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Abstract: 5G networks deployment is already a commercial reality, while the specification groups move towards 5G
standalone standardization. With the need for network slicing and edge computing capabilities – and there-
fore, inherent SDN and NFV adoption in a cloud environment –, these networks’ complexity will require
some degree of automation. The concept of Self-Organizing Networks (SON) is a trend for next-generation
systems, as it is already used in the mobile radio access network (RAN) context. In this work, we will present
a self-configuration (one of the four basic self-* properties of SON) system basic design proposal, within the
context of Self-Organizing Networks Architecture (SONAr) framework. We will discuss the generic system
architecture and present one practical application example, using the self-configuration platform to automat-
ically configure the network to receive an eNodeB (4G base station) edge component. All the system design
is being conceived to work on a carrier-grade production environment, with application versatility, reliability,
and scalability.

1 INTRODUCTION

Self-configuration is a key fundamental feature in au-
tonomic computing theory and SON. Essentially, a
self-configuration system should automatically adapt
the network parameters to changes in the environ-
ment. The SON specification states that the self-
configuration means actions applied before the net-
work enters an operational state (3GPP, 2018b). In
computer networks, there are two distinct contexts
where self-configuration may be used: (i) the network
bootstrapping; and (ii) the occurrence of a new com-
ponent.

The network bootstrapping means the transi-
tion from a non-operational state to an operational
state. Each Network Element (NE) such as switches,
routers, eNodeBs, and so on are configured and
started by an operator. Typical configurations include
the allocation of logical addresses (IPv4 and IPv6),
the definition of static routes, the configuration of spe-
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cific management VLANs management, policy rules,
etc. Usually, these operations are executed manually
by the network administrator.

The occurrence of a new component stands for the
addition or removal of NEs. If a new NE is inserted
in the network topology, the operator must configure
it, as well as the neighbors’ NEs. Sometimes, the in-
troduction of a new NE means that some routes or
traffic parameters should be modified to optimize the
network behavior.

Some projects are found in the literature aim-
ing attention at the orchestration and configuration
of Software Defined Networking (SDN) and Net-
work Functions Virtualization (NFV) resources on the
cloud environment, such as network slicing (Foukas
et al., 2017). To our knowledge, edge components are
not addressed in these projects. Furthermore, (3GPP,
2018a) ranks most of the self-configuration functions
as For Future Study (FFS). This problem justifies
the new approach proposed in this work: the imple-
mentation of self-configuration aspects in the con-
text of a future self-management platform, the Self-
Organizing Networks Architecture (SONAr).

In this work, we briefly describe SONAr and its
main components, and specify the procedures and
flows to adapt its architecture to deal with the auto-
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nomic configuration when edge components are in-
serted on the network. As a use case, we will present
the self-configuration case when an eNodeB (4G Base
Station) is plugged into a specific network. By us-
ing our approach, network operators should connect
the new edge components in a physical connection,
while all configuration settings will be done automat-
ically by SONAr platforms. Beyond the dynamic pa-
rameter settings, the self-configuration introduces an
additional security mechanism: the self-configuration
module will verify whether the new NE is allowed to
get in the network topology.

The remaining of this paper is structured as fol-
lows. Section 2 gives some related work. Section
3 presents the self-configuration requirements in fu-
ture networks and the SONAr model. Section 4 brings
our proposed approach, and finally, Section 5 presents
concluding remarks and future work.

2 RELATED WORK

Since 2001, IBM was already concerned about the
increasing complexity of computer networks and the
inherent difficulties to manage them, as well as the
companies’ OPEX increase with the need of highly
specialized professionals to perform trivial tasks.
(Ganek and Corbi, 2003) defines the basis and con-
cepts for autonomic computing, including the four
self-* features (self-configuration, self-healing, self-
optimization, and self-protection) and their character-
izations.

Project ANEMA (Autonomic Network Manage-
ment Architecture) (Derbel et al., 2009) also defines
a high-level architecture model for self-configuration
and self-optimization in IP networks. It does not, al-
though, addresses self-protection or self-healing fea-
tures, as well as SDN/NFV capabilities, being re-
stricted to regular IP networks with non-virtualized
components.

(Atayero et al., 2014) presents a vision on self-
organizing networks applied to 3GPP’s Long Term
Evolution (LTE). (3GPP, 2018b) is the 3GPP’s tech-
nical specification (TS) that introduces the concepts
and requirements for mobile network SON. The scope
of this TS involves only self-optimizations and self-
healing, and it is limited to the Radio Access Network
(RAN) 3GPP protocols.

(Neves et al., 2016) brings the SELFNET frame-
work, an approach for autonomic management in
NFV and SDN networks, mainly designed for 5G net-
works. Both SONAr and SELFNET have some mu-
tual functions and may work together in the future
since SONAr is not dependable on the network type

– it was designed to work with NFV, SDN, and even
legacy network elements.

Although many efforts to achieve a complete and
comprehensive framework and architecture for Self-
Organizing Networks, none is already finished and
available. There are indeed a lot of requirements left
unmet by the several projects in this regard.

3 BACKGROUND

In this section, a review of the ongoing telecom-
munications and computer networks is presented,
along with the reasons that led us to consider self-
configuration as an indispensable approach to work
on these networks. First, we characterize the re-
quirements of current and future networks and, subse-
quently, we bring the SONAr project where our pro-
posed self-configuration functions are placed.

3.1 The Need for Self-configuration

Future telecommunications and computer networks
are supposed to satisfy new application requirements,
such as high-volume traffic, Ultra-Reliable and Low-
Latency Communication (URLLC), fault detection,
etc (Chen et al., 2018). Current and new approaches
(like IoT platforms, cloud computing and 5G net-
works) are expected to have capabilities to support
those requirements (Barona López et al., 2017). In
these cases, there are a vast number of network com-
ponents to support billions of devices, as well as a
large number of rules to satisfy the communication re-
quirements. The new set of rules includes edge com-
puting (enabled by cloud and fog computing) network
slicing management (SDN), infrastructure orchestra-
tion (NFV), distributed resource management, and so
on. It can be inferred that it is impossible to manage
this complex environment manually.

The autonomic computing concept proposed by
IBM (Ganek and Corbi, 2003) already predicted that
future systems must have mechanisms to manage
themselves autonomously. We believe that the au-
tonomic computing era will arrive for computer net-
works with the introduction of 5G Standalone (5G
SA) networks: with the fully virtualized and SDN en-
abled core network in cloud infrastructure, 5G will
be prepared to deal with several different applications
and requirements. The self-adaptation is crucial to
achieving this idealization.

Autonomic computing is composed of the four
mentioned fundamental features: self-healing, self-
optimization, self-protection, and self-configuration.
The SONAr approach discussed in Section 3.2 deals
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with these four features. However, for this paper, the
target is the self-configuration component. Computer
networks will require self-configuration functions for
several reasons:

• Man made configuration of too many NEs will re-
quire a great professional effort;

• Reliability issues due to manual configuration of
a complex network;

• The high OPEX costs with professional services
could be a disavantage to business;

• Security issues with unauthorized NEs plugged in
the network;

• Network environments are changing too fast and,
therefore, demands more intense number of inter-
ventions.

Within the configuration of a network, the edge NEs
represent a special case. For many of them, such as
mobile base stations, a specialized configuration have
to be done, i.e. special VLANs with different for-
warding policies and prioritization must be assigned
for different packets types, as it will be seen in Ses-
sion 4.3. It is not an obvious or natural configura-
tion, as would be expected for regular NEs, such as
switches or routers. Therefore, edge NEs require spe-
cialized treatment in the network self-configuration.

3.2 SONAr

The SONAr project aims to provide self-* capabil-
ities to computer networks. The first architecture re-
lease was designed as a platform that operates in SDN
and NFV environments. However, the architecture is
prepared to involve legacy networks and protocols as
well, in a carrier-grade level of service.

Figure 1 shows the layered architecture design.
The Client, Control, and Infrastructure layers hold
NEs, SDN control components, NFV management
components, and other Operations, Administrations,
and Management (OAM) systems. All these men-
tioned elements are managed by the SONAr platform,
which is composed of the Interface Layer, Manage-
ment Layer, and Administration layer.

The Collector Entity (CoE) collects topology and
metrics from the other layers. The Control Primi-
tives Interceptor (CPI) intercepts management prim-
itives in the Southbound Interface (SBI). The Net-
work Service Broker (NSB) integrates with SDN con-
trollers and NFV orchestrators to execute the platform
decisions. The Network Event Manager (NEM) al-
lows event-driven communication between the plat-
form components. Finally, the Self-Learning Entities
(SLE) and Self-Organizing Entities (SOE) consist of
self-* services.

Figure 1: SONAr Basic Design.

The Self-Healing Entity (SHE), the Self-Optimization
Entity (SOE) and the Self-Protection Entity (SPE) are
out of scope in this document. The SLE implements
AI functions such as Machine Learning (ML) to pre-
dict the whole structure behaviour. The outputs from
SLE may generate configuration tasks in the environ-
ment. The Self-Configuration Entity (SCE) is the key
component in this role, where the services for network
self-configuring are performed. The SCE utilizes the
Network Database (NDB) to store topology informa-
tion, settings, configurations applied, and other rele-
vant information. Section 4 will describe the SCE in
details.

4 SELF-CONFIGURATION
PROPOSED ARCHITECTURE

In this section, we will present the system’s general
design, followed by a typical message flow explana-
tion, then an example of application and, finally, the
next steps of the work.

4.1 General Design

The general design for the Self-Configuration Entity
is shown on Figure 2.

From bottom-up, the Infrastructure Layer repre-
sents all the NEs that make up the network, includ-
ing switches, routers, servers, and other NEs on edge,
since the Client Layer is not represented here. These
NEs may or may not be Virtual Network Functions
(VNFs) running on an NFV platform, such as Open
vSwitches deployed on a cloud environment. SDNC
is the SDN Controller. In the diagram, we are as-
suming that all the NEs in the infrastructure layer are
SDN compatible, i.e., they receive OpenFlow com-
mands (or any other Southbound Interface protocol
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Figure 2: Self-Configuration (SCE) System Basic Design.

commands). In the case of a legacy non-SDN com-
patible NE, the commands will come from the NSB
directly to the NE without passing through SDNC, as
will be seen in the next sessions. In this particular
case, the NE’s proper syntax will be used, instead of
the OpenFlow protocol.

CoE and CPI perform network monitoring. The
first uses both the Autonomic Control Loop (ACL)
and the Local Agent (LA) services to collect network
information. ACL monitors the Infrastructure Layer
and it’s NEs periodically, while the LAs are internal
agents inserted into the NEs that summarize data and
send it to CoE. CPI is responsible for copying and
parsing OpenFlow messages and searching for primi-
tive metrics such as ofpmp-port-stats, for example.

NEM component receives the data collected by
CoE and CPI and converts them into events, which
are published in topics and made accessible to all
other elements that subscribe to these topics. The
Network Service Broker (NSB) is responsible for re-
ceiving messages from SCE, in addition to the other
Self-Organizing Entities, and send either Northbound
Interface (NBI) commands to the SDNC, or compat-
ible commands directly to the NE in case of legacy
one.

The Self-Learning Entities (SLE) will not be dis-
cussed here in details due to lack of space, but, in
brief, it is responsible for providing AI-based mech-
anisms to overcome the absence of human interven-
tion. It also subscribes to topics on NEM and receives
information about the network, storing and retrieving
them in/from the NoSQL Engine. Then it will eval-
uate improvements that will be implemented by all
self-* entities.

Finally, SCE is composed of several microservices

(ms) that will act together to provide the right config-
uration to the network. They are:

• SCE catalog-ms: this service subscribes to
NEM’s topics and becomes aware when a new
edge NE is plugged in the network. Its function
is to determine whether a new edge NE is in the
authorized NE database and, if so, discover the
type, vendor and version of this element;

• topology-ms: the function of this service is to
build the topology between all the network com-
ponents, including all the NEs and the SDN con-
troller;

• path engine-ms: this service must calculate all
paths between two nodes on the network, includ-
ing the best path between a node and its controller;

• command parser-ms: identifies all the NEs in the
path (discovered by path engine service) between
the NE on edge and its final endpoint, matching
them to the specific configuration syntax. More
details of this procedure will be presented in the
next subsection.

At last, NDB is where all the network information
tables are stored, and the NoSQL Engine Database
stores all metrics collected by SLE, involving a high
volume of data storage.

In the next subsection, we will present a brief
description of a typical message flow between these
components when a generic edge NE is plugged into
the network.

4.2 Typical Message Flow Diagram

To describe the process of a typical network self-
configuration, let’s assume that an edge NE is plugged
into the network for the first time. Figure 3 shows
how the message flows between the SONAr and SCE
components.

Figure 3: Self-Configuration Flow Diagram.
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First of all, CoE (through ACL) sends an update to
NEM (MSG 1), informing that a new NE was de-
tected. NEM publishes the event on a specific topic.

The service SCE Catalog, which subscribes to
this NEM topic, receives the information that a new
NE was plugged, and then it receives its MAC ad-
dress (MSG 1). SLE component also gets this up-
date, but its subsequent actions are out of the scope
of this paper. Then SCE Catalog service consults the
edge catalog.db table (on NDB) to verify if: (1) this
specific MAC address exists and is authorized, pro-
viding an additional security measure against unau-
thorized network intrusion, and, if so; (2) retrieving
the type and version of the NE. Then it starts the com-
mand parser service.

The command parser identifies every element be-
tween the NE on edge and its final destination NE (de-
termined by path engine service), relating every SDN
NE with their configuration syntax. For this, it uses
both syntax.db, which contains the commands gram-
mars for each NE network version for each edge NE
type, and resources.db, a resource pool where the ser-
vice may get available IP addresses, for example. It
mounts the OpenFlow commands, for example, and
send them to the NSB (MSG 2). The command field
in syntax.db may be defined using any compatible for-
mat, but in this work, Jinja2 is being used as a tem-
plate engine for describing the command’s syntaxes.

Finally, NSB will send the configuration com-
mands to the SDNC through the NBI (MSG 3).
SDNC responds, acknowledging the execution of the
commands. In case of legacy elements, NSB will send
non-SDN proper configuration commands directly to
these NEs.

In short, that is the primary communication flow
between all components during the self-configuration
process.

4.3 Possible Applications

In this subsection, we intend to demonstrate a high-
level application example for the self-configuration
procedures. We do not intend to enter specific Open-
Flow details, mobile network-specific protocols or
message analysis.

One typical application, presented here as an ex-
ample, is the network self-configuration when an eN-
odeB is plugged into a switch connected to this net-
work. We assume here that all the NEs are SDN com-
patible and an SDNC (not shown) is controlling all
the elements and it uses OpenFlow protocol on SBI.
Some of them may be, as mentioned before, Open
vSwitches VNFs if part of the infrastructure is cloud-
ified. Also, for simplification, the SONAr compo-

nents are not represented in the diagram. Since a 4G
eNodeB is considered for this example, the core ele-
ments may or may not be VNFs running on an NFV
structure. The example network, in a simplified topol-
ogy, is shown in Figure 4.

Just after the eNodeB is plugged on S1, the SDNC
receives an OFPT HELLO message, and the follow-
ing messages exchange will provide the SDNC with
the eNodeB MAC address (as mentioned, the Open-
Flow message flows will not be detailed here). Fol-
lowing that, the CoE will request network updates
through ACL Request message and the SDNC will re-
spond with an ACL Response, containing information
about the new edge NE. CoE will then send a message
to NEM informing about the network modifications,
and NEM will update its topics with them.

SCE’s SCE catalog service subscribes to this
topic in NEM and, therefore, will receive the infor-
mation about the new eNodeB. It will then consult
the edge catalog.db table on NDB and verify if the
eNodeB is an authorized element on the network. As-
suming it is, it will retrieve from edge catalog the
type and version of the component, using the MAC
address as the key. In this case, it should return some-
thing like ”eNB vendorXXX version2.3.8.001c”, for
example. The path engine service calculates the best
route from S1 to the final IP destinations. In this case,
there are four IP destinations for the packets from
and to the eNodeB: control messages should be for-
warded to Mobility Mobile Entity (MME), manage-
ment messages will go to the NE Manager, user plane
messages shall be sent to the Enhanced Packet Core
(EPC) and, finally, the sync packets should go to the
Clock Server. In traditional networks, this configura-
tion is done by manually setting and configuring four
VLANs in each element in the path from S1 to S6.

The path engine service determines that the best
route from the eNodeB and the packet’s destination
should be S1-S2-R1-R2-S6. Therefore, these five
elements should be configured. Notice that the re-
dundancy path S1-S5-S4-S3-S2-R1-R2-S6 will not be
set, since the self-healing service should treat all the
network failures, sometimes in a predictive way. In
case of a broken link, SHE should call SCE to recon-
figure the new path, but this procedure is also out of
the scope of this paper.

The command parser service is then started and
receives the element type information, together with
the NEs that shall be configured. In order to do this,
it fetches the syntax.db table from the NDB (which
relates the edge element type and the NEs types to
the command syntaxes) and mounts the command se-
quences for S1, S2, R1, R2, and S6 elements, also
using the resources.db table, when additional parame-
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Figure 4: Example of Self-Configuration Application.

ters are needed. Next, command parser service sends
the command sequences to the NSB. NSB then sends
the commands to the SDNC, who will, ultimately, cre-
ate all the flows and other configurations (such as pol-
icy rules) for each element. The use of OpenFlow
protocol makes it relatively simple to assign specific
flows entries for a particular packet, given an IP des-
tination.

At last, SDNC returns a response to NSB, ac-
knowledging that the commands were successful ac-
cepted and implemented on all NEs.

One last remark, the self-configuration platform
does not configure the edge NE itself, i.e., in the
example, it does not input any specific parameter
to the eNodeB, such as Public Land Mobile Net-
work (PLMN), Radio Resource Control (RRC) or Ra-
dio Link Control (RLC) paramaters, etc. The self-
configuration platform only acts on the access (L2)
and transport (L3) network, preparing it for the al-
ready configured eNodeB, which has to be done in a
separate process (manually or not).

4.4 Next Steps

Both self-configuration module and SONAr as a
whole still require some work, which is ongoing. For
SONAr, many of the components are already devel-
oped and working, such as NEM, NSB, CoE, etc. The
network bootstrap procedure is functional. Some of

the Self-Organizing Entities are currently being de-
veloped, in special SCE and SHE. The SLE com-
ponents also need to be improved, as some of them
still make analytic decisions based on simple statis-
tics trends, instead of more complex and efficient AI
techniques.

SCE is currently under construction. The services
path engine and topology are already implemented
and working, but SCE catalog and command parser
are still to be coded and tested.

All the architecture is being developed and tested
in a virtual environment based on GNS3 software.
This allows us to make adjustments to the system and
simulate both traditional and NFV applications. A
partnership with a local operator will enable tests to
on the real environment, using its lab with physical
and virtual network elements.

5 CONCLUSION

In this work, we have proposed a self-configuration
platform model, within the context of the SONAr
system. We have shown SONAr underlying archi-
tecture and, in particular, the Self-Configuration En-
tity, which will perform the (preferable, but not ex-
clusively) SDN/NFV network configuration automat-
ically. We have presented the main components on the
interface layer (NEM, NSB, CPI, and CoE) and man-
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agement layer (SLE and SOE) and the overall system
structure.

We then presented the self-configuration module
architecture, with all the services and databases that
compose it, along with its functions and interfaces,
followed by the typical message flow through the sys-
tem and how the components interact with each other.

Finally, we have demonstrated an application ex-
ample using the network self-configuration procedure
when an eNodeB is plugged into an operator’s net-
work in a sample topology. In a high-level manner, we
have described the information flow and how the ser-
vices work together to build the configuration needed
to accept the new NE rapidly. Some issues have been
discussed, primarily related to the network’s security
and reliability.

There is still some work to be done before the self-
configuration module can be thoroughly tested, so this
paper has no intention to present final or partial results
yet. The tests and measures will be done as soon as
the system is complete and will be presented in future
works.
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