
The MATLAB Grader Test Generator:
A Teacher’s Tool for Generating Autograding Tests of MATLAB Scripts∗

Robin T. Bye a

Cyber-Physical Systems Laboratory, Department of ICT and Natural Sciences,
NTNU - Norwegian University of Science and Technology,

Keywords: Assessment, Autograding, Instant Feedback, e-Learning, Learning Management System, MATLAB Grader.

Abstract: MATLAB Grader is a relatively new addition to the MATLAB software family that enables autograding and
immediate student feedback of coding assignments. However, manually configuring the assessment tests
in MATLAB Grader can be a tedious task for a teacher, especially for larger assignments where more than
100 variables, say, need to be checked. In this paper, I present the MATLAB Grader Test Generator, a tool
consisting of both a graphical app and an all-in-one test script that can aid the teacher in this process. The test
generator tool attempts to circumvent inherent limitations in MATLAB Grader whilst being free, open-source,
and relatively easy to customize for a technically skilled teacher. The tool is available on the MATLAB File
Exchange, where it was awarded the File Exchange Pick of the Week in April, 2019.

1 INTRODUCTION

MATLAB is both a high level programming language
and a multi-paradigm numerical computing platform
that is extensively used in both industry and academia,
with more than 4 million users worldwide (Math-
Works, 2020a). Common areas of application include
artificial intelligence, machine learning, data analysis,
control systems, signal processing, computer vision,
optimisation, to list a few. A recent and useful ped-
agogical addition to MATLAB is MATLAB Grader1

(originally released as Cody Coursework), which is
an online browser-based environment where teach-
ers can create and share MATLAB coding assign-
ments with their students. As noted in the documen-
tation (MathWorks, 2020b), teachers can either enrol
their students in their course on the MATLAB Grader
website, or, if supported, they can integrate MAT-
LAB Grader in their university’s learning management
system (LMS), which currently include Blackboard,
Canvas, and Moodle, and any other LMS that is com-
pliant with version 1.1 of the Learning Tools Interop-
erability (LTI) standard of the IMS Global Learning
Consortium (2020).

a https://orcid.org/0000-0002-6063-1264
∗This work was partially funded by NTNU Excited, a

university centre for excellent IT education.
1https://grader.mathworks.com

Being online, students can work with the assign-
ments anywhere, anytime, and submit solutions as
many times as they please. The submitted solu-
tions of students are autograded on the fly, given that
the teacher has created a number of suitable tests
(called “assessments” in MATLAB Grader) before-
hand. Upon autograding, a student will get immedi-
ate feedback about the passed or failed tests, and op-
tionally, also the correct answers or hints about what
needs to be changed in the student’s code.

Likely because of its recent availability, there are
virtually no reports in the scientific literature regard-
ing MATLAB Grader. A search on Google Scholar
for the phrase ’MATLAB Grader’ returns only about
15 written works, none of which have been cited by
others.

Nevertheless, the ability of MATLAB Grader to
offer repeated submissions, autograding, and imme-
diate feedback is highly popular and motivating for
students and increase the degree of completeness and
correctness of the students’ submitted work, as we
have noted in our Cyber-Physical Systems Labora-
tory2 (CPS Lab) from work on both flipped class-
room teaching approaches (Bye, 2018, 2017) and
from teaching electrical and computer engineering
undergraduate courses (Bye and Osen, 2019; Osen
and Bye, 2018). Our findings are further cemented

2https://www.ntnu.no/blogger/cpslab/

406
Bye, R.
The MATLAB Grader Test Generator: A Teacher’s Tool for Generating Autograding Tests of MATLAB Scripts.
DOI: 10.5220/0009517904060413
In Proceedings of the 12th International Conference on Computer Supported Education (CSEDU 2020) - Volume 2, pages 406-413
ISBN: 978-989-758-417-6
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

in the relevant literature (e.g., Gramoli et al., 2016;
Ala-Mutka, 2005; Cheang et al., 2003; Venables and
Haywood, 2003), with a particular interesting topic
being that of autogenerating more detailed and ad-
vanced feedback than simply right or wrong answers
(Singh et al., 2013).

When creating a coding assignment in MATLAB
Grader, the teacher must create a solution script and
an accompanying learner template script, the latter of
which has selected variables with the correct answer
removed. The task for students is then to ’fill in the
blanks’ in the template, performing intermediate op-
erations and calculations if needed, and submit the
script as their solution.

In addition to making the scripts, the teacher must
configure a number of tests manually in the web
browser, using pull-down menus and entering text
defining which variables should be tested for cor-
rectness, and optionally adding some corrective feed-
back comments or hints for incorrect answers. The
backend of MATLAB Grader will then compare (au-
tograde) the values of the variables in the student’s
script with those of the teacher’s solution script and
provide feedback to the student.

From the teacher’s point of view, a major draw-
back with this procedure is the lack of an application
programming interface (API). Manually configuring
the tests is a tedious process, especially for larger
coding assignments. Moreover, it is common in the
process that the teacher decides that some variables
need renaming, reordering, or removal; new variables
must be added; or new tests must be added or old
tests removed. In these cases, the teacher must manu-
ally work through the test configuration environment
in order to perform such updates, clicking on pull-
down menus and updating information. With a well-
designed API and/or a suitable backend, a default set
of tests could have been autogenerated on the basis of
the teacher’s solution script and template script, se-
lecting variables common in both scripts as default
comparison tests. The teacher would then only have
to update and maintain these two scripts. Optionally,
a feature could be implemented that also gives the
teacher an option to only test a subset of the default
tests.

The MATLAB Grader Test Generator has been de-
veloped as an attempt to circumvent the lack of such
an API and backend and ease the burden of creating
coding assignments in MATLAB Grader. The tool is
open-source and freely available on the MATLAB File
Exhange3 and on GitHub (Bye, 2020) and was se-
lected by MathWorks as the File Exchange Pick of

3https://se.mathworks.com/matlabcentral/fileexchange

the Week4 in April, 2019.
In the following, I present the method used for de-

veloping the tool (Section 2), demonstrate the end re-
sult and example usage (Section 3), and discuss limi-
tations and room for improvement, before some con-
cluding remarks (Section 4).

2 METHOD

For illustration, consider a toy example, where stu-
dents should calculate the area and circumference of
a circle, a right triangle, and a rectangle, respec-
tively. The teacher’s reference solution and the stu-
dents’ learner template are given in Listings 1 and 2,
respectively.

Listing 1: Example reference solution.

%% Reference Solution
% Circle
r = 2;
areaCircle = pi*r^2;
circumferenceCircle = 2*pi*r;

% Right triangle
a = 3; b = 4; c = 5;
areaTriangle = (1/2)*a*b;
circumferenceTriangle = a+b+c;

% Rectangle
x = 6; y = 7;
areaRectangle = x*y;
circumferenceRectangle = (2*x)+(2*y);

Listing 2: Example learner template.

%% Learner Template
% Circle
r = 2;
areaCircle = 'enter answer here';
circumferenceCircle = 'enter answer here';

% Right triangle
a = 3; b = 4; c = 5;
areaTriangle = 'enter answer here';
circumferenceTriangle = 'enter answer here';

% Rectangle
x = 6; y = 7;
areaRectangle = 'enter answer here';
circumferenceRectangle ='enter answer here';

In earlier versions of MATLAB Grader, the teacher
was given a default testing code snippet in which the
default variable name, x, to be tested had to be re-
placed two places in the code (see Listing 3).

4https://blogs.mathworks.com/pick/2019/04/12/matlab-
grader-test-assessment-generator/

The MATLAB Grader Test Generator: A Teacher’s Tool for Generating Autograding Tests of MATLAB Scripts

407

Listing 3: MATLAB Grader testing code snippet.

% Get reference solution for x.
xReference = referenceVariables.x;

% Compare with learner solution.
assessVariableEqual('x', xReference);

This process had to be repeated for every variable to
be tested. Whilst the web user interface of MATLAB
Grader has improved since the development of the
tool presented here, the teacher still has to click to
add a test, optionally give it a name, write the name
of the variable to be tested (e.g., areaCircle in the
toy example), and repeat for the next variable.

The MATLAB Grader Test Generator has been de-
veloped to improve this process and comes with two
main modes of operation: (i) an app with a graph-
ical user interface (GUI) for autogenerating assess-
ment code for multiple tests that can be pasted into
the MATLAB Grader web interface; and (ii) an all-in-
one script that tests all variables within a single MAT-
LAB Grader test. The two modes are further described
below.

2.1 The App

The main goal when developing the test generator app
was to autogenerate a list of testing code snippets to
be inserted into MATLAB Grader, each corresponding
to a variable to be tested. The app achieves this by
comparing the solution script and template script and
identifying variables common for both scripts. This
list of variables is further post-processed by remov-
ing variables that the teacher identifies in an exclusion
list. Finally, a text file is produced with code snip-
pets separated by double blank lines for readability
and easy selection of text for copy and paste opera-
tions. Each code snippet corresponds to test code for
a variable and can be pasted into the MATLAB Grader
assessment environment. In earlier versions of MAT-
LAB Grader, performing such a sequence of copy and
paste operations was significantly faster (in the ball-
park of 2–3 times faster) than configuring the test us-
ing the built-in functionality in MATLAB Grader, es-
pecially for larger problems with more than 100 vari-
ables, say. With recent improvements in the user in-
terface of MATLAB Grader, the speed-up advantage is
smaller and just a little faster but still has the advan-
tage that performing the copy and paste operations re-
quires a smaller cognitive load and concentration on
behalf of the teacher.

2.2 All-in-One Test Script

As an alternative to the app solution above, an assess-
ment script has been developed that can be inserted
into a single MATLAB Grader test, testing all vari-
ables of interest in one go. The script compares all
common variables in the student’s submission with
those of the teacher’s solution, excluding any variable
in the solution script that contains the character string
exclude in its variable name. The number of cor-
rect test answers are added up and printed together
with the total number of tests. The speed-up when
compared to configuring each test individually is vast,
and approximately equal to an n-times improvement,
where n is the number of variables to be tested. The
script is included in the appendix of this paper.

3 RESULTS

An example of using the standard method for creating
tests in MATLAB Grader is shown in Figure 1, where
the test is configured for the variable areaCircle
from the toy example presented previously. Running

Figure 1: Standard method for creating a test in MATLAB
Grader.

this test will either show a green check symbol in-
dicating that the answer was correct, or a red cross
and a message saying the answer was incorrect, as
depicted in Figure 2 (the student used the incorrect
formula r ·π2 for the area of a circle). Note that the
option ’Pre-test’ must be selected, otherwise even this
simple message will not be displayed.

Figure 2: Standard message for wrong answer in MATLAB
Grader.

CSEDU 2020 - 12th International Conference on Computer Supported Education

408

Figure 3: MATLAB Grader Test Generator user interface.

3.1 Using the App

A screenshot of the MATLAB Grader Test Generator
app is provided in Figure 3. The user selects a so-
lution script (here: Listing 1), a template script (here:
Listing 2), and a location of a text file on the computer
where the autogenerated list of testing code snippets
should be stored (here: \Tests.txt). Variables not
to be tested can be entered in the Exclude tab (here:
variables r, a, b, c, x, y). Upon clicking Generate,
the app appends a list of testing code snippets into
the text file, each of which can be pasted into MAT-
LAB Grader. The code snippet for testing the variable
areaCircle is shown in Figure 4.

Running the test (again, the option ’pre-test’ must
be checked), will result in the output shown in Fig-
ure 5.

Figure 4: Inserting testing code snippet in MATLAB Grader.

Figure 5: Running testing code snippet in MATLAB Grader.

3.2 Using the All-in-One Test Script

Using the all-in-one testing script requires the user to
simply paste the script into the testing code window
for a single test in MATLAB Grader (not shown due
to space considerations). For an example student sub-
mission with all answers correct except for the area
of the circle, the results in the output for all variable
tests will be shown in the single-test output window
in MATLAB Grader as depicted in Listing 4.

The MATLAB Grader Test Generator: A Teacher’s Tool for Generating Autograding Tests of MATLAB Scripts

409

Listing 4: Output from all-in-one testing script.

areaCircle =
1.9739e+01

ans =
1.2566e+01

msg =
'areaCircle has an incorrect value.'

Test 1 of 6: NOT PASSED!
−−−
areaRectangle =

42
ans =

42
Test 2 of 6: PASSED!
−−−
areaTriangle =

6
ans =

6
Test 3 of 6: PASSED!
−−−
circumferenceCircle =

1.2566e+01
ans =

1.2566e+01
Test 4 of 6: PASSED!
−−−
circumferenceRectangle =

26
ans =

26
Test 5 of 6: PASSED!
−−−
circumferenceTriangle =

12
ans =

12
Test 6 of 6: PASSED!
−−−
−−−
Total Score: 5 / 6
−−−

4 DISCUSSION

There are advantages and drawbacks of the three ap-
proaches presented above. Using the standard built-
in method for generating tests in MATLAB Grader is
generally preferable for smaller coding problems and
when the teacher do not want to display correct an-
swers (and student answers) to students. In addition,
if MATLAB Grader is linked to an LMS such as Black-
board, the points scored on each test are accumulated
and passed on to the grading system in the LMS.

Using the MATLAB Grader Test Generator app has
the additional advantage of autogenerating more feed-
back to students in the form of displaying both the

correct solution and the student solution, and, in ear-
lier versions of MATLAB Grader, enabled much faster
configuration of tests, especially for larger problems
with many variables. With the recently improved in-
terface of MATLAB Grader, the speed advantage is
nearly vanished but there is still the advantage of less
cognitive load required when performing a series of
copy and paste operations as compared to manually
typing in a series of unique variable names.

Moreover, although not shown, it is fairly easy to
modify and extend the app to display even more in-
formation, for example it is trivial to display the error
(absolute and/or percentage), the correct formula for
each variable (if desired), or other feedback to stu-
dents.

Using the all-in-one test script has one major ad-
vantage over the other two approaches, namely a huge
speed-up. The script can be pasted into a single-test
configuration window for any MATLAB Grader prob-
lem and will automatically test all common variables
in the student’s solution versus the teacher’s solution.
Hence, the teacher can reduce the time for configura-
tion of tests to approximately the fraction 1/n com-
pared to configuring n tests separately. In addition,
as for the app, the script can easily be modified to in-
clude more feedback information to students.

However, the all-in-on script has one major draw-
back. Configuring all variable tests inside a single
MATLAB Grader test means that if one or more ’in-
ternal’ tests fail, the overall MATLAB Grader test will
report a failed test (score of zero) to an external LMS.
Hence, the teacher must manually inspect each stu-
dent’s submission and the reported score, and update
the gradebook in the LMS.

4.1 Future Work

Ideally, to better enable the work-around functionality
described in this paper, MathWorks should either im-
prove the MATLAB Grader platform with an API that
allows teachers to customize and autogenerate tests,
and/or a suitable backend for the same.

Another option is to investigate whether one can
design a computer program that can parse the text file
with code snippets generated by the MATLAB Grader
Test Generator app and can interact with the MATLAB
Grader website and configure the tests automatically.
In our CPS Lab, we have done some preliminary ex-
aminations using various form-filling software freely
available but so far we have been unsuccessful with
this approach. Furthermore, such a ’hacked’ solution
would easily become broken the moment the imple-
mentation of the MATLAB Grader website changes.

Finally, it should be noted that MATLAB Grader

CSEDU 2020 - 12th International Conference on Computer Supported Education

410

is still a quite new platform with limited adoption
amongst teachers. it will be interesting to hear user
stories from teachers trying out the tool in the future.

5 CONCLUSIONS

I have presented the MATLAB Grader Test Genera-
tor, a free and open-source tool for simplifying and
speeding-up the somewhat laborious process of con-
figuring the autograding environment in MATLAB
Grader. The tool consists of a graphical app and a
script, both of which have their merits as presented
above. With some basic programming skills, teach-
ers can customize both the app and the script to their
liking, e.g., for adding autogenerated feedback infor-
mation to students. Whereas the tool successfully cir-
cumvents current limitations in the MATLAB Grader
platform, future updates in MATLAB Grader might
break functionality. Additionally, there might be a
technical threshold preventing some teachers from
delving into using and customizing the tool. Hence,
MathWorks should instead improve the MATLAB
Grader platform, offering both a well-documented
API and a more extensive variety of options for con-
figuring assessment tests, including autogeneration of
tests on the basis of a solution script and learner tem-
plate script provided by the teacher.

ACKNOWLEDGEMENTS

I wish to thank Sivert Løken, a graduate of the bach-
elor of automation engineering programme at NTNU
in Ålesund, for his code development in this project.
In addition, I wish to thank my colleague Ottar L.
Osen for his useful input during the development
phase and the write-up of this paper. Finally, I am
thankful for the financial support from NTNU Ex-
cited,5 a Norwegian university centre for excellent IT
education.

REFERENCES

Ala-Mutka, K. M. (2005). A survey of automated assess-
ment approaches for programming assignments. Com-
puter Science Education, 15(2):83–102.

Bye, R. T. (2017). The Teacher as a Facilitator for Learn-
ing: Flipped Classroom in a Master’s Course on Arti-
ficial Intelligence. In Proceedings of the 9th Interna-
tional Conference on Computer Supported Education

5https://www.ntnu.edu/excited

— Volume 1: CSEDU), pages 184–195. INSTICC,
SCITEPRESS.

Bye, R. T. (2018). A Flipped Classroom Approach for
Teaching a Master’s Course on Artificial Intelligence.
In Escudeiro, P., Costagliola, G., Zvacek, S., Uho-
moibhi, J., and McLaren, B. M., editors, Computer
Supported Education: CSEDU 2017 — Revised Se-
lected Best Papers, volume 865 of Communications
in Computer and Information Science (CCIS), pages
246–276. Springer International Publishing.

Bye, R. T. (2020). MATLAB Grader Test Genera-
tor. https://github.com/NTNU-IE-IIR/matlab-grader-
test-generator.

Bye, R. T. and Osen, O. L. (2019). On the Development
of Laboratory Projects in Modern Engineering Educa-
tion. In Proceedings of the IEEE Global Engineering
Education Conference (EDUCON 2019), pages 1327–
1334.

Cheang, B., Kurnia, A., Lim, A., and Oon, W. (2003).
On automated grading of programming assignments
in an academic institution. Computers & Education,
41(2):121–131.

Gramoli, V., Charleston, M., Jeffries, B., Koprinska, I.,
McGrane, M., Radu, A., Viglas, A., and Yacef, K.
(2016). Mining autograding data in computer science
education. In Proceedings of the Australasian Com-
puter Science Week Multiconference, ACSW ’16, New
York, NY, USA. Association for Computing Machin-
ery.

IMS Global Learning Consortium (2020).
Learning Tools Interoperability.
http://www.imsglobal.org/activity/learning-tools-
interoperability, accessed on 2019-02-03.

MathWorks (2020a). Company Overview.
https://se.mathworks.com/company/aboutus.html,
accessed on 2020-02-03.

MathWorks (2020b). MATLAB Grader Documentation.
https://www.mathworks.com/help/matlabgrader/, ac-
cessed on 2019-02-03.

Osen, O. L. and Bye, R. T. (2018). Observations and Reflec-
tions on Teaching Electrical and Computer Engineer-
ing Courses. In Escudeiro, P., Costagliola, G., Zvacek,
S., Uhomoibhi, J., and McLaren, B. M., editors, Com-
puter Supported Education: CSEDU 2017 — Revised
Selected Best Papers, volume 865 of Communications
in Computer and Information Science (CCIS), pages
363–389. Springer International Publishing.

Singh, R., Gulwani, S., and Solar-Lezama, A. (2013).
Automated feedback generation for introductory pro-
gramming assignments. In Proceedings of the 34th
ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’13, page
15–26, New York, NY, USA. Association for Com-
puting Machinery.

Venables, A. and Haywood, L. (2003). Programming stu-
dents need instant feedback! In Proceedings of the
Fifth Australasian Conference on Computing Educa-
tion - Volume 20, ACE ’03, page 267–272, AUS. Aus-
tralian Computer Society, Inc.

The MATLAB Grader Test Generator: A Teacher’s Tool for Generating Autograding Tests of MATLAB Scripts

411

APPENDIX

The all-in-one test script presented in this paper is included in Listing 5.

Listing 5: All-in-one testing script.

1 % Excludes every variable containing the terms found inside the parenthesis.
2 tempnames = who('−regexp','(?i)^(?=\w*(fig|exclude))\w*');
3 % Exclude variables not to check.
4 % Primarily variables not common in workspace and reference solution.
5 % Place variable here if you get non−existing reference error.
6 % Figures are not testable.
7 noCheck = {'r','a','b','c','x','y',...
8 'tempnames','noCheck','noCheckPat','referenceVariables','seed', 'ii'};
9 for ii = 1:length(tempnames)

10 noCheck{end+1} = char(tempnames(ii));
11 end
12 % Combines noCheck and tempnames to a regex pattern.
13 noCheckPat = (['^(?!(' strjoin(noCheck, '|') ')$).']);
14 % Import variables from virtual workspace to a struct.
15 % Excluding figures and all variables with keyword exclude and some static variables.
16 varnames = whos('−regexp', noCheckPat);
17 tol = 0.001; % Set tolerance, 0.001 = 0.1% relative tolerance.
18 format compact % Set output format. Either 'compact' or 'loose'.
19 format shortE % Set output format. See documentation for various types.
20 nodisplays = {}; % Excluding variables to not display due to length, readability etc.
21 counterTP = 0; % Counter for tests passed
22 counterER = 0; % Counter for errors
23 counterNC = 0; % Counter for noCheck variables
24 for ii = 1:numel(varnames)
25 if ismember(varnames(ii).name, noCheck)
26 disp(['Test ' num2str(ii) ' of ' num2str(length(varnames))])
27 disp(['−Not testable−'])
28 counterNC = counterNC + 1;
29 disp('−− ')
30 continue;
31 else
32 try
33 % for ii = 1 −> referenceVariables.numg
34 refV = ['referenceVariables.' varnames(ii).name];
35 % Returns a [n m] vector where n is the number of lines the variable contains.
36 n = size(eval(refV));
37 ns = varnames(ii).size;
38 % evalc returns character array of variable.
39 % Limit output to 100 char and 3 lines.
40 if (ismember(varnames(ii).name, nodisplays) || ...
41 (length(evalc(refV)) > 100) || ...
42 (n(1) > 4) || (ns(1) > 4) || ...
43 (length(evalc(varnames(ii).name)) > 100))
44 disp([varnames(ii).name ' ='])
45 disp(' ... answer too long to display')
46 else
47 eval(varnames(ii).name)
48 eval(refV)
49 end
50 assessVariableEqual(varnames(ii).name, eval(refV), ...
51 'RelativeTolerance', tol)
52 disp(['Test ' num2str(ii) ' of ' num2str(length(varnames)) ...
53 ': PASSED!'])
54 counterTP = counterTP + 1;
55 disp('−− ')
56
57 catch ME

CSEDU 2020 - 12th International Conference on Computer Supported Education

412

58 msg = getReport(ME, 'basic');
59 if contains(msg, 'Variable')
60 msgFiltered = extractAfter(msg, 'Variable');
61 msg = strtrim(msgFiltered)
62 else
63 msg
64 end
65 switch ME.identifier
66 case 'MATLAB:nonExistentField'
67 continue;
68 case 'AssessmentToolbox:Feedback:SizeMismatch'
69 disp(['Test ' num2str(ii) ' of ' num2str(length(varnames)) ...
70 ': NOT PASSED!'])
71 disp('−− ')
72 counterER = counterER +1;
73 continue;
74 case 'AssessmentToolbox:Feedback:ValueMismatch'
75 disp(['Test ' num2str(ii) ' of ' num2str(length(varnames)) ...
76 ': NOT PASSED!'])
77 disp('−− ')
78 counterER = counterER +1;
79 continue;
80 case 'AssessmentToolbox:Feedback:DataTypeMismatch'
81 disp(['Test ' num2str(ii) ' of ' num2str(length(varnames)) ...
82 ': NOT PASSED!'])
83 disp('−− ')
84 counterER = counterER +1;
85 continue;
86 otherwise
87 msg = getReport(ME, 'extended')
88 rethrow(ME)
89 end
90 end
91 end
92 end
93 studentScore = num2str(counterTP + counterNC);
94 totalScore = num2str(counterTP + counterER + counterNC);
95 disp('−− ')
96 disp(['Total Score: ' studentScore ' / ' totalScore])
97 disp('−− ')
98 if (studentScore == totalScore)
99 disp(['All tests passed'])

100 else
101 msgID = 'CODY:InsufficientScore';
102 msg = 'Not all answers are correct';
103 baseException = MException(msgID, msg);
104 throw(baseException)
105 end

The MATLAB Grader Test Generator: A Teacher’s Tool for Generating Autograding Tests of MATLAB Scripts

413

