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Abstract: Until recently, the automotive industry focus has been safety, comfort, and user experience. Now, the focus 

is shifting towards human emotion for driver-car interactions, autonomy and sustainability; all of them are 

increasing concerns in recent scientific literature. On the one hand, the growing role of emotion in automotive 

driving is empowering human-centred design coupled with affective computing in driving context to improve 

future automotive design. It is resulting in emotional analysis being present in automotive. This requires real-

time data processing that involves energy consumption in the vehicle. On the other hand, electric vehicle 

fleets and smart grids are technologies that have provided new possibilities to reduce pollution and increase 

energy efficiency looking for sustainability. This paper proposes the emotional factor forecasting according 

to data gathered from electric vehicle fleet, based on the application of K-means algorithm. The results shows 

that is possible to forecast the emotional status that takes negative effect in the driving. Additionally, the 

Cronbach alpha variation analysis provides an interesting tool to select features from samples.  

1 INTRODUCTION 

For different reasons and purposes, the number of 

studies related to include emotional analysis in cars is 

growing in the scientific literature (Akamatsu et al., 

2013; Braun et al., 2019; Izquierdo-Reyes et al., 

2018; Khan & Lee, 2019; Nass et al., 2005; Schuller 

et al., 2006). User-centred design coupled with 

affective computing is resulting in emotional analysis 

being present in cars. 

In vehicles that consider the emotional indicators 

of passengers, it is necessary to perform several 

analyses (signal processing, feature extraction, 

emotional classification and behaviour for reaction). 

That processing requires energy consumption from 

on-board computer. In the case of electric vehicles 

(EV), it is interesting to forecast the consumption of 

said processing in order to know how this can affect 
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to the autonomy of the vehicle and to the longest route 

that can be made without recharging.  

EVs represents a new research field in smart grid 

(SG) ecosystems. Currently, the new generation of 

EVs provides different technologies which can be 

integrated in SGs. However, these new technologies 

make difficult the distribution of grid management. In 

particular, EVs and the infrastructure needed to 

charge them have resulted in a great quantity of new 

standards and technologies.  

Currently, there are several research lines related 

to EVs: fast charging networks, battery performance 

modelling, parasitic energy consumption, EV 

promotional policies, increasing the range of the 

battery in EV, etc.; and other research lines related to 

EV energy management: contract models for 

consumption vehicle, market model to adopt EVs, 

distributed energy resources management systems 
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(DERMS), distributed energy resources (DER) 

standards, faster charging technologies, demand 

response management systems (DRMS), the role of 

aggregators in V2G (vehicle-to-grid), energy 

efficiency, customer support, driver support, etc. 

Additionally, all these lines are influenced by the 

current regulation and may different greatly between 

countries (for example, the regulation between United 

States (Lazar, s. f.) and Europe (CEER, 2019) is very 

different regarding energy management).  

The charging infrastructure affects SG on several 

levels (Guerrero, Personal, García, et al., 2019; 

Guerrero, Personal, Parejo, et al., 2019). These levels 

concern the transmission, distribution, and retailer 

levels. The main affected frameworks inside these 

levels are: energy management (EM), distribution 

management (DM), and demand response (DR). The 

EM systems include several functions, one of which 

is the control of energy flows. The charging of an EV 

can be made at any point on the grid which has a 

charging unit. If the system has information about the 

expected use of the charging unit, the energy flow 

will be easier to manage. The DM is related with 

Distribution System Operators (DSO). Usually, the 

charging infrastructure is overseen by the DSOs. 

Thus, the DSOs must manage these facilities and 

maintain information about them. Finally, the 

demand response concerns retailers and DSOs, and 

the main problem is demand curve flattening and 

price management. Nevertheless, the new paradigm 

proposed by standard organizations, including 

National Institute of Standards and Technology 

(NIST), International Electrotechnical Commission 

(IEC), among others, related with V2G proposed that 

EVs could charge or discharge batteries. Thus, the EV 

is a power source in specific scenarios. In these cases, 

the distributed resource management is affected by 

the new V2G technologies as a distributed power 

resource in low voltage without total availability, like 

some renewable energy resources, for example, wind 

and solar energy. 

Our researching group has proposed a distributed 

charging prioritization methodology based on the 

concept of virtual power plant without considering 

emotional factors consumption (Guerrero, Personal, 

García, et al., 2019; Guerrero, Personal, Parejo, et al., 

2019). In these papers, we describe the Driver 

Modelling module which is one of the elements of the 

distributed charging prioritization methodology. 

Additionally, we get advantage from the driver 

pattern to stablish an emotional analysis based on the 

deviation from the driver pattern.  

Firstly, background of this study is presented. 

Secondly, the methodology including emotional 

factors consumption is described and finally some 

conclusions and future work are outlined. 

2 BACKGROUND 

2.1 Electric Vehicle Fleets and Related 
Technologies 

The introduction of EVs provides several advantages, 

but it is necessary to have additional energy sources 

in order to include the associated infrastructure 

(Meissner & Richter, 2003; Tie & Tan, 2013). The 

new generation of EVs has several requirements not 

only in power but also infrastructure (Francesco 

Marra et al., 2011). SGs have provided a good 

scenario to integrate EV and its charging 

infrastructure. 

Dielmann & Velden (2003) propose Virtual 

Power Plant (VPPs) as a new solution for the 

implementation of technologies related to SGs, and 

several applications were developed to show the 

advantages of VPPs. The FENIX European Project 

(Kieny et al., 2009) delved into the concept of VPP 

and considered two types of VPP: the commercial 

VPP (CVPP), that tackles the aggregation of small 

generating units with respect to market integration, 

and the technical VPP (TVPP), that tackles 

aggregation of these units with respect to services that 

can be offered to the grid. Mashhour & Moghaddas-

Tafreshi (2009) described a general framework for 

future VPP to control low and medium voltage for 

DER management. You et al. (2009) presented a case 

study which shows how a broker GVPP was 

developed based on the selection of appropriate 

functions. The EDISON Danish project (Binding 

et al., 2010) described an ICT-based distributed 

software integration based on VPPs and standards to 

accommodate communication and optimize the 

coordination of EV fleets. Jansen et al. (2010) 

proposed an architecture for EV fleet coordination 

based on V2G integrating VPP. Musio et al. (2010) 

analysed the possibility of using EVs as an energy 

storage system (V2G) within a VPP structure. 

Skarvelis-Kazakos et al. (2010) considered the EV as 

a mobile load and described a VPP containing 

aggregated microgeneration sources and EV, but is 

cantered around minimizing carbon emissions. Raab 

et al. (2011) proposed and discussed three approaches 

for grid integration of EVs through a VPP: control 

structure, resource type, and aggregation. Sanduleac 

et al. (2011) presented a solution for integrating EVs 

in the SG through unbundled smart metering and VPP 

technology dealing with multiple objectives. Marra et 
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al. (2012) addressed the design of an EV test bed 

which served as a multifunctional grid-interactive EV 

to test VPP or a generic EV coordinator with different 

control strategies.  

The common point of these references is the 

utilization of the VPP concept in a simulation, but 

they only simulate the VPP which aggregates the 

information of EV. The present paper additionally 

analyses the impact in VPP of higher levels, and how 

the distribution of charging is made. 

Additionally, some researchers have studied the 

impact of HEV and plug-in HEV (PHEV) (He et al., 

2012). In this sense, decentralized algorithms for 

coordinating the charging of multiple EVs have 

gained importance in recent years. Mansour et al. 

(2015) compared several approaches based on 

centralized, decentralized, and hybrid algorithm, with 

the latter showing better results. Hiermann et al. 

(2016) introduced the electric fleet size and mix 

vehicle routing problem with time windows and 

recharging stations (E-FSMFTW) to model decisions 

to be made with regards to fleet composition and 

vehicle routes, including the choice of recharging 

times and locations. Hu et al. (2016) presented a 

review and classification of methods for smart 

charging of EVs for fleet operators, providing three 

control strategies and their commonly used 

algorithms. Additionally, they studied service 

relationships between fleet operators and four other 

actors in SGs. 

All these works did not consider behaviour or 

emotional parameters to forecast charging 

requirements in EV. In the next section we describe 

how emotional factors are present in automotive 

industry and how their impact has evolved. 

2.2 Emotional Factors in Automotive 

Over time, automotive industry has evolved by 

changing the approach based on technological 

developments and user needs. For highly automated 

vehicles where the driver still has an active role and 

control is shared between the automobile and the 

driver, the role of human-automobile interaction is 

highly significant (Weber, 2018).  

Cooperation between car and driver needs that 

interaction happens on an affective level to create a 

successful control loop. To keep the human informed, 

car must understand and respond to human behaviour 

and emotions (Braun et al., 2019). Therefore, a high 

level of understanding of drivers is required (Khan & 

Lee, 2019).  

For instance, Nass et al. (2005) studied whether 

characteristics of a car voice can affect driver 

performance and affect concluding that when user 

emotion matched car voice emotion (happy/energetic 

and upset/subdued), drivers had fewer accidents, 

attended more to the road (actual and perceived), and 

spoke more to the car. They also discussed 

implications for car design and voice user interface 

design. Schuller et al. (2006) introduced novel 

concepts and results considering the estimation of a 

driver’s emotion by focusing on acoustic information. 

Izquierdo-Reyes et al. (2018) proposed a multiagent-

based framework called ADMAS (Advanced Driver 

Monitoring for Assistance System). This system 

considers the typical stages in affective computing, 

including data acquisition (signals from wearable, 

images from cameras, audio from microphones), 

signal processing (computer vision, natural language 

processing, audio mining) for feature extraction and 

emotional classification using an emotional model 

and machine learning to predict emotional 

behaviours.   

Shaikh & Krishnan (2012) proposed a framework 

to combine empirical models describing human 

behaviour with the environment and system models. 

They analysed the design for safe vehicle-driver 

interaction and showed a case study involving semi-

autonomous vehicles where the driver fatigue were 

factors critical to a safe journey. 

Videla & Kumar (2020) presented an approach to 

detect person fatigue using image processing with 

machine learning. In particular, they combined two 

methods: face recognition with Histograms of 

Oriented Gradients (HOG) and Support Vector 

Machine (SVM) and off-the-shelf face detectors and 

facial landmark detectors together with a novel eye 

and mouth metric. 

Silva & Analide (2019) considered that comfort 

evaluation depends on environment attributes, 

physical attributes and also emotion recognition. 

They proposed a multiagent-based computational 

sustainability platform which manages contexts 

supported by principles of computational 

sustainability and the assurance of sustainable 

scenarios. They consider social indicators based on 

mood analysis.    

In all cases, artificial intelligence processing 

applied in affective computing, above all regarding 

machine learning techniques, requires substantial 

energy consumption (Strubell et al., 2019). In the case 

of electric vehicles this impacts in their autonomy. 

Therefore, modelling driver behaviour and emotion is 

useful to further refine the prediction of vehicle 

power consumption. 
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3 ARCHITECTURE VIEW 

A solution for EV Fleet Management Platform based 

on the concept of a VPP and using distributed 

evolutionary computation algorithms to optimize the 

prioritization of EV fleets at different levels of SG 

ecosystems has been proposed in previous works. The 

proposed architecture and methodology are described 

in detail in (Guerrero, Personal, García, et al., 2019; 

Guerrero, Personal, Parejo, et al., 2019). 

Additionally, this reference treats only one of the 

modules related to Charging Prioritization Module, 

which is based on several Artificial Intelligence 

Algorithms: 

▪ Genetic algorithm (GA). 

▪ Genetic algorithm with evolution control 

(GAEC) based on fitness evolution curve. 

▪ Swarm intelligence based on particle swarm 

optimization (PSO). 

The objective of the present paper is to describe 

in detail the process of driver modelling, from the 

acquisition to the modelling stage. Additionally, the 

driver model is applied in a local application to 

determine the alteration of driver pattern, 

recommended different actions according to the 

forecasting emotional status. 

The viewpoint of the proposed solution treats 

vehicles as a mobile load. In this manner, the system 

must have data about these loads and the charging 

prioritization. Thus, the system will have information 

about the expected consumption or the expected 

generation of the resource (in the case of a fault in the 

grid), such as a battery.  

The proposed system works as a service for large 

companies with EV fleets. Knowledge about the state 

and prioritization of vehicles and driver patterns may 

minimize the impact of charging loads. These 

services provide new tariffs for retailers and new 

policies for energy price management. 

The conceptual architecture of the proposed 

solution is shown in  

, where several VPPs are included. The 

information is aggregated on the lower level. Then, 

the aggregated information is sent by each lower VPP 

to a higher level. In this manner, each VPP aggregates 

the data and services from lower VPPs to higher 

VPPs. Each level may have one or more VPPs 

depending on the needs at each level and the power 

grid. 

 

Figure 1: Scalability properties and information flow 

between different VPP layers. 

The information representation at different levels was 

based on an extension of the common information 

model (CIM) from IEC 61870, 61968, 62325, and 

eMIX (Energy Market Information Exchange). The 

interface information is based on the component 

interface specification (CIS) from the IEC and 

OpenADR from OASIS (Open Association for 

System and Information Standards). The information 

representation and interface description are beyond 

the scope of this paper. 

Each higher VPP can perform evolutionary 

algorithms to generate commands or instructions to 

modify the queues from lower VPPs. Additionally, 

lower VPPs can perform the same evolutionary 

algorithms to request resources from other VPPs to 

prioritize the charging of vehicles that cannot be 

charged at their charging stations. 

The artificial intelligence is based on data mining 

algorithms or techniques. Each level runs the data 

mining algorithms depending on the available 

computational resources or option configured in the 

corresponding VPP. The level at which the VPP is 

performed determines the availability of services and 

data. In this paper for the platform, four levels are 

proposed: 

▪ Smart business VPP (SBVPP). This is the 

lowest level. At this level, all information 

about vehicles, routes, and drivers from the 

same company is available. Thus, the 

charging prioritization of the charging 

stations and driver patterns of the company is 

treated at this level. The state of charge (SoC) 

is also calculated at this level.  

▪ Distribution VPP (DVPP). At this level, 

information is aggregated from lower levels, 

and information about retailers and the 

presence of charging stations is stored. This 

information is sent to higher levels, such as 

an energy VPP (EVPP). Additionally, the 
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restrictions from an EVPP to the 

corresponding retailer and SBVPP are 

addressed at this level. 

▪ Retailer VPP (RVPP). At this level, a retailer 

needs to know when vehicles require 

charging at any point outside of the company 

points. The retailer can use this information 

to offer different tariffs to a company.  

▪ Energy VPP (EVPP). In this paper, the 

vehicles represent mobile loads. Thus, if an 

energy management system has information 

about the expected charging stations, it may 

take advantage of this information to improve 

the load flow forecasting algorithms.  

The prioritization process is performed in several 

stages to aggregate information for the upper layers 

and to control lower layers.  

 

The lowest levels implement functions that are 

related to consumers. The medium levels implement 

functions that are related to energy distribution and 

commercialization. The higher levels implement 

functions to guarantee the quality and continuity of a 

power supply. This architecture is highly scalable, 

increasing the interoperability between different 

enterprises and integration of heterogeneous 

ecosystems. The VPPs include data mining 

algorithms and some capabilities in the corresponding 

driver modelling modules which makes the driver 

pattern modelling quicker and easier: 

The data mining algorithm in an SBVPP. This 

algorithm sorts the vehicles with their drivers 

according to the SoC and expected route. If the 

algorithm cannot model any driver, the algorithm 

classifies the driver as an external model and sends 

the request to higher VPPs. The SBVPP can receive 

commands and warnings from the DVPP and RVPP, 

and it downloads general driver patterns. The higher 

VPP commands and warnings are considered as 

external restrictions. The external driver patterns are 

considered as general models with low priority level, 

and they will be replaced by the models generated in 

the first route. Additionally, the RVPP commands and 

warnings can take effect over different elements of 

customer power facilities when the customer that 

implements a SBVPP has contracted additional 

services from a retailer to manage the customer power 

facilities.  

The data mining in a DVPP. The DVPP gathers 

all requests from all SBVPPs. In the prioritization 

module, this information is employed in an 

evolutionary algorithm to prioritize charging in 

available charging stations. In case of driver 

modelling module, the data mining algorithm takes 

advantage form different modules generated in the 

SBVPP, providing a generalized classification of the 

different models or patterns. The generated models 

are the basis for the driver models in the SBVPP level. 

The EVPP does not gather any information from 

driver modelling, but this level takes an important 

role in the charging prioritization. 

The RVPP gathers all information about vehicles 

that may have contractual relationships with a 

retailer. The retailer can use this information to offer 

new services to clients. If any problems arise in the 

client contract, the retailer can send a command or 

alarm to change the prioritization for one or more 

vehicles and/or charging stations. In case of driver 

models, the RVPP gather information about the best 

driver pattern (in terms of energy efficiency), and the 

RVPP could offer new services or advantages related 

to the correspondence with the driver pattern. 

All information about driving is gathered from 

vehicle and transmitted to the SBVPP when the driver 

cellular connects to the acquisition system. The 

information about the current route and data from the 

vehicle is stored in the Driver Modelling. This 

information is used to update the driver model or 

pattern. 

Any algorithm for the SBVPP and DVPP is 

possible because the algorithm works independently 

of other layers. Thus, several algorithms were tested 

in this paper, and a final configuration is proposed 

based on the results of the tests. However, the 

algorithms can be configured according to the 

resources of each level. 

3.1 The Electric Vehicle Fleet 
Management VPP 

The Electric Vehicle Fleet Management VPP or Node 

(EVFMN) is the generic system implemented in each VPP. 

The architecture of Electric Vehicle Fleet Management 

Platform (EVFMP) is shown in Figure 1, and it is formed 

by the replication of EVFMN between different VPPs, 

enabling or disabling certain functionalities according to 

the level of VPP. The EVFMN is shown in Figure 2. Each 

module has specific functions: 
▪ Asset Management System. The asset 

management system is based on the predictive 

maintenance of vehicles and charging stations.  

▪ Driver Modelling. This module executes a 

modelling process of driver behaviour. This 

module provides a driver pattern which is used to 

schedule the routes and, in this case, to 

forecasting the driver’s emotional context. 

▪ Energy Efficiency. This module applies different 

techniques to optimize the energy consumption  
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Figure 2: Modules of distributed evolutionary prioritization 

framework. 

and reduce the maintenance periods and economic 

impact. 

▪ Real-Time Route Scheduling. This module 

manages all information about vehicles, routes, 

drivers, and external conditions to establish 

better prioritization in each charging station. 

▪ Information Management. This module manages 

all information of this VPP for reporting and 

visualization. 

▪ Prioritization Algorithm. The prioritization 

algorithm in this layer is based on swarm 

intelligence. 

▪ External Coordination. This module sends 

information to higher layers and gathers 

information about external requirements or 

vehicles to charge. 

The external coordination is provided by the 

interoperability with higher VPP layers. 

Some modules, such as external coordination, 

prioritization algorithm, and the SoC module, are 

available for all VPPs. The other modules depend on 

the available information in the VPPs. For example, 

the SBVPP has all information about the EV fleet; 

however, the SBVPP may have additional services of 

energy efficiency if it shares the information with the 

RVPP (in this case, the RVPP would use the energy 

efficiency module). 

In case of Driver Modelling, it is not included in 

the EVPP level, and it optionally could be included in 

RVPP, depending on the services provided by this 

level. 

 

3.2 Information Acquisition from 
Electric Vehicle 

The information is gathered from ODB-II system 

(Road vehicles—Diagnostic systems—Part 2: CARB 

requirements for interchange of digital information, 

1994), a standardized CAN-bus based protocol, 

designed for cars monitoring. This bus was 

introduced in 1995 in North America, being 

mandatory in all cars since 2008 (Taha & Nasser, 

2015). Similar situation happens in Europe, being 

mandatory in all gasoline vehicles since 2001 and 

diesel since 2003.  

Therefore, according to different regulations all 

modern relies on embedded computers, called engine 

control units (ECUs) (Moore et al., 2017), designed 

to control different subsystem of the vehicle as motor 

control, lights, braking subsystem, etc., most of them 

using standardized messages. 

As appear in the literature, this information can be 

used to estimate vehicle speed (Bagheri et al., 2018), 

or modelling the behaviour of the driver (Wang et al., 

2018), as we need in our proposal. 

In this case, we use an ODB-II to Bluetooth 

interface that sends the information to a mobile 

application that executes the proposed algorithm. 

3.3 Driver Patterns 

Driver behaviour is stored in driver patterns. The 

driver pattern is a model that takes effect over the 

consumption of a vehicle in route scheduling. The 

driver pattern affects the calculated SoC for each 

section of a route; it depends on the terrain topology 

and traffic data. Driver behaviour is calculated 

according to the historical data of a driver. If 

historical information about a driver is not available, 

this pattern will be calculated only with the emotional 

information. 

The driver pattern consists of the deviation from 

the original predicted SoC. This pattern considers 

information about traffic, weather and previous 

emotional behaviour to explain the variation from the 

original predicted SoC. 

Although a default driver pattern can be defined, 

information about driver patterns is currently 

unavailable. A default “average” driver pattern can be 

created when a system has adequate information. 

Currently, this pattern does not include the utility 

factor [39] because the EV fleets are treated as mobile 

loads and they do not include PHEVs. 

The Driver Modelling process is based on Generic 

Rule Induction (GRI), Support Vector Machine 

(SVM) and K-Means clustering algorithm involving 

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

608



the Cronbach alpha variation analysis, which uses the 

information provided by acquisition system: 

accelerator and brake usage, average speed, variation 

of revolution per minute (rpm), usage of HVAC in the 

vehicle, brake energy restoration, etc. All this 

information provides a classification of driver pattern, 

which is translated into a set of typical values for 

different parameters in a different confidence ranges 

and correlation variation. 

3.4 Real-time Route Scheduling 

This module controls several conditions that can 

modify the current prioritization charging queues. 

This module notifies any change in the following 

conditions: 

▪ Driver and EV availability.  

▪ Route modifications.  

▪ Traffic and roadwork.  

▪ Weather conditions.  

▪ Charging station availability.  

3.5 SoC Module: Estimation of EV 
Consumption 

The proposed solution is based on the instantaneous 

SoC value of each EV. These algorithms require an 

estimation of some consumption according to its 

planned route and alternative routes to reach different 

recharging spots. This consumption estimation is 

supported by a route planning tool. However, these 

estimations are not trivial and are related to the 

distance or time of the trip (Shankar & Marco, 2013; 

De Cauwer et al., 2015). Other factors (e.g., road 

(Park et al., 2009) and vehicle characteristics, traffic 

(Boriboonsomsin et al., 2012), driving style 

(Bingham et al., 2012), and weather conditions) are 

essential for this estimation. 

4 DATA MINING ALGORITHMS 

The data mining algorithms are based on the 

combination of three algorithm or techniques: 

▪ Cronbach alpha variation analysis. This 

technique aids to classify the different 

parameters according to their variance 

related to other parameters, providing a map 

of the importance of different parameters in 

the driver pattern. The Cronbach alpha 

calculated for all parameters provided a 

general number, which describe the 

correlative variance between parameters. 

Additionally, the Cronbach alpha relative to 

each parameter p is calculated, providing a 

new value for Cronbach alpha 

corresponding to the new correlative 

variance, without the influence of the 

corresponding parameter p. If the value is 

greater than the general Cronbach alpha, the 

parameter p has a low level of relation with 

the driver pattern, and the variation of this 

parameter could provide erroneous patterns. 

If the value is lesser than the general 

Cronbach alpha, the parameter p has a high 

level of relation with the driver pattern, and 

the parameter is probably affected by 

emotional behaviour. 

▪ K-means. Classifies the values according to 

the Cronbach Alpha stablishing 

classifications for each range of each 

parameter. Additionally, the algorithm is 

used to classify the different results of 

patterns, making groups according to the 

common characteristics of the driver 

behaviour. The method supposed that the 

driver drives with a pattern and this pattern 

is related to emotional context. Thus, the 

different groups describe different 

emotional status. In this case, it is not 

important to reveal the emotion. Thus, 

according to the distribution the emotions 

are named emotion1, emotion2, etc. 

▪ Support Vector Machine. Classifies the 

driver pattern according to the other driver 

patterns.  

This paper is centred in the results of K-mean 

algorithm to get different clusters which represents a 

classification of patterns based on emotions. 

5 EXPERIMENTAL RESULTS 

5.1 Sample Description 

The sample provided comes from a real sample 

extracted from vehicles. However, this information 

was not extracted in real time, it was extracted by 

using a device to gather periodically information from 

vehicles, based on CAN-bus (Controller Area 

Network), specified by different standards (J2411, 

J2284, J1939, ISO 11898, etc.). The information is 

complemented by information of routing 

management and scheduling, 

The extracted information comprises a sample 

with 2711 different routes. Each route is done by 32 

different drivers during three months, around the 

same area. 

Emotional Factor Forecasting based on Driver Modelling in Electric Vehicle Fleets

609



The sample contains the following information: 

weather information, driver code, route code, route 

distance, number of stops in the route, route 

information, traffic information, doors, lights, brake, 

accelerator, gearbox, speed, voltage, distance 

travelled, current, and state of charge of the batteries. 

Additionally, there are some claims notified by 

clients about the drivers. This information is 

modelled by a parameter with the number of claims 

by route. 

From Cronbach alpha variation analysis, two 

parameters are associated to each variable: the 

general Cronbach alpha, the correlation coefficient, 

and the Cronbach alpha if the corresponding 

parameter is removed from sample. These parameters 

are used to check the importance of parameters in the 

sample compared with the K-means results. 

5.2 K-mean Results 

The application of K-mean algorithm in the data 

provided by an electric vehicle fleet in distribution 

logistics, provided a basic classification of different 

patterns to drive, which take effect in the efficiency 

of driving. 

The different clusters are corresponding to 

different driving types (figure 3). For example: the 

cluster-5 correspond to the emotion5, this emotion is 

like the great bag in which all the cases that are not 

possible to classify, including the 30% of claims (9 

claims). However, the cluster-4 (emotion4) has 14,9 

% of routes, and groups the drivers who has a very 

aggressive driving (this information is extracted from 

parameters of speed, accelerator, gearbox, and state 

of charge), including the 70% of claims (21 claims). 

Thus, using the information provided by vehicles and 

making this classification, it is possible to provide a 

forecasting about the influence of emotion in the 

vehicle driving, and could be notified to the system, 

in order to maintain a good level of efficiency in the 

consumption of vehicle. Cluster-2 and cluster-3 

corresponding to drivers with careless driving pattern, 

according to the information from parameters. The 

cluster-1 groups all the patterns which provokes a 

high efficiency driving, decreasing the consumption 

and an understandable time invested in the route. 

The size of smallest cluster is cluster-3 with 0,6% 

or 16 cases. The size of biggest cluster is cluster-5 

with 53,9% or 1461 cases. 

 

 

Figure 3: Sizes of Clusters obtained from the application of 

K-mean algorithm. 

6 CONCLUSIONS AND FUTURE 

RESEARCH 

The proposed platform can integrate information 

from electric vehicles to be considered as part of the 

electric vehicle fleet management platform to 

integrate the electric vehicle fleets in smart grids as 

mobile loads.  

On one hand, the role of emotion in automotive 

driving is increasingly present, empowering human-

centred design coupled with affective computing in 

driving context to improve future automotive design. 

The driver emotional status influence is modelling by 

the deviation of the driver pattern based on a Generic 

Rule Induction, Support Vector Machine and K-

Means clustering algorithm involving the Cronbach 

alpha variation analysis, which provides a light-

weight model to perform in low feature devices.  

On the other hand, electric vehicle fleets and 

smart grids are technologies that have provided new 

possibilities to reduce pollution and increase energy 

efficiency looking for sustainability. The inclusion of 

driving data can improve the routing and charging 

prioritization forecasting, providing additional 

services to the different actors in the energy market, 

and other advantages for the better stability of the 

power grid.  

The future works will be centred on provide more 

information about driver, including some devices to 

provide more information about emotional status of 

driver, based on biometric factors or emotional 

estimation by means of face image analysis. This 

information provides more possibilities to analyse the 

results presented in the present paper. 
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