi, P., Tamburri,
D. A., and Lynn, T. (2018). Microservices migra-
tion patterns. Software - Practice and Experience,
48(11):2019–2042.

Carneiro, C. and Schmelmer, T. (2016). Microservices
From Day One.

Carvalho, L., Garcia, A., Assuncao, W. K., De Mello, R.,
and Julia De Lima, M. (2019). Analysis of the Cri-
teria Adopted in Industry to Extract Microservices.
Proceedings - 2019 IEEE/ACM Joint 7th International
Workshop on Conducting Empirical Studies in Indus-
try and 6th International Workshop on Software Engi-
neering Research and Industrial Practice, CESSER-
IP 2019, pages 22–29.

Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara, M.,
Montesi, F., Mustafin, R., and Safina, L. (2016). Mi-
croservices: yesterday, today, and tomorrow. pages
1–17.

Hassan, S. and Bahsoon, R. (2016). Microservices and their
design trade-offs: A self-adaptive roadmap. Proceed-
ings - 2016 IEEE International Conference on Ser-
vices Computing, SCC 2016, pages 813–818.

Hasselbring, W. and Steinacker, G. (2017). Microservice
architectures for scalability, agility and reliability in

e-commerce. Proceedings - 2017 IEEE International
Conference on Software Architecture Workshops, IC-
SAW 2017: Side Track Proceedings, pages 243–246.

Knoche, H. and Hasselbring, W. (2018). Using Microser-
vices for Legacy Software Modernization. IEEE Soft-
ware, 35(3):44–49.

Krylovskiy, A., Jahn, M., and Patti, E. (2015). Designing a
Smart City Internet of Things Platform with Microser-
vice Architecture. Proceedings - 2015 International
Conference on Future Internet of Things and Cloud,
FiCloud 2015 and 2015 International Conference on
Open and Big Data, OBD 2015, pages 25–30.

Mustafa, O., Marx Gómez, J., Hamed, M., and Pargmann,
H. (2018). GranMicro: A Black-Box Based Ap-
proach for Optimizing Microservices Based Applica-
tions. In Otjacques, B., Hitzelberger, P., Naumann,
S., and Wohlgemuth, V., editors, From Science to So-
ciety, pages 283–294, Cham. Springer International
Publishing.

Newman, S. (2015). Building Microservices.
Ozkaya, M. (2018). Do the informal & formal software

modeling notations satisfy practitioners for software
architecture modeling? Information and Software
Technology, 95(May 2017):15–33.

Pokorny, J. (2013). NoSQL databases: A step to database
scalability in web environment. International Journal
of Web Information Systems, 9(1):69–82.

Runeson, P., Host, M., Rainer, A., and Regnell, B. (2012).
Case Study Research in Software Engineering.

Shadija, D., Rezai, M., and Hill, R. (2017). Towards an
understanding of microservices. In 2017 23rd Inter-
national Conference on Automation and Computing
(ICAC), pages 1–6.

Šūpulniece, I., Poļaka, I., Běrziša, S., Ozoliņš, E., Palacis,
E., Meiers, E., and Grabis, J. (2015). Source Code
Driven Enterprise Application Decomposition: Pre-
liminary Evaluation. Procedia Computer Science,
77:167–175.

Supulniece, I., Polaka, I., Berzisa, S., Meiers, E., Ozolins,
E., Grabis, J., and Supulniece, I., Polaka, I., Berzisa,
S., Meiers, E., Ozolins, E., & Grabis, J. (2015). De-
composition of Enterprise Application: A Systematic
Literature Review and Research Outlook. Information
Technology and Management Science, 18(1):30–36.

Villamizar, M., Garcés, O., Castro, H., Verano, M., Sala-
manca, L., and Gil, S. (2015). Evaluating the Mono-
lithic and the Microservice Architecture Pattern to
Deploy Web Applications in the Cloud Evaluando el
Patrón de Arquitectura Monolı́tica y de Micro Servi-
cios Para Desplegar Aplicaciones en la Nube. 10th
Computing Colombian Conference, pages 583–590.

Xiao, Z., Wijegunaratne, I., and Qiang, X. (2017). Reflec-
tions on SOA and Microservices. Proceedings - 4th
International Conference on Enterprise Systems: Ad-
vances in Enterprise Systems, ES 2016, pages 60–67.

Zimmermann, O. (2017). Microservices tenets: Agile ap-
proach to service development and deployment. Com-
puter Science - Research and Development, 32(3-
4):301–310.

Microservice Decompositon: A Case Study of a Large Industrial Software Migration in the Automotive Industry

505


