
Tinkering in Informatics as Teaching Method

Angelika Mader, Ansgar Fehnker and Edwin Dertien
University of Twente, Enschede, The Netherlands

Keywords: Tinkering, Programming Education, Teaching Methods.

Abstract: Our university offers an IT-based design programme, with an engineering background in Computer Science
and Electrical Engineering. Its focus on design and creativity, as well as the diversity of the students, requires
an approach in informatics courses different from classical computer science programmes. While tinkering is
an increasingly popular approach in STEM stimulation and education outside university, we argue that also in
an academic setting a tinkering mindset has a relevant contribution. In this paper, we identify key elements in
setting up tinkering sessions and report on their implementation for a course on algorithms. We will present
and discuss results and observations of our teaching method, that are promising to continue and extend the
tinkering approach in an academic setting.

1 INTRODUCTION

Our university offers an IT-based design programme
with an engineering background in Computer Science
and Electrical Engineering. It is one of the fasted
growing programmes of our faculty. In this bachelor
programme, students learn how to employ the latest
technology to develop interactive installations geared
towards an impact on human lives, in contexts such as
health, entertainment, or environment. Knowledge,
interest and skills in design, culture, human-centred
problem solving, art and creativity are essential for
this programme, next to sound technical knowledge.

The program attracts a very diverse student popu-
lation. Many students have little STEM background.
For example, in a 2019 questionnaire among first-year
students of the algorithms course – which was com-
pleted by 46 of the 107 students – 39% reported that
they had never, and 30% that they had rarely pro-
grammed before entering the degree. Over the five
years from 2014 to 2018, 35% of all enrolments were
female students. This compares to 10% in informat-
ics, and 8% in the electrical engineering degree at our
university. A similar share of students in our degree
has an international background, which also means
that they come from different education systems.

While we embrace the diversity for the originality
and quality of the results our students deliver, it also
poses a challenge for us. Especially in the courses on
mathematics, informatics and electrical engineering,
the prior knowledge of entering students varies con-

siderably.
In this programme, we consider informatics as a

means for students to express there ideas and concepts
and focus less on the scientific questions of informat-
ics. Still, students need to have an understanding of a
computer and software, and in particular of program-
ming. They need to be familiar with decomposition,
structure, and abstraction and need to be able to apply
non-trivial concepts of programming, such as classes
and methods.

This setting of a programme with a very diverse
student population and its specific mindset and con-
tent geared towards creativity requires a different ap-
proach to teaching informatics than classical infor-
matics programmes. In this paper, we describe our ap-
proach in introducing tinkering as a teaching method
for informatics that caters to the diversity of the stu-
dents. Here we take the example of a first-year course
on algorithms. We also report on our findings and ex-
periences from almost 10 years.

Section 2 describe tinkering, emphasising both the
academic and teaching perspective. Section 3 de-
scribes the principles of the tinkering process and
the core ingredients for setting up tinkering sessions.
How we implement them for a course on algorithms
is elaborated in Section 4. Evidence and observation
will be presented in Section 5, followed by Section
6 discussing the approach. Section 7 concludes this
paper.

450
Mader, A., Fehnker, A. and Dertien, E.
Tinkering in Informatics as Teaching Method.
DOI: 10.5220/0009467304500457
In Proceedings of the 12th International Conference on Computer Supported Education (CSEDU 2020) - Volume 1, pages 450-457
ISBN: 978-989-758-417-6
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



2 TINKERING

By tinkering, we understand a self-directed, playful
exploration of material. Often starting with a seem-
ingly undirected investigation of the material, after a
while self-chosen goals are set, experiments are de-
fined and executed to achieve the goal. Subsequently,
observations and interpretations lead to the next goal
to choose. In an iterative process the tinkerer ex-
plores the material of a given toolbox and the pos-
sibilities how to get it working, by a series of exper-
iments and interpretations of the results of the exper-
iments (see (Resnick and Rosenbaum, 2013)). This
process is guided by serendipity rather than structure
(Libow Martinez and Stager, 2013) having trial and
error at its core.

Conceptually, the actual notion of tinkering is
shaped by the maker movement1. This movement was
initiated by the MIT with its first fablab in 2002. Fa-
blabs provide tools for prototyping, next to classical
workshop environment also laser cutters, 3D-printers
and open source hardware, and make them accessible
for the public. Makers are often amateurs and hob-
byists who create new products, for their individual
usage, or for value in the community. Tinkering and
making are related, where tinkering emphasises the
explorative aspect of making.

The material part of tinkering is often viewed as
physical. However, according to (Resnick and Rosen-
baum, 2013): We see tinkering as a style of making
things, regardless of whether the things are physical
or virtual. You can tinker when you are programming
an animation or writing a story, not just when you
are making something physical. The key issue is the
style of interaction, not the media or materials being
used. One abstraction level higher, tinkering would
also be possible with concepts or in completely dif-
ferent domains (e.g. gaming, health, music, philoso-
phy). In the context of this paper, we use algorithms
and data structures as material to tinker, which is ex-
plicitly non-physical.

We understand tinkering as a mindset for learning
(Libow Martinez and Stager, 2013). The goal of the
tinkering process for the student is to create an origi-
nal prototype. Our, the teachers’, goal is that the stu-
dents get familiar with the material of the toolbox and
learns to apply it, as well as training their serendipity
and creativity.

From the maker perspective tinkering is at the
heart of making things. The maker movement2 seems
to have adopted tinkering as one of its core activities,
as the way of learning new skills, working with phys-

1https://makerfaire.com/maker-movement/
2See https://en.wikipedia.org/wiki/Maker culture

ical materials and source of inventiveness. For exam-
ple The Exploratorium (Wilkinson and Petrich, 2014)
has been developing kits, books and materials aimed
at STEM education for all ages, focusing on sparking
curiosity, enabling creativity and making fun. Tin-
kering from a maker perspective usually starts with
(re)building an existing idea or concept (from a kit,
book or other sources) and use that as ’seed’ or start-
ing point for new things to build.

From an engineering perspective mastering mate-
rial is a key skill. Mastering the material, knowing its
properties, potential, and how to use it to get things
to work, is essential for any design or engineering,
being at a university or outside. Engineering typi-
cally strives for an effective solution to a problem. We
are convinced that the tinkering approach is a key to
mastering material. Exploration and experimentation
are at the core of tinkering and results precisely in
the knowledge about the material. It generates hands-
on knowledge and reflection on the experiments con-
ducted, (as knowing in action in (Schön, 1983)), it
cultivates serendipity for what could be a working so-
lution. Reflection on the experiments is an important
step in the learning process, as in (Tawfik and Kolod-
ner, 2016) stated: the more effort the reasoner has
put into identifying what can be learnt from experi-
ence and when the lessons might be useful to pertain,
the better the learner will be able to label the expe-
riences and apply them for future use. In addition,
mature tinkerers and engineers have a technological
theory and scientific foundations in their toolbox, and
also know how to apply these within their design pro-
cesses (Boon, 2006).

From an academic perspective the tinkering mind-
set also stimulates core scientific activities, such as
raising questions, performing experiments, observ-
ing, interpreting, and theory forming. These skills
come short in curricula that are dominated by courses
that focus on teaching existing theory, but not how to
go beyond or how to apply it. Tinkering requires these
activities on a small scale (depending on the level of
material provided) and trains them. Especially, set-
ting up a meaningful experiment also requires tinker-
ing. Therefore, we consider tinkering as an essential
part of academic education, next to science. To go
even a step further on the perspectives on engineering
and academia, in (Libow Martinez and Stager, 2013)
(p41) the claim can be found that tinkering is exactly
how real science and engineering are done.

From a teaching perspective we understand tin-
kering as a mindset for learning (Libow Martinez and
Stager, 2013). For the students, the goal of the tinker-
ing process is to create an original prototype. Our, the
teachers’, goal is in the first place that the students get

Tinkering in Informatics as Teaching Method

451



familiar with the material of the toolbox and learn to
apply it. In the second place, we intend it as training
of their serendipity and creativity, as well as their abil-
ity to reflect. i.e., to internalise the tinkering mindset.

A tinkering approach supports ownership. As sug-
gested in (Savery and Duffy, 1995), learners must
have ownership of the learning or problem-solving
process as well as having ownership of the problem it-
self. Taking own decisions is a cornerstone of owner-
ship and, with it, motivation. This is also one of the ar-
guments in project-based learning (Savery and Duffy,
1995; Savery, 2006): students deciding about their
own process and solutions have a more active learning
experience. Often, classical teaching is about telling
students solutions to problems they do not have. Ac-
cordingly, the understanding of the solution and its
peculiarities is not deep. Instead, having a problem
gives a completely different understanding of the pos-
sible solutions and their different qualities. Tinkering
even allows to define the own problems, and also how
to solve them. Problem, solution and the process are
in the hands of the student, the setting is what has to
be provided by the teaching environment.

Another factor in the teaching perspective is the
possibility of making mistakes. Understanding the
nature of mistakes can be very effective for the learn-
ing process. In contrast, in classical teaching making
mistakes has no single positive connotation. In tinker-
ing the whole concept of iteration is built on mistakes
and improvement, thus also here tinkering contributes
to a better learning process.

Obviously, tinkering also is an excellent approach
to cope with diversity: within the setting given, stu-
dents can choose their problems individually, as well
as their speed, experiments, depth, horizon etc.

From the life long learning perspective self-
directedness is a main ingredient (Loyens, 2008). As
an element of tinkering will be a crucial method to
master new technologies and explore its potential.
Due to fast technological progress and severe global
problems, students and the whole society has to keep
learning all life. School and universities are not the
places where students can learn everything they need
later in life. Education here can strive for giving a
basis and teach students to find their own ways and
methods of learning, and foster serendipity. In the
context of informatics, there is continuous innovation
in languages, paradigms, and platforms. A student
having internalised a tinkering mindset will always
find her/his way in these new developments.

Figure 1: The iterative process of tinkering prompts explo-
ration of the toolbox.

3 PRINCIPLES OF TINKERING
EDUCATION

In this section, we first describe shortly the ingredi-
ents of a tinkering setting in general. While we use
these ingredients for tinkering approaches in several
courses, this paper focuses here on a first-year course
on algorithms. For this course, we describe the imple-
mentation chosen in the next section.

Setting up education with a tinkering approach
can be done by following a number of principles, here
considered in a broad context of application domains.
Building upon results of (Mader and Dertien, 2016),
we consider the principles of tinkering education con-
sisting of the following:

The Seed. A stimulant serving as a starting point.
This may be a first goal, it may be a toolset or mate-
rial, or a theme (e.g., tinkering with time). The nature
of a seed depends very much on the maturity of the
participants: those used to a tinkering mindset need
less, e.g. just a new building block, than beginners in
tinkering.

The Discovery. The self-defined outcome of the
process. It may be a new product or prototype, or a
new way of doing things, a new concept or the (even
intended) learning outcomes proposed by the teacher
or facilitator.

The Toolbox. It includes physical or conceptual
building blocks, but also skills, knowledge and tem-
plates. A toolbox is for one part provided in a dedi-
cated tinkering session, for another part it is the expe-
rience and knowledge an individual participant brings
in.

CSEDU 2020 - 12th International Conference on Computer Supported Education

452



The Process. This is the path from the seed to the
discovery, guided by the tinkering mindset, it is a
hands-on approach, playful and driven by serendipity,
performed in an iterative way.

The Facilitators. Are guarding the process and the
mindset, set the mood, introduce the seed, keep the
threshold low and the ceiling high, give feedback,
keep the flow, and stimulate reflection as an impor-
tant part of the learning process (Tawfik and Kolod-
ner, 2016).

The Playground. Although tinkering can be
viewed as a mindset (Libow Martinez and Stager,
2013) - as activity or process it is usually bounded
in time and place. With the playground, the situat-
edness of the activity is defined. For example, the
environment where tinkering takes place should be
supportive and inspiring (Doorley et al., 2011).

Figure 1 illustrates the iterative nature of the tinker-
ing approach. The process is driven by core tinkering
activities that use trial and error to explore and ex-
tend the toolbox. Prior seeds and discoveries become
part of the toolbox, new iterations are fuelled by seeds
emerging from prior discoveries through applying the
toolbox, thus closing the loop for the next iteration.

4 CHOICES AND
IMPLEMENTATION

In this section, we describe the choices taken to im-
plement the principles of tinkering education men-
tioned above in an informatics context. We use tin-
kering in a number of different courses; for this paper,
we focus on a course on algorithms, offered at the end
of the first year of the programme.

The Seed. The programming environment chosen is
Processing, a language built on Java, and originally
developed for artists and designers. While classical
concepts of programming languages are present (data
structures, object orientation, recursion, etc.), Pro-
cessing is tailored for graphical output and user in-
teraction. Both of these ingredients make it an attrac-
tive programming environment for education: code
produces visible output and interaction can easily be
added, which can be rewarding for the student from
the first exercises on, and has certainly a motivating
effect. From a teaching aspect, the language offers
the concepts relevant at this stage of informatics lec-
turing. It comes with a great number of examples that

demonstrate the scope of applications and stimulate
to set levels.

The Discovery. The students have to define their in-
dividual design goals for their final assignment - they
do not have to solve a given problem. The framing
of the individual design goal is such that they have to
write their own program using elements from differ-
ent sets of building blocks, i.e. algorithms that were
covered in the course. From a given set of building
blocks treated in the course, they may choose a subset
for their final assignment, or use other algorithms of
comparable complexity. Moreover, their program has
to satisfy given rules of programming style and com-
plexity. The program is assessed during an individ-
ual oral exam at the end of the course. The students
know this setting from the beginning of the course.
They can start from the beginning with ideation and
use (almost) each building block they create during
the course for their individual end assignment. The
assignments are given each week allow for some free-
dom in the solution, e.g. the assignment attach your
particle system to a moving object lead to solutions
consisting a flying rocket with smoke as particles, and
of a unicorn with glitters as particles, both equally
good.

The Toolbox. The toolbox consists of a range of al-
gorithms that are arranged in different topics, such as
“ randomness”, “ forces”, “particle systems”, “mass-
spring-damper systems”, etc. Roughly once per week,
a new topic is introduced, and a number of assign-
ments are included for each topic. Assignments typ-
ically consist of a fixed part (such as to use certain
laws of physics to build code for a catapult) and a part
that can be individually designed (such as the form of
the catapult and the interaction of a user with it).

In addition to programming concepts and design
that have to be covered here, much focus is on an ap-
pealing selection of algorithms, stimulating the play-
fulness. while the individual applications of the algo-
rithms may differ, the students learn, e.g., about how
to structure code into different classes, dependencies
between classes, methods and value passing, and get a
first idea of complexity when a huge number of parti-
cles needs to be supported by array management, and
particle systems. Each assignment done is considered
as a building block for the end assignment, where stu-
dents also can select from different topics.

The Facilitator. These are here the lecturer(s) to-
gether with a great number of student assistants. The
student assistants are students of higher years, some
of them already finished with our study programme

Tinkering in Informatics as Teaching Method

453



and following a different master programme. They
are all experienced, with toolbox and mindset, and
most are truly enthusiast about programming and the
tinkering way of working. In contrast to other infor-
matics courses, we always have a lecturer present, and
sufficiently many assistants to prevent too long wait-
ing periods, which might be demotivating to students.
Grades are only given for the end assignments. Dur-
ing the course only material is provided, explained,
feedback and help given.

The Playground. Tinkering takes place in time and
space. Typically in education, this is bound to lecture
rooms and scheduled hours. In general, a stimulat-
ing environment with flexible working space would
be ideal. Practically, we get only minimal require-
ments fulfilled such as that each student is physically
accessible by a student assistant or a teacher.

Next to these general ingredients of a guided tin-
kering process identified, we found a couple of con-
cepts useful extending the line of education described
so far.

Ambition Levels. As described above, the varia-
tion in the student population is very high, ranging
from students with no programming experience be-
fore entering university, to students who have already
completed a semester or bachelor in informatics or
another technical programme that includes program-
ming courses. The other dimension of variation is
the ambition level. Some students try to optimise
their work effort to just pass the course. Motiva-
tion can reach some of them, but many stick to their
mindset. Others are highly motivated, independent
of their prior knowledge. Experience from more tra-
ditional courses shows that often the little ambitious
students consume a lot of attention to bring them to
a course average, and they determine the overall level
and speed.

All these observations together led to the introduc-
tion of three ambition levels, where each student can
choose which level she or he wants to follow. Assign-
ments are offered for each ambition level. With the
lowest level assignments, a student can pass, with the
highest level they can reach the highest grade, with
the medium level in between. As said above, the as-
signments specify the building blocks the final assign-
ment is expected to include, which is for a major part
evaluated according to the level of the building blocks
used. For students, this choice supports ownership,
as they have made the decision themselves. Further-
more, it provides a clear setting for both the students
and the lecturer, by explicitly managing expectations,
and thus it reduces discussions about effort and am-

bition. A third positive effect is that for the very
good and/or ambitious students, first, challenges can
be provided that increase also their motivation, and
second also more time for attention becomes avail-
able.

Personal Support. Only a few lectures are given,
just for the introduction of each new topic, which are
in most cases no longer than 20 minutes. The rest
of the time students have time to work on the assign-
ments and to get help when needed. A team of student
assistants and the lecturer(s) are busy with individual
support. The driving insight here is that students have
a much deeper understanding of a solution when they
struggle with a problem to solve, than when getting a
solution without understanding the problem in depth.
Additionally, as described above, the variation in the
student population is very high, which also shows in
the different speed students work. With individual
help, we can much better adapt to the individual speed
and needs of the students.

The tinkering approach was also applied to the
two programming courses that precede the course
used for the discussion in this chapter. The first in-
troductory programming course includes two main it-
erations. Students are given as first seed the goal
to make an interactive creature. Every week a new
concept is introduced to the toolbox, from variables,
loops, decisions to classes and objects. The second
iteration is the final project. The seed is the goal to
animate an artwork, each year with a new theme. For
the final students have to use everything that was in-
troduced previously, with the addition that the new
animation should incorporate proper composition of
objects. The second course adds various aspects of
physical computing to the toolbox, and the seed de-
fined by a theme, for example, to build a musical in-
strument. This illustrates that the tinkering approach
can be implemented in different contexts for students
of different maturity.

5 EVIDENCE AND
OBSERVATIONS

The impact is about didactic methods, about the moti-
vation of students, ownership, dealing with diversity,
and finally about getting talented female students on
board.

Learning Tinkering. In general, while tinkering
seems to be a natural way of getting to know the
material, it is not a way students are used to when

CSEDU 2020 - 12th International Conference on Computer Supported Education

454



they enter university. Seemingly, school education fo-
cuses much more on the reproduction of content than
curiosity-driven learning. As a consequence, students
have to learn tinkering. This does not take only one
informatics course but includes several courses and
projects. The course in the focus of this paper is the
third course in the programme where tinkering con-
cepts are used. Students who are motivated for learn-
ing, have taken up the concept.

Diversity in Working. During the tutorials the vari-
ation in speed, strategies in accessing the assign-
ments, learning styles (ranging from using video tu-
torial, existing examples, tinkering, to discussion with
fellow students), is overwhelming, supporting the ap-
proach that respects the diversity of the students.

Variety in Solutions. The solutions students
present in the end also show a huge variation. Popu-
lar themes are storytelling, games, or simply aesthetic
scenarios, most often a mixture of two or three of
these elements. It is not uncommon that novel types
of solutions emerge in a course.

Plagiarism. The final assignments are all differ-
ent, which suggests little copying behaviour of stu-
dents. Checked with a plagiarism detector we found
no shared code between students, except for the pairs
that worked together, and sources allowed. However,
there are still students who let friends or family write
their code when they find it too difficult. Some also
do not add sufficient own content beyond the sources
allowed.

Individual Support. Students often do not ask for
help even if they got stuck. Waiting for questions of-
ten does not provide much interaction with a lecturer
and student assistants. Instead, walking around and
asking students what they are busy with results often
in interesting and fruitful discussions.

Maturity in Responsibility. While all students are
positive about the possibilities in choices of ambition
levels, speed and order of doing assignments, and the
possibility to get help, not all of them can really cope
with the responsibility well. Some students use the
freedom to postpone and trying to catch up in the last
weeks achieving overall weaker results. Among the
students being present and working actively, a higher
percentage of female students is present than male
w.r.t. the distribution in the whole population. It
seems that this way of learning fits better to their way
of working.

Debugging. Most students show poor skills in de-
bugging. Typically, they build a piece of software and
call for help when it is not working.

Quality of Results. Considering the results of the
course in the past 3 years (see table 1), an overall fail-
ure rate below 20% and seem to be in the line of gen-
eral introductory courses in Informatics (Bennedsen
and Caspersen, 2007). In the years analysed, female
students, have a slightly lower failure rate than males.

The average grades between male and female stu-
dents seem not to differ significantly. For a number of
reasons, this is a very positive result. First of all, girls
and women, on average, have a lower self-image con-
cerning their abilities in STEM subjects, which is es-
pecially manifest in the Netherlands (C. Booy and van
Schaik, 2012) (which is the origin of the majority of
the students). A low self-image, typically, has also ef-
fect on the results achieved in these subjects (C. Booy
and van Schaik, 2012; Rubiol et al., 2015). If there is
no gender gap observable for the results, the teaching
approach has compensated for that. In (Rubiol et al.,
2015) the authors report that a physical computing ap-
proach closed the gender gap in their programming
course. By similar reasons, we assume that the tin-
kering approach with playful algorithms increases the
motivation of female students, and provides a context
where they can give meaning to the learning content,
which is especially relevant for women in the STEM
context. This assumption is confirmed by a testimo-
nial of a female student (see next item below). A sec-
ond reason, why the absence of the gender difference
in grades is a positive result, is the prior knowledge.
The percentage of girls choosing for a STEM focus
during school in the Netherlands is lower than the one
of boys (27% versus 42% for boys, (C. Booy and van
Schaik, 2012) p22). Accordingly, it could be expected
fewer girls enter the university with a STEM back-
ground. For programmes where only a few women
enrol, these few are better than the average among
girls. In our case, the percentage of female students
is about a third, which suggests that much more of
the average background is represented here. Still, we
cannot observe a possible influence of a lower STEM
background in the grades.

On a more qualitative level, we have the following
observations: Students with little or no prior knowl-
edge in programming can achieve excellent results.
Surprisingly, students with a background in informat-
ics (e.g. a semester or a bachelor in informatics)
come up with well-structured programs, but in av-
erage little creativity. Obvious was that the students
with successful results were driven by enthusiasm to
make their self-chosen concept work. These con-

Tinkering in Informatics as Teaching Method

455



Table 1: Gender separated results for the course “Algorithms”.

Year Gender
Number

of
Students

Precentage
of Total

Average
Grade

Precentage
Failed by
Gender

Precentage
Failed
Total

2015
f 27 34% 7.3 0%

13%
m 53 66% 6.4 19%

2016
f 27 32% 6.9 7%

7%
m 57 68% 7.4 7%

2017
f 32 42% 7.3 3%

9%
m 45 58% 7.4 13%

2018
f 45 43% 6.9 4%

7%
m 59 57% 6.8 8%

2019
f 36 34% 6.5 17%

19%
m 71 66% 6.6 20%

cepts included game elements, aesthetic animations,
storytelling, or pure quantity, all outside the scope
of programming. Surprising were also a number of
assignments constructed from simple building blocks
but beautifully arranged to complex and sophisticated
combinations with original concepts of interaction.

Testimonials of Students. Maaike (second-year
student): Before I began the study Creative Technol-
ogy I had never programmed before. I started with
programming at a low level in the first year and it
builds up to harder assignments such as simulating
physical systems. When I started programming I re-
alised that it is not just for male students and that it is
really enjoyable. With the tinkering method Creative
Technology offers, I learned to think out of the box,
solve a lot of my own problems through systematic
debugging and to make more creative programs.

Margot (master student after having passed the
Creative Technology bachelor, also working as a soft-
ware developer next to her study): I always felt that
the goal of our programming courses was not teach-
ing us how to best program; instead the goal was to
learn how to create visuals for your digital products
and art installations. Programming just happened to
be the right tool. I think that approach still sets me
apart when I now collaborate with traditionally edu-
cated computer scientists, and with designers.

You don‘t learn an algorithm just because the as-
signment tells you to – you learn it because it helps
you show something on screen. Seeing your code
turn into for example physics, natural looking flocks
of birds, and modern works of art is very motivating.
It‘s like learning how to translate aspects of the world
around you to code.

6 DISCUSSION

With our approach, we reach many students, but not
all of them. Still, there is a number who just want
to pass the course with minimal effort, who are not
taking the step to playing and tinkering, and often
do not show up for lectures. We expect that we still
could reach some of them using different, or addi-
tional strategies.

Teaching students debugging remains an ongoing
problem. In interviews student assistants, also from
informatics courses, report this as a basic shortcom-
ing in the skill-set of most students. However, for
a proper tinkering process identifying the errors and
bugs, reflecting and learning from them, and improv-
ing on them are core elements.

The toolbox for a course does not contain a fixed
collection of building blocks. For the course on al-
gorithms, often enough solutions for assignments pop
up on the internet about two years after the assign-
ment came into the course. This means that there is
a need for a continuous update, finding or developing
new, appealing assignments or increase the level of
difficulty for some assignments.

The main question, however, is, how tinkering can
be realised in a setting where teaching goals have to
be achieved and work graded, in a given time frame,
contrary to the openness of the process. We are try-
ing to circumvent this contradiction by giving open
assignments with the requirement to use a subset of
the building blocks of the toolbox, and teachers and
students assistants steering in the direction of quality
of results or giving students a choice in the ambition
level.

Teaching tinkering to students is a time-intensive

CSEDU 2020 - 12th International Conference on Computer Supported Education

456



process for lecturers and student assistants. Individ-
ual trajectories require individual feedback, and, in
the end, individual evaluation. It is obvious that this
approach does not scale up straightforwardly. When
the team of teaching assistants is growing, also con-
sistency is becoming an increasing problem. To over-
come this, we currently are working on a tool that sup-
ports teaching assistants in giving feedback and shar-
ing it with each other.

Seeing surprising work of students is very reward-
ing. Also, seeing students who are surprised about
their own achievements makes this time-intensive
way of teaching worthwhile. In the final projects of
the study programme, we also see that many students
have a tinkering mindset, even if for some of them this
was not obvious in the preceding courses.

The promising results and observations presented
in the previous section, like the quality of results, the
possibility to cater populations with a diverse back-
ground, the varieties in solutions and working styles
observed, plagiarism nearly eliminated, convince us
that this is the right approach to follow, keeping work-
ing on shortcomings.

7 CONCLUSION

In this paper, we reported on our approach to apply-
ing a tinkering mindset in informatics teaching. We
elaborated the role of tinkering in teaching in general,
at academia and for engineering. For the implementa-
tion of tinkering in teaching, we identified key ingre-
dients, such as the toolbox, the seed, the design goal
and the facilitator. While we use this schema or ele-
ments from it in a number of courses, we focused in
this paper on the implementation in a first-year course
on algorithms. The results experienced so far are very
promising, little drop-out, gender-differences in grad-
ing are disappearing, no plagiarism due to individual
assignments, and a number of very enthusiast students
with surprising results.

Still, there are challenges to work on, like get-
ting more students in a mindset of playing. The next
step we will address is the scalability of the approach:
the process is feedback intensive which cannot be ex-
tended straightforwardly to higher numbers of stu-
dents. Currently, we are identifying elements of feed-
back that can be tool-supported, giving more space
for the inherently necessary feedback on the individ-
ual learning processes.

REFERENCES

Bennedsen, J. and Caspersen, M. E. (2007). Failure rates in
introductory programming. SIGCSE Bull., 39(2):32–
36.

Boon, M. (2006). How science is applied in technol-
ogy. International studies in the philosophy of science,
20(1):27–47.

C. Booy, N. Jansen, G. J. and van Schaik, E. (2012). Trend
analysis: Gender in stem education. VHTO (National
Expert Organisation on Girls / Women and Science /
Technology).

Doorley, S., Witthoft, S., University, H., and Kelley, D.
(2011). Make Space: How to Set the Stage for Cre-
ative Collaboration. Wiley.

Libow Martinez, S. and Stager, G. (2013). Invent to learn:
Making, tinkering, and engineering in the classroom.
Constructing modern knowledge press Torrance, CA.

Loyens, Sofie M. M.and Magda, J. R. R. M. J. P. (2008).
Self-directed learning in problem-based learning and
its relationships with self-regulated learning. Educa-
tional Psychology Review, 20(4):411–427.

Mader, A. and Dertien, E. (2016). Tinkering as method in
academic teaching. In Bohemia, E., editor, DS 83:
E&PDE 16, pages 240–245.

Resnick, M. and Rosenbaum, E. (2013). Design, Make,
Play: Growing the Next Generation of STEM Inno-
vators, chapter Designing for Tinkerability. Taylor &
Francis.

Rubiol, M. A., Romero-Zaliz, R., noso, C. M., and
de Madrid, A. P. (2015). Closing the gender gap in
an introductory programming course. Comput. Educ.,
82(C):409–420.

Savery, J. R. (2006). Overview of problem-based learning:
definition and distinctions, the interdisciplinary. Jour-
nal of Problem-based Learning, pages 9–20.

Savery, J. R. and Duffy, T. M. (1995). Problem Based
Learning: An instructional model and its construc-
tivist framework. Educational Technology Publica-
tions, Englewood Cliffs, NJ.

Schön, D. (1983). The reflective practitoner. Basic Books.

Tawfik, A. A. and Kolodner, J. L. (2016). Systematizing
scaffolding for problem-based learning: A view from
case-based reasoning. 10(1).

Wilkinson, K. and Petrich, M. (2014). The Art of Tinkering.
Weldon Owen.

Tinkering in Informatics as Teaching Method

457


