
A Workflow for Automatically Generating Application-level Safety
Mechanisms from UML Stereotype Model Representations

Lars Huning, Padma Iyenghar and Elke Pulvermueller
Institute of Computer Science, University of Osnabrück, Wachsbleiche 27, 49090 Osnabrück, Germany

Keywords: Code Generation, Embedded Software Engineering, Embedded Systems, Functional Safety, Model-Driven
Development, Voting.

Abstract: Safety-critical systems operate in contexts where failure may lead to serious harm for humans or the environ-
ment. Safety standards, e.g., IEC 61508 or ISO 26262, provide development guidelines to improve the safety
of such systems. For this, they recommend a variety of safety mechanisms to mitigate possible safety hazards.
While these standards recommend certain safety mechanisms, they do not provide any concrete development
or implementation assistance for any of these techniques. This paper presents a detailed workflow, how such
safety mechanisms may be automatically generated from UML model representations in a model-driven de-
velopment process. We illustrate this approach by applying it to the modeling and automatic generation of
voting mechanisms, which are a wide-spread safety mechanism in safety-critical systems that employ some
form of redundancy for fault detection or fault masking. Finally, we study the scalability of the proposed code
generation via quantitative experiments.

1 INTRODUCTION

Safety-critical systems are a category of systems
whose failure may result in serious harm to human
life or the environment (Armoush, 2010). In recent
years, the size and complexity of the software used in
those systems has increased rapidly (Trindade et al.,
2014). In order to deal with the challenges arising
from this increased complexity, the use of Model-
driven development (MDD) has been proposed for
the development of safety-critical systems (Hatcliff
et al., 2014; Heimdahl, M. P. E., 2007). This pa-
per presents a model-driven approach for the develop-
ment of safety-critical systems by using Unified Mod-
eling Language (UML) stereotypes to specify safety
mechanisms within a UML application model. The
level of detail of these stereotypes is sufficient to au-
tomatically generate productive source code for the
specified safety mechanisms via adequate model-to-
model transformations.

Modern MDD tools, such as IBM Rational Rhap-
sody (Rhapsody, 2020) or Enterprise Architect (En-
terprise Architect, 2020), already provide features
that enable the automatic code generation of basic
UML elements, such as classes and associations. As
source code may be generated automatically from
such application models, the model itself may be seen

as a form of implementation. Our approach builds
upon these features, by specifying one or more safety
mechanisms via UML stereotypes within this appli-
cation model. Then, our approach performs model-
to-model transformations by parsing these stereotypes
and adding UML elements related to the safety mech-
anism to an intermediate application model. The in-
termediate model consists of the original application
model manually designed by the developer, as well as
the safety-related UML elements added by the model-
to-model transformations. We use the term interme-
diate model, to emphasize that this model is just a
temporary and automatically generated artifact which
is used as the input for subsequent code generation.
The code generation itself may be achieved via the
code generation features of common MDD tools, as
the intermediate model already contains all elements
required for the code generation of the safety mech-
anisms. This paper introduces a detailed workflow
which explains the steps required to implement the
described approach for any safety mechanism. Ini-
tial, promising results regarding the application of
this workflow have already been reported in (Huning
et al., 2019, 2020). However, this is the first time the
workflow itself is described in detail.

Besides introducing a workflow for the auto-
matic code generation of safety mechanisms via UML

216
Huning, L., Iyenghar, P. and Pulvermueller, E.
A Workflow for Automatically Generating Application-level Safety Mechanisms from UML Stereotype Model Representations.
DOI: 10.5220/0009517302160228
In Proceedings of the 15th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2020), pages 216-228
ISBN: 978-989-758-421-3
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

stereotypes, this paper provides an example usage of
this workflow. By providing a model representation
and automatic code generation for the widely-used
voting mechanisms, we not only illustrate the applica-
tion of our workflow, but also provide a second, novel
contribution in this paper.

In summary, this paper introduces the following,
novel contributions:

• A detailed workflow describing how a safety
mechanism may be modeled with UML stereo-
types and how this model representation may be
leveraged to automatically generate code for this
safety mechanism.

• A model representation and automatic code gen-
eration for a widely-used safety mechanism, i.e.,
voting mechanisms.

• Experimental evaluation for the scalability of our
approach.

The remainder of this paper is structured as follows:
Section 2 presents necessary background knowledge
on code generation via MDD, as well as basic safety
aspects. Based on this knowledge, section 3 intro-
duces an MDD workflow for the automatic gener-
ation of safety mechanisms from UML stereotypes.
Section 4 provides an exemplary usage of this work-
flow by describing a MDD approach for the automatic
code generation of voting mechanisms. The scalabil-
ity of this approach is investigated in section 5. Sec-
tion 6 presents research related to our approach and
we provide a conclusion in section 7.

2 BACKGROUND

This section presents the current state of the art of
modern MDD tools and describes which of these fea-
tures are used in our approach. Additionally, we
give a short overview regarding the certification re-
quirements for safety-critical software and the role of
safety standards in this process.

2.1 Automatic Code Generation from
Models

Current MDD tools, e.g, (Rhapsody, 2020; Enterprise
Architect, 2020), provide an integrated development
environment for modeling applications via UML and
automatically generating productive source code from
the application models. The extent of this code gen-
eration varies between tools, but they are generally
able to generate structural code from UML class dia-
grams. Classes, the signature of operations, as well as

attributes and associations in a class diagram are usu-
ally transformed to classes, method declarations and
member variables respectively in the target program-
ming language of the code generation. In this paper,
we provide examples with C++ as the target language
for code generation. We choose C++, as C or C++
are a common programming language for the imple-
mentation of safety-critical systems. However, our
approach only makes use of common object-oriented
programming concepts, such as classes. Thus it
may easily be transferred to other object-oriented lan-
guages.

The automatic code generation of current MDD
tools for dynamic behavior differs more widely be-
tween tools than the structural code generation de-
scribed above. Most tools support the feature of im-
plementing the body of operations textually in the tar-
get programming language. Some tools, e.g., (Rhap-
sody, 2020), also support automatic code generation
from behavioral UML diagrams, such as the state ma-
chine diagram or the activity diagram. However, the
code generated from these behavioral diagrams is of-
ten dependent upon a runtime execution framework
that is proprietary to the tool in which the diagram is
modeled. As we do not want to limit our solution to a
specific MDD tool, we only use the feature of speci-
fying the body of operations textually.

The MDD tools described above use UML as their
modeling language. Some authors argue that UML
is a sub-optimal modeling language to facilitate au-
tomatic code generation and propose their own alter-
natives, e.g., (Harrand et al., 2016). While they re-
port positive initial results based on feedback from
developers, these results are based on a handful of (in-
dustrial) case studies. It remains to be seen whether
their approaches gain a similar wide-spread accep-
tance among developers as UML does currently. The
workflow presented in section 3.2 remains compatible
with any modeling languages, as long as they contain
a mechanism for extending the modeling language
similar to UML stereotypes.

Stereotypes are an inbuilt feature of UML that
may be used to extend any metaclass in the UML
metamodel (OMG UML, 2017). Each stereotype may
contain a set of tagged values, that specify additional
attributes for the stereotype and allow for different
configurations of the same stereotype. A UML pro-
file may be used to group related stereotypes that are
defined for specific purpose.

2.2 Safety

Due to its possible impact on human life and the
environment, the market for safety-critical systems

A Workflow for Automatically Generating Application-level Safety Mechanisms from UML Stereotype Model Representations

217

is partially regulated. Usually, products have to be
certified by a regulation body before they may en-
ter the market. A part of this certification process
is the conformance to certain safety standards, e.g.,
ISO 26262 (ISO26262, 2018) in the automotive in-
dustry or IEC 62304 (IEC62304, 2011) in the med-
ical industry. If there does not exist a sector spe-
cific standard, IEC 61508 (IEC61508, 2010) often ap-
plies, which is a safety standard targeting the safety of
general electrical/electronic/programmable electronic
systems. IEC 61508 is also the basis for other safety
standards, such as ISO 26262. While some safety
standards, e.g., IEC 62304, mainly require that a cer-
tain development process is used to develop a safety-
critical product, many of the latest standards, e.g, ISO
26262 and IEC 61508, require specific documentation
of the possible safety hazards that may arise due to
the use of a specific safety-critical system and which
measures have been taken to mitigate these. This sen-
timent is also reflected by the safety research commu-
nity (Hatcliff et al., 2014).

Besides prescribing this sort of documentation,
some safety standards also recommend specific safety
mechanisms that have been proven in use for some
well known classes of hazards. For example, IEC
61508 recommends the use of error correcting codes
or other redundancy mechanisms to protect variable
memory ranges against transient soft errors. Such soft
errors, which manifest as bit-flips within the memory,
may occur due to radiation effects triggered by cos-
mic rays or alpha particles emitted by the packaging
material of the device (Huning et al., 2019).

In this paper, we propose a workflow which il-
lustrates the modeling representation of these safety
mechanisms via UML stereotypes. Further, this
model representation may be used to automatically
generate productive source code for a given safety
mechanism. This complements other parts of the
safety standards, e.g., IEC 61508, which recommends
techniques for automatic code generation and the use
of computer-aided design tools, thereby greatly im-
proving the process of developing software for safety-
critical systems in accordance with the relevant stan-
dards.

3 WORKFLOW

This section describes a workflow to enable the auto-
matic code generation of safety mechanisms based on
UML stereotype model representations. It is divided
into two different perspectives. In order to provide
an overview of our approach, section 3.1 presents the
perspective of a developer DA implementing a spe-

Figure 1: UML 2.5 activity diagram showing the workflow
of a developer who uses the results of the workflow pre-
sented in section 3.1.

cific safety-critical system. The developer uses UML
stereotypes to indicate safety mechanisms in the ap-
plication model and to generate code. Section 3.2
presents the perspective of a developer DB who aims
to provide a MDD-based framework that is responsi-
ble for the model representation and code generation
of the safety mechanisms used by developer DB.

3.1 Workflow for using Automatic Code
Generation for Safety Mechanisms
based on UML Stereotypes

Before we describe a workflow for providing auto-
matic code generation for safety mechanisms based
on UML steretoypes (cf. section 3.2), we first de-
scribe how the results of that workflow may be used
by developers to include safety mechanisms within a
specific safety-critical application.

The workflow, from the perspective of the devel-
oper of a specific safety-critical application, is shown
in figure 1. While actions 1 and 2 of the workflow
have to be performed manually by the developer, ac-
tions 3 and 4 are automated in our approach. Each of
the actions is described in the following:

• At the start of the workflow (action 1), the devel-
oper creates a UML application model of the ap-
plication based on a functional requirements spec-
ification. Our approach assumes that this model
is created with a tool that provides at least basic
code generation for UML elements, e.g., (Rhap-
sody, 2020) or (Enterprise Architect, 2020).

• After the developer has created the application

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

218

model, he annotates the model with safety infor-
mation based on a safety requirements specifica-
tion (action 2). In our approach, this safety infor-
mation is represented by applying UML stereo-
types to the relevant model elements. The avail-
able stereotypes originate from the workflow de-
scribed in section 3.2 and may be chosen from a
UML profile in which the safety-related stereo-
types are grouped.

• The application model with safety information
serves as the input for a chain of model-to-
model transformations (action 3). In each step
of these transformations, the information of a
safety related stereotype is parsed and model-
to-model transformations are performed. These
model transformations realize the specified safety
mechanism in an intermediate application model.
This intermediate application model already ful-
fills each requirement of the safety requirement
specification.

• The intermediate model may be used as the in-
put for model-to-text transformations (code gen-
eration, action 4). Depending on the extent of the
model transformations from action 3, this may ei-
ther be achieved via basic code generation from
common UML tools like Rhaposdy, or it may re-
quire additional, specialized model-to-text trans-
formations that have been specified as part of the
workflow described in section 3.2. The result of
this step is productive source code that may sub-
sequently be compiled and run on the target plat-
form.

3.2 Workflow for Providing Automatic
Code Generation for Safety
Mechanisms based on UML
Stereotypes

This section describes a workflow to enable the auto-
matic code generation of safety mechanisms based on
UML stereotype model representations. It is one of
the novel contributions of this paper and the basis for
performing the actions described in section 3.1.

The workflow is presented as a UML activity dia-
gram shown in figure 2. In the following, we describe
each action of this workflow.

Action 1: Identification of a Safety Mechanism

As the first action of the workflow, a safety mecha-
nism that is suitable for automatic code generation has
to be identified. As described in section 2.2, safety

Figure 2: UML 2.5 activity diagram showing a workflow for
providing automatic code generation of safety mechanisms
based on UML stereotypes.

standards list a variety of safety mechanisms and pro-
vide information for the circumstances in which each
mechanism should be used. These safety mechanisms
have been included in the standards, as they have been
found useful for the development of many safety-
critical applications. Therefore, automatic code gen-
eration for a safety mechanism from a safety standard
is likely applicable to many safety-critical applica-
tions.

While the standards provide safety mechanisms
for a great variety of safety hazards, other hazards
may arise in individual safety-critical applications.
These hazards may require additional safety mech-
anisms that are not covered in a safety standard.
Such hazards and their mitigating safety mechanisms
may be identified through industrial collaboration or
searching relevant literature on safety-critical sys-
tems.

Besides simply identifying safety mechanisms, it
is also important that the mechanism is suitable for
automatic code generation. Conditions for this suit-
ability are further described in action 4 (code genera-
tion).

Action 2: Gathering Relevant Information

Once a safety mechanism has been identified, it is
necessary to gather relevant information about the
mechanism. In the following, we present some ex-
amples what such relevant information might entail:

• Identify Possible Configuration Parameters of
the Safety Mechanism. Some safety mecha-
nisms have configuration parameters that deter-
mine their level of effectiveness from a safety per-
spective. Often, this level of effectiveness is cor-

A Workflow for Automatically Generating Application-level Safety Mechanisms from UML Stereotype Model Representations

219

related to the runtime and/or memory overhead in-
curred by using the safety mechanisms. For exam-
ple, the M-out-of-N pattern, as described in (Ar-
moush, 2010), requires a parametrization regard-
ing how many instances (M) of a collection of re-
dundant copies (N), need to agree with each other
in order to assume that the system is operating in
a non-erroneous manner. Such parametrizations
have to be considered during the modeling (action
3) and code generation (action 4) actions of the
workflow.

• Identify Possible Variants of the Selected Safety
Mechanism. Some safety mechanisms may be
categorized as an abstract group of related mech-
anisms. Often, code generation for these related
mechanisms is similar and may therefore be de-
signed and implemented at the same time with
only little additional effort as opposed to design-
ing and implementing only a specific variant. An
example for this are the voting mechanisms de-
scribed in section 4 of this paper. The model rep-
resentation and code generation for different vot-
ing techniques (e.g., majority voting and plurality
voting) are very similar and may be implemented
with only little development and research over-
head.

• Identify Existing Model Representations. For
some safety mechanisms, model representations
may already exist. Depending on whether this
model representation already uses UML stereo-
types, this representation may either be adopted or
may serve as an inspiration for designing a model
representation based on UML stereotypes.

• Identify Existing Design Patterns and Software
Architectures. For some safety mechanisms, there
may already be design patterns or software archi-
tectures available that may be used as an inspi-
ration for the generated source code. For exam-
ple, existing design patterns for the safety mech-
anism graceful degradation have been used as the
basis for the code generation described in (Huning
et al., 2020).

Action 3: Designing a Suitable Model Representa-
tion

The information researched in action 2 may subse-
quently be used to design a model representation of
the selected safety mechanism based on UML stereo-
types. This encompasses two steps that depend upon
each other.

The first step is to determine which information
may be represented as tagged values inside a UML
stereotype. Numeric data and simple strings that only

change a single parameter in the code generation are
suitable candidates for this. If there are variants of
the safety mechanism that (slightly) differ in context,
these variants may be modeled by introducing sev-
eral stereotypes that inherit from a top-level stereo-
type. Such an approach has been presented in (Hun-
ing et al., 2019) and is also used in section 4.

The second step is to determine which model ele-
ments are suitable for the application of these stereo-
types. A natural candidate for this is the model ele-
ment for which the code generation is going to be per-
formed, e.g., attributes in the case of error detection at
the level of individual variables (Huning et al., 2019)
or ports in the case of graceful degradation (Huning
et al., 2020). In some cases, it is necessary to intro-
duce more than one stereotype. For example, con-
sider a safety mechanism that covers a class y which
processes input data from several classes xi. Then,
the safety mechanism may contain parameters for the
class y, as well as the classes xi. Such input dependent
parameters may be modeled not only by applying a
stereotype to the class y, but also to the classes xi, or
the associations between y and xi. If multiple stereo-
types are employed, then the tagged values from step
1 of action 3 may have to be divided suitably between
all the stereotypes. An example for an actual safety
mechanism where this is the case is presented in sec-
tion 4.

Once these stereotypes have been designed, they
may be arranged in a UML profile dedicated to the au-
tomatic code generation of the selected safety mecha-
nism (cf. section 4 for an example).

Action 4: Designing a Software Architecture Sui-
table for Automatic Code Generation

The information from action 2 may be used to de-
sign a software architecture for the safety mechanism
that is suitable for code generation. This architec-
ture should be easily extensible, because many safety
mechanisms come in variants that differ only in a spe-
cific aspect of the mechanism, e.g., the implementa-
tion of a specific function. The software architecture
should enable developers to add additional variants
with minimal overhead, e.g., by providing suitable in-
terfaces for extension.

As the generated code for the safety mechanism is
added to an existing application model, it is necessary
that the generated code integrates smoothly with this
application model. In our experience, this integration
is achieved best, when the code generation only adds
new model elements (e.g., classes, attributes) or mod-
ifies existing model elements within a very restricted
scope (e.g., modifying a private attribute within the
scope of a class). The scope is important for mod-

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

220

ifications, as a wider scope may lead to an arbitrary
number of changes within the application model. For
example, changing the constructor of a class requires
changes at each location where the class is instanti-
ated.

Another relevant characteristic of the software
architecture arises from the safety-critical applica-
tion domain. In this domain, certain error-prone
programming constructs of some programming lan-
guages should not be used in order to improve safety.
An example for this is the MISRA1-C++ standard2,
which describes such rules for the C++ programming
language. Some of these rules may have profound in-
fluence on the chosen software architecture and these
should be observed during the design of the architec-
ture. An example for this is rule 18-4-1 of MISRA-
C++, which forbids dynamic heap memory allocation.

Action 5: Designing and Implementing Model
Transformations

Once actions 3 and 4 are complete, model transforma-
tions may be implemented that parse the information
from the model representation that is the result of ac-
tion 3 and generate the source code for the software
architecture that is the result of action 4.

Similar to how the software architecture of the
generated code should be extensible (cf. action 4), the
implementation of the model transformations should
also allow for the implementation of additional vari-
ants of the safety mechanism. Parsing the information
from related variants of a safety mechanism is often
the same for each variant. Thus, extensibility may of-
ten be achieved by having a parsing process that is the
same for each variant and a transformation process
that differs between the different variants. An inter-
face that receives the parsed information may be used
to abstract the transformation process. A new variant
of a safety mechanism may then be implemented by
a realization of this interface, e.g., providing the spe-
cific source code for a method of the generated code
(cf. section 4 for an example).

The model transformations themselves may be
implemented as model-to-text (variant A) or model-
to-model (variant B) transformations. For the model-
to-model transformations, the result is an interme-
diate model which may then be the input of the
model-to-text (code generation) capabilities of com-
mon MDD tools, e.g., (Rhapsody, 2020; Enterprise
Architect, 2020). While both strategies are feasible,
we have found that variant A often includes many im-

1Motor Industry Software Reliability Association.
2MISRA C++2008. Guidelines for the use of C++ lan-

guage in critical systems.

plicit model-to-model transformations hidden in the
source code describing the model-to-text transforma-
tions. In order to make these implicit model-to-model
transformations directly visible to developers, we ad-
vocate variant B, which explicitly creates an interme-
diate model that may be viewed by developers if re-
quired.

4 GENERATING VOTING
MECHANISMS VIA MDD

This section applies the workflow described in sec-
tion 3.2 to voting mechanisms, which are a form of
safety mechanisms that are widely used in safety-
critical systems that rely on some form of redun-
dancy. By performing a voting process on the dif-
ferent redundant versions, faults may be detected or
even masked. Examples for such redundancy are the
use of multiple, redundant sensor inputs to mitigate
random errors and the use of N-version programming
to mitigate systematic errors.

On one hand this serves as an example usage of
the workflow presented in section 3.2. On the other
hand, automatic code generation for voting mecha-
nisms via MDD is itself a novel contribution of this
paper. The structure of this section mimics section 3.2
in order to show the steps and results of each action
of the workflow.

4.1 Identifying a Safety Mechanism for
Automatic Code Generation

In order to provide an example usage of the work-
flow presented in section 3.2, we use the well-
established safety standard IEC 61508 as reference
material (IEC61508, 2010). It may be used as the ref-
erence safety standard for domains in which no spe-
cific safety standards exist and is also the basis for
many domain specific standards, e.g., for ISO 26262,
which targets safety in the automotive industry.

IEC-61508 describes safety mechanisms for the
mitigation of several safety hazards. Many of these
techniques rely on homogeneous or heterogeneous re-
dundancy in order to detect errors in the system. The
output of each of these sources of redundancy may
serve as input to a voting process. There exist differ-
ent types of voting processes. For an example, con-
sider majority voting (cf. section 4.2). In this type of
voting, all inputs to the voting process are compared
with each other. If a majority of the inputs agree with
each other, then the voting is considered successful.
In this case, the value upon which the majority of the

A Workflow for Automatically Generating Application-level Safety Mechanisms from UML Stereotype Model Representations

221

inputs agreed may be used for further calculations or
control flow switches. If there is no majority between
the inputs, an application-specific error handling is
started.

Redundancy concepts and accompanying voting
processes are recommended several times in IEC
61508, e.g., for comparing outputs of processing
units or redundant memory storage. Further exam-
ples include voting over multiple, redundant sen-
sor inputs, comparing the output of different soft-
ware versions in N-version programming, and others.
As the use of voting mechanisms takes a prominent
role in IEC 61508 and is applicable to many safety-
related elements of the system (see previous exam-
ples), we choose to provide automatic code genera-
tion via MDD for voting mechanisms as an example
usage of the workflow presented in section 3.2.

4.2 Relevant Information on Voting
Mechanisms

In order to model voting mechanisms effectively, a
good understanding of the existing mechanisms is re-
quired. As a basis for this research, we used (Latif-
Shabgahi et al., 2004), which presents a taxonomy of
different voting mechanisms. Additionally, we also
consider (Armoush, 2010), which presents design pat-
terns for safety-critical systems. This includes voting
mechanisms. Additionally, we consider current ap-
proaches like (Rezaee et al., 2014; Linda and Manic,
2011) which often assign a different weight to each
voting input and dynamically update them based on
the results of the last voting process.

Based on these references, we identify two major
categories of voting mechanisms that are the focus of
our approach:

• Agreement voters, which compare the input of
each source of information and return a boolean
value depending on whether a predefined amount
of voting inputs agree with each other. If enough
inputs agree with each other, then their results
may be used as input for subsequent processing
steps.

• Calculation voters, perform one or more calcula-
tions over the input sources and return a single
value that is the result of these calculations. An
example for this is the calculation of the arith-
metic mean over each input.

In order to demonstrate our approach, we select
several well established types of voting mechanisms
from both categories and present how code for these
mechanisms may be generated automatically. Fur-
ther voting mechanisms may be added easily to our

approach by employing the extensibility mechanisms
described in sections 4.3-4.5.

Agreement Voters

The agreement voters implemented as part of this pa-
per are:
• A majority voter, which compares all inputs with

each other. The voter returns true only if the ma-
jority of inputs agree with each other.

• A plurality voter, which compares all inputs with
each other, similar to the majority voter. How-
ever, the voter returns true if a predefined number
m of inputs agree with each other. This number
m may be smaller than the strict majority of in-
puts. Often, this voter is used in a triple-modular-
redundancy fashion, where there are three voting
inputs of which at least two must agree with each
other (Armoush, 2010).

• A consensus voter, whose return value is the value
the most inputs agree upon. In contrast to the plu-
rality voter, no predefined number of inputs has to
agree with each other.

Depending on the data type of the inputs of an agree-
ment voter, it may be sufficient to simply compare
the values with each other (for example: boolean in-
puts). However, for other input spaces, like numeric
inputs, it may be necessary to additionally define a
range within which each input can agree. This is due
to rounding differences and the natural imprecision of
floating point numbers in programming.

Calculation Voters

The calculation voters implemented as part of this pa-
per are:
• A median voter, which calculates the median over

the inputs and returns this value as the result.
• An average voter, which calculates the arithmetic

mean of the inputs and returns this value as the
result.

• A weighted average voter, which calculates the
weighted arithmetic mean of the inputs and re-
turns this value as the result. This voter presents
an example for a voter that requires different
weights for each voting input, as is common
in many modern voting techniques like (Rezaee
et al., 2014).

Existing Modeling Approaches to Voting

There exist some approaches in the literature that
model voting mechanisms in UML. However, nei-
ther of these model representations are intended for

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

222

code generation and therefore may only be used as
an inspiration for our approach. These approaches
include (Zoughbi et al., 2011) and (Wu and Kelly,
2005), which apply a UML stereotype to the class that
performs the voting process. As both approaches have
a different focus, these stereotypes differ in their name
and tagged values. In (Wu et al., 2013), an industrial
case study of a safety-critical software architecture in
the avionics domain is presented. The presented ar-
chitecture employs a separate class that performs the
voting process. Each input for this voting class is pro-
vided by its own separate class. Consequently, the ac-
tuator that consumes the result of the voting process,
is also modeled as its own separate class. A similar
distribution of the voting process over several classes
is proposed in (Bernardi et al., 2012), although they
use deployment diagrams instead of class diagrams
like the other approaches.

Based on the model representations presented
above, we build upon the following key ideas in the
following sections:

• There exists a class in the software architecture
that is solely responsible for conducting the vot-
ing process. The inputs for this process are each
provided by separate classes or multiple objects
of the same class. Each consumer of the results of
the voting process is also modeled by a separate
class.

• A stereotype is used to indicate the class that
is solely responsible for conducting the voting
process. (As described in section 4.3, a second
stereotype is required to enable full code genera-
tion of voting mechanisms).

4.3 Modeling Voting Mechanisms via
UML Stereotypes

With the information gathered on voting mechanisms
in section 4.2, a model representation of these mech-
anisms may be designed based on UML stereotypes.
It is shown in figure 3.

The representation assumes that there is a class
dedicated to performing the voting process in the ap-
plication model (Voting in figure 3). Each source of
input for the voting process is also represented by its
own class (Input1, Input2 and Input3 in figure 3).
For brevity, we will refer to each of these input classes
as Vi in the remainder of this section. There exists an
association between each class Vi and Voting. This
allows Voting to access the public operations of each
Vi. The output of the voting process is processed by
another class (Consumer in figure 3).

Each of the aforementioned classes has to be

Figure 3: UML 2.5 class diagram illustrating the model
representation of voting mechanisms, as well as the soft-
ware architecture employed for automatic code generation.
Note that the return type int of the voteInput() methods
is only an example and may be of any data type.

Figure 4: UML 2.5 profile for the automatic code genera-
tion of voting mechanisms.

A Workflow for Automatically Generating Application-level Safety Mechanisms from UML Stereotype Model Representations

223

added manually to the application model by the de-
veloper. Furthermore, each class Vi and Consumer
also have to be implemented manually, as their im-
plementation is highly application-dependent. For ex-
ample we consider, two different safety critical appli-
cations. In a fire detection system, the inputs to the
voting process may be obtained from relatively sim-
ple sensor hardware, e.g., a temperature-, humidity-
and CO2-sensor. However, in a complex autonomous
driving scenario, there may be sensor input from mul-
tiple cameras, radar, ultrasonic sensors, as well as
light detection and ranging (Lidar). In contrast to
the fire detection system, each of these sensor values
require sophisticated pre-processing before they may
be used as an input for the voting process. For the
Consumer class there is a similar situation. In a fire
detection system, the result of the voting process is a
boolean value, i.e., whether a fire has been detected.
The consumer only has to sound an alarm in case this
boolean output of the voting process is true. For the
autonomous driving scenario, however, the output of
the voting process may be the distance to the car in
front. This information has an impact on many parts
of the vehicle, e.g., if the brakes of the vehicle need
to be activated and with how much force this braking
has to happen. If the distance to the car in front is too
small, it may even be necessary to activate the airbag
of the vehicle. The actual voting process, in contrast,
is largely application-independent. The process re-
ceives a set of inputs of the same data type and pro-
duces either a numeric or boolean output value. The
voting strategy, e.g., majority voting, does not require
any application-specific information. Due to this, our
approach is able to generate the entire code for the
class Voting

For this generation, the voting mechanism is mod-
eled by introducing several UML stereotypes. In fig-
ure 3, the stereotype «MajorityVoter» has been ap-
plied to the class Voting in order to model that this
class performs a majority voting process. Here, «Ma-
jorityVoter» is only an example and one of many dif-
ferent variants of voting stereotypes. This is dis-
cussed further below. The associations between the
class Voting and the classes Vi each contain their own
stereotype, «VotingInput». This stereotype is used
to indicate which of the classes that have an associ-
ation with Voting are actually used as a voting input.
This way, Voting may contain associations to other
classes that are independent of the voting process.

Each of the novel stereotypes contains a set of
tagged values further refining the type of voting
mechanism that should be generated. They are dis-
played in a UML profile in figure 4. The «Voting-
Input» stereotype may be applied to associations and

contains two tagged values. The tagged value weight
is used to indicate a relative weighting between the
voting input part of the stereotyped association and
the other voting inputs. The tagged value input-
Method is used to indicate which method in the
classes Vi is accessible for Voting to obtain the in-
put data for the voting process. The order of these
events is further described in section 4.4.

Besides the «VotingInput» stereotype, the profile
in figure 3 contains an inheritance hierarchy of stereo-
types all applicable to classes. This hierarchy is used
to differentiate which kind of voting process should
be used. At the top-level of this hierarchy is the
«Voter» stereotype, which does not specify a specific
voting process. The tagged value voteMethod enables
developers to define a custom name for the method
that should conduct the voting process. At the next
level of the inheritance hierarchy, the split between
agreement and calculation voters is modeled. The
«AgreementVoter» stereotype also introduces an op-
tional tagged value that may specify a delta value for
the comparison of numeric inputs. At the bottom level
of the inheritance hierarchy are the specific voting
stereotypes. These are the stereotypes that should be
applied by developers. New types of voting mecha-
nisms may be introduced by creating a stereotype at a
suitable level of the inheritance hierarchy. The tagged
values of this new stereotype may be used to specify
any kind of additional information that the new voting
process requires.

4.4 An Extensible Software
Architecture for Voting Mechanisms

This section further describes the software architec-
ture introduced as part of the model representation for
voting mechanisms in section 4.3. It is displayed in
figure 3, which is also located in section 4.3. A single
class, Voting in figure 3, is responsible for conduct-
ing the voting process. The results of that process are
consumed by another class (Consumer in figure 3) and
the inputs to Voting are each provided by a separate
class Vi (Input1, Input2, Input3 in figure 3).

Figure 5 shows a sequence diagram that illustrates
how the actual voting process is performed. The vot-
ing process is started by the consumer of the voting re-
sults, which calls voteMethod() in the Voting class.
The code for the voteMethod() class is entirely gen-
erated by our approach, as described in section 4.5.
The return value of this method is a boolean that in-
dicates whether the vote was successful in the case of
agreement voting. For calculation voting, the return
value is always true. The consumer also requires ac-
cess to the result of the calculation voting or the value

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

224

Figure 5: UML 2.5 sequence diagram showing the voting
process within the software architecture employed in this
paper.

upon which the inputs agree during agreement voting.
As this is a second return value, we use a reference
variable as a function parameter for voteMethod().
This is an output parameter and it will contain the
aforementioned second return value after the method
has completed. Once voteMethod() has been called,
Voting queries each of the input classes Vi. This in-
put is used in a method vote() that is automatically
generated by the model transformations described in
section 4.5. Afterwards the output parameter is set
to its correct value and the voteMethod() returns a
boolean indicating the success of the voting process.

Different types of voting may be realized by
different implementations of the voteMethod(),
thereby providing a well-defined extension point for
our software architecture. These different imple-
mentations are generated automatically by the model
transformations explained in section 4.5.

4.5 Model Transformations for
Automatic Code Generation of
Voting Mechanisms

Based on the model representation and software ar-
chitecture described in sections 4.3 and section 4.4,
this section describes how the software architecture
may be generated automatically from the model rep-
resentation. The implementation of these model
transformations may be achieved via general purpose
model transformation languages, e.g., ATL (Jouault
et al., 2006), or via tool-specific model transforma-
tion features, e.g., the Java API provided by the MDD
tool IBM Rational Rhapsody. The steps of the model
transformations are described in the following:

• In the first step of the model transformation, all
classes of the model are checked for whether
they contain a stereotype that extends the «Voter»
stereotype from the UML profile introduced in
section 4.3. For each class where this is the case,
the class Ai is stored temporarily in a set A. The
tagged values of the stereotype for a specific Ai
are stored in a corresponding set TAi.

• In the second step, for each class in the set A, all
associations are checked for whether they contain
the stereotype «VotingInput». For each associ-
ation that does contain this stereotype, the class
that is not in the set A is stored in a set Bi, which
contains all the input classes for a class Ai. The
tagged values of that association are stored in a
corresponding set T Bi. The information of the
input() methods in Bi are also checked for their
return types. If the return types are not the same
for each input source, the model transformations
are aborted with a suitable error message.

• Next, each class Ai in the set A is transformed.
If there exists no method in Ai whose name cor-
responds to the tagged value voteMethod of the
corresponding stereotype, this method is added to
the class. If the method already exists and con-
tains any sort of code, the developer is warned
with a suitable error message, that this code will
be overwritten as part of the model transforma-
tions. Next, if the voter stereotype inherits from
the «AgreementVoter» stereotype, a member vari-
able that reflects the deltaAgreement tagged value
is declared in Ai. If any of the «VotingInput» asso-
ciations for vi has a value set for the weight tagged
value, then this value is stored as a member vari-
able inside Ai. If no value is set for weight, then a
weight of 1 is assumed.

• The method body of voteMethod() is generated.
This is the only step in which the model trans-
formations differ between different voters. The
software architecture that implements the model
transformations described in this section may be
made extensible, by introducing an interface x
with a method for generating the voteMethod()
body. The inputs of this method are the sets A
and B, as well as all corresponding TAi and T Bi
sets. Then, for any voter that should be gener-
ated, a class realizing the interface x may be im-
plemented. The name of this class should con-
tain the name of the corresponding stereotype,
which enables automatic location and instantia-
tion of this class via reflection mechanisms. Thus,
a new voter may be included in the model trans-
formations by simply realizing the interface x for
this voter.

A Workflow for Automatically Generating Application-level Safety Mechanisms from UML Stereotype Model Representations

225

1 5 10 15 20
Number of voters in the application model

0

500

1000

1500

2000

2500

3000

3500

4000

Ti
m
e
fo
r v

ot
in
g
m
od

el
 tr
an

sf
or
m
at
io
ns

 (m
s)

3 inputs per voter
6 inputs per voter
9 inputs per voter

Figure 6: Runtime of model transformations that generate
the voting mechanisms.

5 SCALABILITY

In order to evaluate the scalability of our proposed ap-
proach for the automatic generation of voting mech-
anisms, we implemented the model transformations
described in section 4.5 for the MDD tool IBM Ra-
tional Rhapsody (Rhapsody, 2020), which is widely
used in the industry (Laplante and DeFranco, 2017).
For this, we employed Rhapsody’s Java API, which
provides features to create, delete and modify model
elements within a Rhapsody project.

In theory, the runtime of the model transforma-
tions should grow linearly with the number of classes
and associations that contain a stereotoype from the
profile introduced in section 4.3. In order to con-
firm this, we implemented several example applica-
tions that contain various amounts of voters and vot-
ing inputs. For each application, we measured the
time of Rhapsody’s code generation from the appli-
cation model without our model transformations en-
abled (torg). Then, we measured the time for code
generation with our model transformations enabled
(tmt). The difference of these two measurements
(tdi f f = tmt − torg) is plotted in figure 6 for each appli-
cation that is tested. The x-axis shows how many vot-
ers were employed in the example application, while
the y-axis shows tdi f f for the application. For each
number of voters tested, we also tested three different
numbers (3, 6, 9) of voting inputs per voter. These
different numbers of inputs per voter cover most real-
istic scenarios, as these typically use between 3 to 5
inputs per voter (Latif-Shabgahi et al., 2004).

The experimental results confirm a linear increase
in runtime of the model transformations correspond-
ing to the number of stereotypes from the profile
introduced in section 4.3. This suggests that our
approach is suitable even for large safety-critical
projects.

6 RELATED WORK

This section presents research that is related to our
approach.

From a safety perspective, there exist several ap-
proaches that target other phases of the safety life cy-
cle than ours. While our approach targets the mod-
eling and actual implementation of the safety mech-
anisms, there are other approaches which focus on
earlier stages of the safety lifecycle, e.g., specify-
ing safety hazards, safety goals or performing fault
tree analysis (Tanzi et al., 2014; Beckers et al., 2014;
Yakymets et al., 2015). These approaches may be
used in conjunction with ours, as they help to deter-
mine which safety mechanisms should be used in the
application, while our approaches is concerned with
the actual realization of these mechanisms.

Related work on code generation from models
has already been partially discussed in 2.1. There
are MDD tools, e.g., (Rhapsody, 2020; Enterprise
Architect, 2020), that provide basic code generation
from UML models, upon which our approach builds.
Code generation from UML models is also an ac-
tive research topic among the academic community,
e.g. (Sunitha and Samuel, 2019). Code generation
from modeling languages other than UML is also dis-
cussed in the literature, e.g, in (Harrand et al., 2016).

There also exists research regarding code genera-
tion of selected safety-critical areas. The approaches
described in (Huning et al., 2019, 2020), which pro-
vide automatic code generation for memory protec-
tion and graceful degradation, are most closely related
to our approach, as they derive their solution by ap-
plying the workflow presented in this paper. In con-
trast to this paper, they do not describe this workflow
and they also do not consider the code generation of
voting mechanisms.

Our approach makes heavy use of UML stereo-
types and their corresponding UML profiles. The
UML MARTE profile provides a set of stereotypes
related to the development of embedded systems, but
does not consider safety or code generation (OMG
MARTE, 2008). Dependability and rudimentary
safety aspects have been provided in the DAM pro-
file (Bernardi et al., 2011). Modeling safety and secu-
rity in combination has been proposed in (SAFURE,
2017). However, for each of these approaches the
level of detail of the presented stereotypes is too low
to be usable for code generation.

Related work on voting mechanisms includes the
taxonomy mentioned in section 4.2 (Latif-Shabgahi
et al., 2004), as well as modern voting approaches
like (Rezaee et al., 2014; Linda and Manic, 2011).
They describe novel voting mechanisms, while our

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

226

approach aims at modeling and automatically gener-
ating existing voting mechanisms. Therefore, their
work is orthogonal to ours and their approaches may
be implemented as part of our approach. The com-
bination of voting mechanisms, modeling and code
generation has also been studied in (Hu et al., 2017).
However, they design their own framework for this
purpose and do not build atop a wide-spread model-
ing language such as UML. There also exist modeling
approaches for voting mechanisms that do not con-
sider code generation. These include (Bernardi et al.,
2012; Wu and Kelly, 2005), which target dependabil-
ity modeling and analysis, as well as (Zoughbi et al.,
2011), which models voting mechanisms as part of a
larger UML safety profile for the avionics domain.

Last but not least, MDD-based automatic gen-
eration approaches have been applied to other non-
functional properties, such as timing (Noyer et al.,
2016) and energy (Iyenghar and Pulvermueller,
2018).

7 CONCLUSION

This paper describes a detailed and novel MDD work-
flow for the automatic code generation of safety
mechanisms based on UML stereotypes. Such safety
mechanisms are used in safety-critical systems. These
are a category of systems in which failure may lead to
serious harm of human life or the environment. Our
workflow builds upon the basic code generation fea-
tures of modern MDD tools. Initially, our approach
parses the model representation of the safety mecha-
nism by parsing the corresponding UML steretoype.
Afterwards, model-to-model transformations are em-
ployed to add new UML model elements specific to
the safety mechanism to the application model. The
resulting intermediate model may be used as input
to the inbuilt code generation of many of the cur-
rent MDD tools, thereby generating productive source
code that is capable of performing the safety mecha-
nisms at runtime.

We illustrate the application of the workflow by
providing abstract code generation for a widely-used
group of safety mechanism, i.e., voting mechanisms.
For this, we introduce a novel model representa-
tion and describe the software architecture and model
transformations required to automatically generate
code from the model representation. We perform
experimental evaluations that indicate a linear run-
time for the employed model transformations, thereby
demonstrating that the proposed approach is scalable.

Future work may provide model representations
and automatic code generation for other safety mech-

anisms. Additionally, the feasibility of our approach
in an industrial use case scenario may be demon-
strated. A new research direction may also lie in the
use of our proposed model representations for the pur-
pose of safety certification.

ACKNOWLEDGMENTS

This work was partially funded by the German Fed-
eral Ministry of Economics and Technology (Bun-
desministeriums fuer Wirtschaft und Technologie-
BMWi) within the project “Holistic model-driven de-
velopment for embedded systems in consideration of
diverse hardware architectures” (HolMES).

REFERENCES
Armoush, A. (2010). Design Patterns for Safety-Critical

Embedded Systems. PhD thesis, RWTH Aachen Uni-
versity.

Beckers, K., Côté, I., Frese, T., Hatebur, D., and Heisel,
M. (2014). Systematic derivation of functional safety
requirements for automotive systems. In Bondavalli,
A. and Di Giandomenico, F., editors, Computer
Safety, Reliability, and Security, pages 65–80, Cham.
Springer International Publishing.

Bernardi, S., Merseguer, J., and Petriu, D. (2011). A de-
pendability profile within MARTE. Software and Sys-
tem Modeling, 10:313–336.

Bernardi, S., Merseguer, J., and Petriu, D. C. (2012). De-
pendability Modeling and Assessment in UML-Based
Software Development. In TheScientificWorldJour-
nal.

Enterprise Architect (2020). Enterprise Architect.
https://sparxsystems.com/products/ea/index.html (ac-
cessed 1st February 2020).

Harrand, N., Fleurey, F., Morin, B., and Husa, K. E. (2016).
Thingml: A language and code generation frame-
work for heterogeneous targets. In Proceedings of the
ACM/IEEE 19th International Conference on Model
Driven Engineering Languages and Systems, MOD-
ELS ’16, page 125–135, New York, NY, USA. Asso-
ciation for Computing Machinery.

Hatcliff, J., Wassyng, A., Kelly, T., Comar, C., and Jones, P.
(2014). Certifiably safe software-dependent systems:
Challenges and directions. In Proceedings of the Con-
ference on The Future of Software Engineering, FOSE
2014, pages 182–200, New York, NY, USA. ACM.

Heimdahl, M. P. E. (2007). Safety and software intensive
systems: Challenges old and new. In 2007 Future
of Software Engineering, FOSE ’07, pages 137–152,
Washington, DC, USA. IEEE Computer Society.

Hu, T., Bertolott, I. C., and Navet, N. (2017). Towards
seamless integration of n-version programming in
model-based design. In 2017 22nd IEEE International
Conference on Emerging Technologies and Factory
Automation (ETFA), pages 1–8.

A Workflow for Automatically Generating Application-level Safety Mechanisms from UML Stereotype Model Representations

227

Huning, L., Iyenghar, P., and Pulvermueller, E. (2019).
UML specification and transformation of safety fea-
tures for memory protection. In Proceedings of
the 14th International Conference on Evaluation of
Novel Approaches to Software Engineering, Herak-
lion, Crete, Greece. INSTICC, SciTePress.

Huning, L., Iyenghar, P., and Pulvermueller, E. (2020). A
UML profile for automatic code generation of opti-
mistic graceful degradation features at the applica-
tion level. In Proceedings of the 8th International
Conference on Model-Driven Engineering and Soft-
ware Development, MODELSWARD, Valetta, Malta.
INSTICC, SciTePress.

IEC61508 (2010). IEC 61508 Edition 2.0. Functional
safety for electrical/electronic/programmable elec-
tronic safety-related systems.

IEC62304 (2011). Medical device software - Software life-
cycle processes: IEC 62304.

ISO26262 (2018). ISO 26262 Road vehicles – Functional
safety. Second Edition.

Iyenghar, P. and Pulvermueller, E. (2018). A model-
driven workflow for energy-aware scheduling analy-
sis of IoT-enabled use cases. IEEE Internet of Things
Journal.

Jouault, F., Allilaire, F., Bezivin, J., and Kurtev, I. (2006).
ATL: A model transformation tool. Science of Com-
puter Programming, 72(1-2).

Laplante, P. A. and DeFranco, J. F. (2017). Software
engineering of safety-critical systems: Themes from
practitioners. IEEE Transactions on Reliability,
66(3):825–836.

Latif-Shabgahi, G., Bass, J. M., and Bennett, S. (2004).
A taxonomy for software voting algorithms used in
safety-critical systems. IEEE Transactions on Relia-
bility, 53(3):319–328.

Linda, O. and Manic, M. (2011). Interval type-2 fuzzy
voter design for fault tolerant systems. Inf. Sci.,
181(14):2933–2950.

Noyer, A., Iyenghar, P., Engelhardt, J., Pulvermueller, E.,
and Bikker, G. (2016). A model-based framework en-
compassing a complete workflow from specification
until validation of timing requirements in embedded
software systems. Software Quality Journal.

OMG MARTE (2008). A UML Profile for MARTE: Mod-
eling and Analysis of Real-Time Embedded Systems.
Technical report, Object Management Group.

OMG UML (2017). OMG Unified Modeling Language
Version 2.5.1. Technical report, Object Management
Group.

Rezaee, M., Sedaghat, Y., and Khosravi-Farmad, M. (2014).
A confidence-based software voter for safety-critical
systems. In 2014 IEEE 12th International Confer-
ence on Dependable, Autonomic and Secure Comput-
ing, pages 196–201.

Rhapsody (2020). IBM. Rational Rhapsody Developer.
https://www.ibm.com/us-en/marketplace/uml-tools
(accessed 2nd February 2020).

SAFURE (2017). Architecture models and pat-
terns for safety and security. Deliverable
D2.2 from EU-research project SAFURE.

https://safure.eu/publications-deliverables (accessed
3rd February 2020).

Sunitha, E. and Samuel, P. (2019). Automatic Code Gener-
ation From UML State Chart Diagrams. IEEE Access,
7:8591–8608.

Tanzi, T. J., Textoris, R., and Apvrille, L. (2014). Safety
properties modelling. In 2014 7th International Con-
ference on Human System Interactions (HSI), pages
198–202. IEEE Computer Society.

Trindade, R., Bulwahn, L., and Ainhauser, C. (2014).
Automatically generated safety mechanisms from
semi-formal software safety requirements. In Bon-
davalli, A. and Di Giandomenico, F., editors, Com-
puter Safety, Reliability, and Security, pages 278–293,
Cham. Springer International Publishing.

Wu, J., Yue, T., Ali, S., and Zhang, H. (2013). Ensuring
safety of avionics software at the architecture design
level: An industrial case study. In 2013 13th Interna-
tional Conference on Quality Software, pages 55–64.

Wu, W. and Kelly, T. (2005). Failure modelling in software
architecture design for safety. SIGSOFT Softw. Eng.
Notes, 30(4):1–7.

Yakymets, N., Perin, M., and Lanusse, A. (2015). Model-
driven multi-level safety analysis of critical systems.
In 9th Annual IEEE International Systems Confer-
ence, pages 570–577. IEEE Computer Society.

Zoughbi, G., Briand, L., and Labiche, Y. (2011). Modeling
safety and airworthiness (RTCA DO-178B) informa-
tion: Conceptual model and UML profile. Software
and System Modeling, 10:337–367.

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

228

