Challenges with Teaching and Learning Theoretical Query Languages

Jalal Kawash and Levi Meston

Department of Computer Science, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, Canada

Keywords:

Abstract:

Computer Science Education, Tools for Education, Database Systems, SQL.

Relational algebra and relational calculus are often taught as part of the topics of a typical database course in
Computer Science and Engineering degrees. The teaching of these theoretical languages not only provide the
students with the theoretical foundation for learning SQL, but also serve as a vehicle for students to sharpen
their problem solving skills. SQL, the most commonly used database language, also serves as a substantial
part of any course on databases. SQL was supposed to be an implementation of relational calculus; however,
the language ended up being a hybrid implementation of both the calculus and the algebra. One challenge
that faces students and educators alike is that unlike SQL where queries can be tested and validated with
existing databases, the calculus and the algebra remain theoretical with very limited support for such testing or
validation. In addition, not all theoretical constructs in both the algebra and the calculus have a straightforward
implementation in SQL. After discussing these challenges, we make the case in this paper for the need to better
computer tools that support the teaching and learning of these two theoretical query languages. We also present

the features/objectives of such a tool that we are currently developing.

1 INTRODUCTION

Computer Science, Software Engineering, and simi-
lar programs include database systems as a core topic
that students need to master before they are ready for
their future jobs. The Structured Query Language
(SQL) constitutes a substantial part of any course on
database systems. It is by far the most commonly
used query language in Relational Database Manage-
ment System implementations. Oracle, MySQL, SQL
Server, and Microsoft Access are just a few exam-
ples. Hence, it is not a surprise that database text-
books allocate a substantial space for the topic. More-
over, many introductory textbooks on database man-
agement (such as (Elmasri and Navathe, 2015; Silber-
schatz et al., 2019; Connolly and Begg, 2014)) also
includes discussion of what is called theoretical query
languages.

These theoretical query languages are relational
calculus and relational algebra. The calculus has
two types: the domain calculus and the tuple calcu-
lus. The former is not very popular; so, we restrict
the discussion in this paper to the tuple relational cal-
culus. Furthermore, the concepts in these two calculi
are the same, but the range of calculus variables is
what makes them different: one ranges over domains
(columns) and the other over tuples (rows). Histori-

382

Kawash, J. and Meston, L.
Challenges with Teaching and Learning Theoretical Query Languages.
DOI: 10.5220/0009471103820389

cally, SQL was meant to be an informal rendering of
tuple relational calculus (Codd, 1972). Yet, anyone
can easily see that SQL turned out to be a hybrid im-
plementation of both the calculus and the algebra.

The calculus and the algebra have opposite de-
sign philosophies. The former is non-procedural or
declarative, where queries are expressed using pred-
icate logic to define the set of tuples that satisfy the
query condition. Hence, the way the query is formu-
lated does not influence the way it is executed. The
algebra is procedural and the way an algebra routine
is written affects how it is executed.

McMaster et al. make the case for teaching
these theoretical languages in database courses by dis-
cussing several benefits to students (Mcmaster et al.,
2008). There are three major benefits for learning
these two theoretical languages. First, they provide
a theoretical mechanism for students to develop their
problem solving skills, especially in the query for-
mulation domain. Second, they provide a theoreti-
cal foundation for learning SQL. Finally, they pro-
vide an opportunity to contrast procedural versus non-
procedural query language design, allowing for im-
portant discussion on query processing. However as
noted by McMaster et al. (Mcmaster et al., 2008),
the coverage of these languages in leading database
textbooks (such as (Elmasri and Navathe, 2015; Sil-

In Proceedings of the 12th International Conference on Computer Supported Education (CSEDU 2020) - Volume 2, pages 382-389

ISBN: 978-989-758-417-6

Copyright (© 2020 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

berschatz et al., 2019; Connolly and Begg, 2014)) is
purely mathematical and the provided problems are
“pencil and paper” exercises rather than being of the
programming nature.

Our experience is consistent with others (Kessler
et al., 2019; Mcmaster et al., 2008) and shows that
students struggle with these languages due to the lack
of computer tools that can validate their queries. In
SQL, the students can test their SQL scripts against a
concrete database and verify the correctness of their
code. However, this luxury is not often available with
the calculus or the algebra. Our future objective is
to provide a Web-enabled tool that utilizes a visual
program language(Guo et al., 2008) in order to al-
low users to (visually) formulate calculus and algebra
query statements. The system translates these state-
ments to SQL and then validates them through exe-
cution against a concrete database. This intermedi-
ate step consisting of translating algebra and calculus
statements to SQL is crucial for achieving the most
benefits of learning these languages through drawing
the relationship with practical database programming,
typically with SQL as a major component.

In this paper, we present grade and survey anal-
ysis to support the claim that these topics are chal-
lenging to students. We also analyze qualitative feed-
back from students that point at the lack of computer-
based tools which can help the student learn these lan-
guages better by validating and executing their theo-
retical queries against concrete databases, much like
SQL. Another conclusion form this feedback is often
the lack of ability to associate algebra and calculus
queries with SQL adds to their learning challenges.
Our future tool is designed to answer all of these chal-
lenges.

Some previous tools have been implemented to
address this shortcoming of theoretical query lan-
guages (Kessler et al., 2019; Eckberg, ; Yang, ;
Muehe, ; Kawash, 2014; Mcmaster et al., 2008).
There are shortcomings of these tools as we will dis-
cuss in Section 6. First, we provide some necessary
technical background about these languages in Sec-
tion 2. A brief description of the course in which the
data is collected and analyzed in given in Section 3.
Challenges faced by students are discussed in Section
5.The requirements of our future tool are described in
Section 7 (we do not describe the tool in this paper)
and Section 8 concludes the paper.

Challenges with Teaching and Learning Theoretical Query Languages

2 THEORETICAL QUERY
LANGUAGES

2.1 Relational Calculus

Relational calculus (RC) is a non-procedural, declara-
tive language. A query statement is a specification of
the resulting set from a query using predicate logic.
Hence, it relies on the existential (d) and universal
quantifiers (V) to describe this set. SQL has a direct
support for the existential quantifier (3) through its
EXISTS function. However, universal quantifiers (V)
are not directly supported in SQL and must be also
expressed in terms of EXISTS. This is due to the fact
that the predicate VxP(x) is equivalent to the predi-
cate ~3x—P(x). This is normally a huge source for
confusion for students learning SQL (Kawash, 2014).
A hypothetical RC statement of the following form:

{x|A(x) AVY(B(y) = x.a=y.b)}
translates to the following equivalent statement:

{x|A(x) A=B(BO) Axa # b)),
and the latter translates to the following equivalent
SQL query:

SELECT * FROM A WHERE NOT EXISTS
(SELECT % FROM B WHERE A.a != B.b)

We provide an example query in relational calcu-
lus to highlight the difficulties with formulating such
queries and constructing their equivalent SQL code.
Our example assumes the following relations:

Species(sname, maxht)
Tree(tid, yplanted)
Measurement(mid, mdate, tid, height, nbranches)

A calculus statement to retrieve the name for each
species with a maximum height exceeding 20 meters
such that every tree of that species that was planted
before 1950 has had every measurement showing a
height greater than 10 meters would be:

{s.sname|Species(s) A s.maxht > 20 A
(Vt)((Tree(t) A t.sname = s.sname A t.yplanted <
1950) — (Vm)((Measurement(m) Am.tid = t.tid) —
m.height > 10))}

This statement needs to be transformed to a form that
does not contain universal quantifiers or implication
to simplify the SQL translation. As mentioned
earlier, the predicates of the form VxP(x) are replaced
by the form —3x—P(x). An implication a — b is
replaced by —a V b. The end result is:

383

CSEDU 2020 - 12th International Conference on Computer Supported Education

{s.sname|Species(s) A samaxht > 20 A
(—=3t)((Tree(r) Nt.sname = s.sname A t.yplanted <
1950) A (Im)((Measurement(m) A m.tid =
t.tid) Am.height < 10))}

Now, this can be translated to SQL as follows:

SELECT s.sname
FROM Species AS s
WHERE s.maxht > 20
AND NOT EXISTS (
SELECT %
FROM Tree AS t
WHERE t.sname = s.sname
AND t.yplanted < 1950
AND EXISTS (
SELECT =*
FROM Measurement AS m
WHERE m.tid = t.tid
AND m.height <= 10))

2.2 Relational Algebra

All of the relational algebra operations except divi-
sion (=) are directly supported in SQL. These are
summarized in Table 1.

Let Ry and R, be relations. Meant to capture
a restricted form of universal quantification, the
division operation R;(Z) + Ry (X) requires the sets of
attributes Z and X to have the property X C Z. Let
Y=Z-X={ai,az,-,an}, R1(Z) +Ra(X) can be
written in SQL as follows:

SELECT Y FROM R,

WHERE NOT EXISTS
(SELECT * FROM R»
WHERE Rjy.a; '= Ry.a;
OR Ri.ay '= Ry.ap

OR Ri.a, '= Ry.a,)

Alternatively, R;(Z) <+ R2(X) can be expressed
using the following algebra routine, and this routine
can be translated to SQL. In either case, division
queries are a source of struggle for most students.

Res| + my (Rl)
Resy TCy((Rz X Resl) —Ry)
Result < Res; — Res»

Finally, the assignment statement (<—) can be

implemented in SQL in different ways. One obvious
way is to use virtual tables, or views. For instance,

384

the previous algebra routine can be written in SQL
as:

CREATE VIEW Res; AS
SELECT Y FROM Ryp;

CREATE VIEW tmp AS

(

SELECT * FROM R,, Res;
MINUS

SELECT * FROM R;

)i

CREATE VIEW Res, AS
SELECT Y FROM tmp;

SELECT * FROM Res;
MINUS
SELECT % FROM Resy;

3 THE COURSE

The context of this study is a third-year elective
course in Database Systems at the University of Cal-
gary. The main audience for this course are from
Computer Science and Software Engineering. Other
students, such as Bioinformatics majors, also take this
course. The course constitutes of six modules:

1. Introduction: 1 unit

2. Entity Relationship (ER) and Enhanced Entity
Relationship (EER) models: 2 units

3. Relational model and Mapping ER and EER mod-
els to the relational model: 3 units

4. Relational Algebra (RA) and Relational Calculus
(RC): 3 units

5. SQL: 4 units
6. Normal forms and decomposition (NF): 2 units

Each unit is equivalent to 75 minutes of lectures
and 50 minutes of tutorials. The latter are conducted
by teaching assistants. The six modules sum up to
15 units. However, a semester is 11 weeks, allow-
ing for 22 units. The remaining 7 units are reserved
for a form of in-class group activities to re-enforce
the material in each of modules 2 to 6. We call these
group exams graded group activities (GGAs). Each
module is concluded with a take-home assignment to
be performed individually by students. There is a fi-
nal exam and a group project due at the end of the
course. The group project is irrelevant to this study
and will not be discussed further. The focus of this
paper are modules 3 and 4 dealing with theoretical

Challenges with Teaching and Learning Theoretical Query Languages

Table 1: Relational Algebra Operations.

[Name \ Algebra Operation | SQL Implementation
Select G <condition>(R) SELECT * FROMR
WHERE <condition>
Project T astributes> (R) SELECT <artributes> FROM R
Theta Join R1 ™M condition> B2 SELECT * FROM R;

INNER JOIN ON Ry WHERE <condition>

Natural Join R1 * < condition> R2

SELECT * FROM R
NATURAL JOIN ON R, WHERE <condition>

Left Outer Join Ry X condition> R2 SELECT * FROM R
LEFT OUTER JOIN ON Rp WHERE <condition>
Right Outer Join R > condition> R2 SELECT * FROM R

RIGHT OUTER JOIN ON R, WHERE <condition>

Full Outer Join R\ DU condition> R2

SELECT * FROM R
FULL OUTER JOIN ON R, WHERE <condition>

Union RIUR, SELECT * FROM Ry

UNION SELECT * FROM R»
Intersection RiNR, SELECT * FROM R

INTERSECT SELECT * FROM Ry
Difference Ri— R SELECT * FROM R

MINUS SELECT * FROM Ry
Cartesian Product Ri X R, SELECT * FROM Ry, Ry
Division R +R, No direct implementation
Rename Implemented through AS

PS(ar.ay.ay)s PS> O Plaj.ay.-.ay)

query languages. Specifically in the next section, we
will support our thesis that student struggle in these
modules by comparing the GGA, assignment, and fi-
nal exam marks for various modules or topics. GGAs
have two stages. In the first stage, each student indi-
vidually attempts a set problems. Then, they team up
to attempt the same set of problems as a group. We
already discussed GGAs in a previous paper (Kawash
et al., 2020).

4 GRADE ANALYSIS

We analyzed the grades from 125 students enrolled in
one semester in this course. It is worth noting that
students are given a full week to individually com-
plete each assignment, and these assignments consti-
tute a collection of constructive-response questions.
For RA/RC and SQL assignments, each consists of
10 English query statements that need to be written
in RA, RC, and SQL. During the duration of an as-
signment, the students have access to feedback from
the instructor and TA on their attempts. GGAs are of
the multiple choice format, and they utilize immedi-
ate feedback instruments in the form of “scratchies”
(ifa,). Students scratch a card to discover if their
answers were correct, allowing multiple-attempts for
each question. This yes-no feedback is characteristi-

cally different from the feedback that can be received
for attempts to answer assignment questions. With as-
signments, students can have lengthy discussions with
the instructor or the TA over why or why not a certain
attempt is an acceptable solution. Such lengthy feed-
back is available for GGAs only after the fact and not
while taking the group exam. For the final exam, the
questions are of the constructive-response type, and
the students do not have any opportunity for feedback
during the exam.

Average grades from the assignments are depicted
in Figure 1. The standard deviations are 7.77 (ER),
18.89 (Relational), 16.72 (RA/RC), 11.42 (SQL), and
6.71 (NF). While the RA/RC assignment has the low-
est average, there is no substantial difference between
the RA/RC assignment and the rest of the topics.
We emphasize the difference between the averages
of the RA/RC and SQL assignment. These two as-
signments are of the same nature: the students are
asked to formulate queries. However, SQL queries
can be validated using any database management sys-
tem, while in the theoretical languages assignment,
the only feedback available to students is that given
when they seek it from the instructor or the TA.

The story is slightly different for GGAs. The
RA/RC GGA records the lowest score compared to
the remaining GGAs as is shown in Figure 2. This
is in spite of the exploitation of the limited immedi-

385

CSEDU 2020 - 12th International Conference on Computer Supported Education

Assignments

ER & EER Relational Model

Figure 1: Comparison of average marks for different assign-
ments.

GGAs

ER & EER Relational Model

Figure 2: Comparison of average marks for different GGAs.

ate feedback mechanism. The standard deviations are
8.47 (ER), 10.28 (Relational), 13.79 (RA/RC), 18.35
(SQL), and 24.11 (NF).

When feedback disappears completely such as in
the final exam, Figure 3 shows a substantial dip in
the RA and RC exam questions. We separated these
questions into three categories: RA for relational al-
gebra questions, RC for relational calculus questions,
and RA/RC is for questions that combine both. The
standard deviations are 18.76 (ER/Relational), 29.17
(RA), 28.86 (RC), 30.42 (RA/RC), 16.97 (SQL), and
21.55 (NF). In all of these categories, the average is at
least 32% points lower than other categories. Contrast
these averages with that of SQL questions. Theoreti-
cal query questions and SQL questions are of exactly
the same type (constructive-response) and they are at
the same level of complexity. Yet, we see that the stu-
dents are doing better in SQL questions, in spite of
the absence of immediate feedback during the exam.

We conjecture that students are better at formu-
lating queries in SQL than formulating these in RA or
RC is due to their ability to practice and validate these
queries through executing them against a DBMS im-
plementation. Such an opportunity is not available for
RA and RC queries.

386

Final Exam

77.83%
73.50% 73.58%
41.40%
ﬁ

ER/Relational RA/RC

Figure 3: Comparison of average marks for final exam ques-
tions grouped by topic.

5 STUDENT FEEDBACK

In a previous study, we asked the students to create
an educational video about topics that they thought
were challenging or ones they struggled with (Kawash
and Sailunaz, 2020). A summary of the chosen topics
by all 97 students who took part in this experiment
is shown in Figure 4. A total of 46% of surveyed
students identified RA and RC as challenging topics
compared with 28% for SQL. In addition, 13% iden-
tified subjects that are common to RA, RC, and SQL
as challenging. Hence, a total of 59% of the surveyed
students selected subjects from theoretical languages.

Other
21%

RA
25%

RC
13%

RA/RC/sQL
13%

Figure 4: Difficult topics as identified by students.

Our anonymous post-semester feedback from stu-
dents gives us insights as to why the students find RA
and RC to be difficult subjects. This feedback has two
converging themes:

1. Lack of Opportunity for Validation: Students
constantly reported their frustration with the lack
of tools that allow them to validate and test the
correctness of their queries. The only way to val-
idate their queries is to refer them to the instruc-
tor or the teaching assistant for feedback. How-

ever, there is often a large turn-around time for
this feedback. They expressed their desire for a
tool that provides this feedback instantaneously as
is the case when testing SQL queries.

2. Challenge for Associating Complex Theoreti-
cal Queries with SQL: Students stressed in their
feedback the importance of the ability to asso-
ciate theoretical query statements with SQL state-
ments. This was particularly true for more com-
plex queries. After all, simple queries may not
justify the development of tools to validate them.
These are needed more when the logic becomes
complex. Students argued that the ability to as-
sociate or map theoretical queries to SQL not
only allowed them to feel more confident about
their understanding of the subject matter, but also
thought that it forced them into reflecting on all
three language design philosophies. Some stu-
dents reported that this also opened their eyes to
the subject of query processing.

We have shown that students struggle in the RA
and RC topics more than any other topic in the course,
including SQL. The marks in RA/RC assessment is
constantly lower regardless of the incorporated as-
sessment method. In addition, student feedback con-
firmed the challenges they face when learning these
theocratic languages. Hence, we believe that we have
made the case for the need of a computer-based tool
that allow the students to validate and execute their
RA and RC queries.

6 EXISTING TOOLS

Previous tools have been implemented to address this
shortcoming of theoretical query language validation.
McMaster et al. (Mcmaster et al., 2008) describe two
programming approaches for the algebra and the cal-
culus. For the first, they developed a function library
using Visual FoxPro. For the latter, a Prolog library
is implemented. While they argue it is minimal, some
knowledge in FoxPro and Prolog is required from stu-
dents to use these libraries. In addition, a setup over-
head, such as defining the predicates that represent a
database mode in Prolog, is required from students. In
both cases, for RA and RC, no equivalent SQL code
is generated.

IRA (Muehe,) is a web-enabled tool and RA
(Yang,) is a stand-alone application. Both are limited
to RA and do not support RC. They also have other
limitations, including lack of support to some impor-
tant algebra operators, limited data sets, and limited
user interface capabilities. Both IRA and RA gener-
ate an equivalent SQL statement.

Challenges with Teaching and Learning Theoretical Query Languages

RelaX (Kessler et al., 2019) is also dedicated to
RA, and it is Web-based. However, it simply pro-
vides the result set of the query statement. It does
not provide an equivalent SQL statement for the al-
gebra statement as an intermediate step. Seeing the
relationship between these two statements is benefi-
cial for the understanding of both statements as the
student feedback indicated. Some of the relational al-
gebra constructs are directly supported in SQL, but
others have no direct support. Understanding how to
formulate such a query in SQL can be cumbersome
for students. The division operation is one such ex-
ample.

There are even fewer tools for the calculus. Cal-
culus Emulator (Eckberg,) is a stand-alone applica-
tion that generates the equivalent SQL code. QuantX
(Kawash, 2014) is also a stand-alone application, but
it simply teaches the users how to translate a complex
calculus query to SQL without providing any valida-
tion.

Finally none of these tools uses a visual program-
ming language approach, such as tile-based program-
ming (Guo et al., 2008). In addition, none of them
provide support for quizzes and challenges and they
do not collect information about their pattern of usage
either. Such information can be valuable for instruc-
tors and researchers alike.

7 OUR PROPOSED TOOL

We are currently developing a tool that allows stu-
dents to develop and validate theoretical queries, an-
swering all the limitations of previous tools. In sum-
mary, the tool:

1. Is Web-based: Unlike most existing tools (RA,
calculusEM, & QuantX), our tool is a Web-based
application, alleviating any complexities from the
user the need to install it or to install any required
packages.

2. Validates Queries against Any Database: Most
previous tools limit the data sets a user can work
with (IRA, RA, QuantX). Our tool allows the user
to incorporate any existing database or to create a
new database from scratch. Hence, students can
work with any examples presented in their lec-
tures, course material, or textbook.

3. Supports Both Algebra and Calculus: Most
existing tools support one of the two theoretical
query languages, but not both. Our tool has sup-
port for both relational algebra and relational cal-
culus. In addition, it has support for all operations
of these two languages.

387

CSEDU 2020 - 12th International Conference on Computer Supported Education

4. Generates SQL: Based on student feedback, it
is beneficial to see the correspondence between
an algebra or calculus query with the SQL query.
Our tool provides the corresponding query, in ad-
dition to the result set once the query is executed
against a database instance. This is especially im-
portant for complex queries, where the relation-
ship between the theoretical query and the SQL
statement is not straight forward. In Section 2,
we have provided some examples of such com-
plex queries.

5. Uses Tile-based Programming: The tool utilizes
visual programming, through tile-based program-
ming. No other tool provides this feature. Tile-
based programming does not only make it eas-
ier for students to write their programs, but also
has many other beneficial side effects (Guo et al.,
2008). Similar to other algorithms, algebra and
calculus can be expressed naturally using tiles.
Tiles also allow for better execution performance
because the approach a very effective way to ex-
ploit locality (Guo et al., 2008). Finally, they can
also be used to express data distribution and par-
allel computation (Guo et al., 2008). In one word,
they provide students with exposure to concepts
outside the database topics.

6. Supports Customized Quizzes and Challenges:
The tool allows educators and researchers to cre-
ate quizzes and challenges for students.

7. Collects and Logs Usage Information: Un-
like all other tools, the tool collects and logs
all types of information for educators and re-
searchers to analyze. It will help educators and
researchers look for certain patterns, identifying
student weaknesses, areas of struggle, and hence-
forth.

8 CONCLUSION

Learning theoretical query languages has benefits to
students since they help improve problem solving
skills. In addition, both relational algebra and rela-
tional calculus provide the theoretical foundation for
the design of SQL. Mastering these languages im-
proves the skills needed to formulate SQL queries,
specifically for queries that incorporate challenging
logic. Unlike SQL, a common challenge that impedes
the teaching and learning of these theoretical query
languages is the limited opportunity for students to
execute and validate their query statements against
an existing database. In addition, students indicated
that it would be more beneficial to them if they can

388

also see a corresponding SQL code to the queries for-
mulated in the theoretical languages. To the best of
our knowledge, there are very few existing tools that
support the execution of either algebra or calculus
queries. These tools have many limitations, and we
are developing a tool that answers all of these limita-
tions. Namely, our tool is Web-based, supports both
languages, not specific to a fixed database, generates
SQL for comparison purposes, utilizes tile-based pro-
gramming, and creates analysis logs.

ACKNOWLEDGMENTS

We are thankful to the anonymous referees. Their
feedback helped us improve the paper.

REFERENCES

Epstein Educational Enterprises: What is IF-AT? http:
/Iwww.epsteineducation.com/home/about/. Accessed:
2019-07-30.

Codd, E. F. (1972). Relational completeness of data base
sublanguages. IBM Research Report, RI987.

Connolly, T. and Begg, C. E. (2014). Database Systems:
A Practical Approach to Design, Implementation and
Management. Pearson, USA, 6th edition.

Eckberg, C. Relational Calculus Emulator. https://edoras.
sdsu.edu/~eckberg/relationalcalculusemulator.html.
Accessed: 2020-01-04.

Elmasri, R. and Navathe, S. B. (2015). Fundamentals of
Database Systems. Pearson, 7th edition.

Guo, J., Bikshandi, G., Fraguela, B. B., Garzaran, M. J.,
and Padua, D. (2008). Programming with tiles. In
Proceedings of the 13th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming,
PPoPP’08, page 111-122, New York, NY, USA. As-
sociation for Computing Machinery.

Kawash, J. (2014). Formulating second-order logic condi-
tions in SQL. In Proceedings of the 15th Annual Con-
ference on Information Technology Education, SIG-
ITE 2014, Atlanta, Georgia, USA, October 15-18,
2014, pages 115-120.

Kawash, J., Jarada, T., and Moshirpour, M. (2020). Group
exams as learning tools: Evidence from an undergrad-
uate database course. In SIGCSE '20: The 51st ACM
Technical Symposium on Computer Science Educa-
tion, Portland, OR, USA, March 11-14, 2020, pages
626-632.

Kawash, J. and Sailunaz, K. (2020). Learning by creat-
ing instructional videos: An experience report from a
database course. In Proceedings of EDUCON 2020
— IEEE Global Engineering Education Conference.
IEEE CS Press.

Kessler, J., Tschuggnall, M., and Specht, G. (2019). Re-
lax: A webbased execution and learning tool for rela-
tional algebra. In Grust, T., Naumann, F., Bohm, A.,

Lehner, W., Hirder, T., Rahm, E., Heuer, A., Klettke,
M., and Meyer, H., editors, BTW 2019, pages 503—
506. Gesellschaft fiir Informatik, Bonn.

Mcmaster, K., Anderson, N., and Blake, A. (2008). Teach-
ing relational algebra and relational calculus: A pro-
gramming approach. Information Systems Education
Journal.

Muehe, H. IRA - interaktive relationale algebra. http://db.
in.tum.de/people/sites/muehe/ira/. Accessed: 2020-
01-04.

Silberschatz, A., Korth, H. F., and Sudershan, S. (2019).
Database System Concepts. McGraw-Hill, Inc., USA,
7th edition.

Yang, J. RA (radb). https://users.cs.duke.edu/~junyang/
radb/. Accessed: 2020-01-04.

Challenges with Teaching and Learning Theoretical Query Languages

389

