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Abstract: Pedestrian detection has many real-world applications, such as advanced driver assistance systems, security 
surveillance, and traffic control, etc. One of the pedestrian detection challenges is the presence of occlusion. 
In this study, a jointly learned approach using multiscale deformable part models (DPM) and convolutional 
neural networks (CNN) is presented to improve the detection accuracy of partially occluded pedestrians. Deep 
convolutional networks provide a framework that allows hierarchical feature extraction. The DPM is used to 
characterize non-rigid objects on the histogram of oriented gradients (HoG) feature maps. Scores of the root 
and parts filters derived from the DPM are used as deformable information to help improve the detection 
performance. Experimental results show that the proposed jointly learned model can effectively reduce the 
miss rate of CNN-based object detection models tested on the Caltech pedestrian dataset. 

1 INTRODUCTION 

According to the World Health Organization (WHO) 
report, road traffic accidents are the leading cause of 
death and injury. It indicated that several hundred 
thousand people lost their lives on roads each year 
(World Health Organization, 2013). The growth of 
automobiles over the past decade has contributed to 
the rise of the accident rate.  

With the pervasion of digital technology, 
advanced driver assistance systems (ADAS) have 
gained popularity in the automotive industry in recent 
years. Nowadays, many modern vehicles have 
equipped with some sort of ADAS functions to 
provide drivers with safer, better, and more 
comfortable driving experience. Pedestrian detection 
is one of the key ADAS functions to safety control 
and collision avoidance. 

The main challenges of pedestrian detection 
include human body articulation, occlusion, the 
changes of illumination and angle of view, and 
varying in appearance as well as scales. For example, 
people look different when wearing different clothes 
or taking different poses. In addition, lighting 
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variations can also influence the image pixel values 
of an object, leading to the challenge of the object 
detection tasks in computer vision (Stefan Schnürle et 
al, 2017; Ortalda et al., 2018).  

In the early stage, most detection algorithms were 
developed on designing handcrafted features. 
Deformable part models (DPM) that use the 
histogram of oriented gradients were the state-of-the-
art approach in this period. Although many 
approaches have demonstrated some promising 
results, they were usually not robust and lack the 
generalized discriminative capability and some were 
even computationally intensive. 

In 2012, the rise of convolutional neural networks 
(CNN) ignited the progress of object detection and 
became the mainstream of pedestrian detection 
research. In general, deep learning-based approaches 
have better performance over traditional learning 
models using handcrafted features on object detection 
but they heavily rely on training data to achieve 
qualified performance. In addition, most deep 
learning-based detection models were pre-trained on 
public datasets that lack occluded pedestrians, leading 
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to a poor detection rate on partially occluded 
pedestrians. 

In this study, we integrate the DPM and CNN to 
handle the occluding problem in pedestrian detection. 
The DPM is to provide a description of flexible 
human body models that can help detect partially 
occluded pedestrians.  

The remainder of this paper is organized as 
follows. A review of the related work on pedestrian 
detection is provided in Section 2. The proposed 
approach and an overview of DPM are described in 
Section 3. The experimental setup and results are 
presented in Section 4. Finally, conclusions are drawn 
in Section 5. 

2 RELATED WORKS 

The study of pedestrian detection has been an active 
research topic for many years due to its potential 
applications. In this section, the related works on 
vision-based pedestrian detection are discussed. The 
development of pedestrian detection algorithms is 
closely related to the evolution of object detection as 
it is an application of computer vision. Numerous 
approaches have been proposed in the past decades, 
but some issues still remain unsolved and need to be 
addressed.  

In the early stage, traditional pedestrian detection 
approaches highly rely on domain knowledge to 
design sophisticated features. Viola and Jones (2001) 
introduced a detection algorithm with Haar-like 
features and an AdaBoost cascade framework. The 
Viola-Jones (VJ) algorithm was originally proposed 
for face detection. Shortly afterward, it has been 
further applied to other detection problems, including 
pedestrian detection (Viola et al., 2003). The VJ 
detection algorithm was considered the first approach 
that can reach real-time performance, but it has some 
limitations including sensitive to lighting conditions 
and ineffective to encode the variance of a pedestrian 
in posture and appearance. 

In 2005, the histogram of oriented gradients 
(HoG) was proposed as the features for human 
detection (Dalal & Triggs, 2005). This approach first 
divides an image into blocks and further divided each 
block into cells. The concept of HoG is to convert a 
pixel-based representation into a gradient-based one 
by calculating the gradient of each cell and building 
the histogram for all the orientations in a cell with 
discrete orientation bins. 

HoG can be considered as the object information 
compressed and encoded in the orientation histogram 
that is ready to be fed into a classifier, such as support 

vector machines. However, HoG is very sensitive to 
image orientation and unable to characterize 
information well in a smooth region (Cheon et al., 
2011). 

The human body is a non-ridge object. 
Felzenszwalb et al. (2008) proposed deformable part 
models (DPM) that take the object deformation into 
consideration by including the deformable cost 
according to the displacement of each object part 
relative to its root location. DPM is a learning-based 
object detection algorithm defined by a constrained 
part-based model. It won the PASCAL VOC 
challenges (Felzenszwalb et al., 2010) and is 
considered the state-of-the-art algorithm for object 
detection before deep learning becomes popular.  

During 2010-2012, the research of pedestrian 
detection reached a period of the plateau without 
significant performance improvement (Zhao et al., 
2019). The reasons for the stagnant include: (1) 
sliding-based bounding boxes generation is 
inefficient and inaccurate; (2) manually designed 
features are not robust. 

Since 2012, the resurgence of neural networks 
with deep architecture and the growth of computing 
power from hardware acceleration have led deep 
learning to great success in various fields, especially 
in computer vision. Instead of using handcrafted 
features, one of the advantages of deep learning is its 
ability to learn high-level features automatically.  

In 2014, a pioneer work by applying deep learning 
to object detection was proposed (Girshick et al., 
2014). The authors cleverly introduced the regions 
with CNN features to boost the mean average 
precision in object detection accuracy. Since then, the 
development of object detection begins to grow 
(Rasmussen et al., 2017). Now, there are many CNN-
based object detection approaches including Fast R-
CNN (Girshick, 2015), Faster R-CNN (Ren et al., 
2015), SSD (Liu et al., 2016), and YOLO (Redmon et 
al., 2016; Redmon & Farhadi, 2018). Deep learning 
to pedestrian detection in this period also achieved 
promising results (Sermanet et al., 2013; Ouyang & 
Wang, 2013; Luo et al., 2014). In addition to CNN, 
recurrent neural networks (RNNs) were also 
successfully applied to pedestrian detection to 
improve the average precision (Zhang & Kim, 2018).  

One of the main challenges of pedestrian 
detection comes from the occlusion of the human 
body and has yet to discover an effective approach to 
deal with this issue. Ouyang and Wang (2012) 
proposed a DPM based method to improve the 
detection accuracy in occlusion. They used the 
restricted Boltzmann machine (RBM) to build the 
leaning model. However, the stacked RBMs as 
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multiple layers of architecture lack semantic 
meanings. 

Although deep architectures outperform shallow 
models in many challenging tasks, there are some 
ideas in state-of-the-art shallow models that are still 
useful and can be used to further improve the results 
achieved by deep learning models. In this study, we 
include the combined response derived from the DPM 
as the deformable score maps to improve the 
detection accuracy of the CNN-based models. 

3 THE PROPOSED APPROACH 

In this section, we describe how to improve the 
performance of pedestrian detection by adopting the 
deformable score maps from DPM and applying them 
to a CNN-based detection model. The computation 
flow of the proposed approach is illustrated in Figure 
1.  

At first, we collect training images with 
pedestrians and compute their transformed responses 
as deformable score maps from the DPM inference 
procedure. In this study, we use the Caltech 
pedestrian dataset to conduct the experiments. Then, 
we use the derived deformable score maps as 
additional information and feed them into the deep 
learning model in the learning stage to have the model 
learn the deformable information of a pedestrian.  

Start

Caltech 
Dataset

Combined Dataset 
with Score Maps

Deep Learning 
Models

(SSD, Faster R-CNN)
Output

Deformable 
Score Maps

 

Figure 1: Flowchart of the proposed approach. 

3.1 An Overview of DPM 

The DPM recognizes objects involved with three 
major components: a root filter, a group of part filters, 
and a scoring mechanism. The root filter defines the 
detection window that covers the object to detect. Part 
filters are used to define a set of parts for the detected 

object. The connection between the root filter and its 
associated part filters is evaluated by a scoring 
mechanism that quantifies the spatial association with 
a deformable cost. 

As the DPM learning model is built based on HoG 
features, the computation of HoG is the first step to 
the DPM inference. Here is the procedure to obtain 
HoG features of an image. Suppose that l(x, y) is the 
pixel value at location (x, y). The gradient vector of 
the pixel (x, y) can be obtained as follows: 

     , 1, 1,xG x y l x y l x y     (1) 
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,
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x
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x
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 (4) 

where Gx and Gy are the partial derivatives on the x-
direction and y-direction, respectively. The 
magnitude and direction of an image gradient vector 
are described in Equations (3) and (4). 

Then, we divide the image into 8-by-8 pixel cells, 
where the magnitude values are stored cumulatively 
and added into nine bins for unsigned angles. Finally, 
we slide a block containing the size of 2-by-2 cells 
across the whole image. Histograms of the four cells 
in each block are concatenated into a vector and 
normalized with L2-norm. The HoG features are 
obtained by concatenating all the block vectors. As 
our target object is a pedestrian, we use eight part 
filters as components of a human body as illustrated 
in Figure 2. 

To detect objects in various scales, we use image 
pyramids in four different scales as shown in Figure 
3 to obtain a multi-scale DPM to represent the local 
shape descriptor generated by combining the 
histogram of edge orientations of each cell (Grauman 
& Darrell, 2005). 

 
(a)                (b) 

Figure 2: (a) The root filter and (b) part filters of an upright 
pose pedestrian in a DPM model. 
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Figure 3: The pyramid of image. The full image resolution 
is taken at the bottom level. 

3.2 Computation of Deformable Score 
Maps 

The deformable scores in the DPM provide essential 
information for a possible displacement of object 
parts. It is beneficial to have this information added 
into a deep learning-based object detection models. 
The rest of this section describes the computation of 
deformable scores.  

Suppose that the pedestrian model based on the 
DPM structure, Mp, is described by Equation (5). 

 p 0 1, ,....., ,NM F P P B  (5) 

where F0 is the root filter, N is the number of part 
filter, and B is the bias term. Pi is used to model part 
filters defined by a 5-tuple (Fi, vi, si, ai, bi). The five 
elements of the tuple are listed below,  

Fi: the i-th part filter 
vi: the box center of the i-th part relative to the root 

location 
si: the box size 
ai, bi: coefficients of a quadratic function measuring 

the deformable score of the i-th part 

The response of a filter is computed by taking the 
dot product of the filter weights and the features in the 
HoG pyramid (Felzenszwalb et al., 2010; Cai, 2018). 
The deformable score is given by Equation (6). 

   
0 0

SCORE , ,
N N

i i i d i i
i i

F H P d dx dy B 
 

       (6) 

  0 0, ( , ) (2( , ) )i i i i idx dy x y x y v    (7) 

( , , , )i i i i id F s a b  (8) 

   2 2, , , ,
i id i i i idx dy dx dy dx dy   (9) 

The first term  , iH P in Equation (6) describes a 

sub-window in the HoG pyramid H with the upper left 
corner in each part model Pi, while  ,i idx dy  in the 

second term describes the displacement of the i-th 
part and is defined in Equation (7). Hence, the 
deformable score can be expressed in terms of the dot 
product between di and 

d  defined in Equations (8) 

and (9), respectively. Figure 4 illustrates the 
procedure of deformable scores computation.  

 

Figure 4: Illustration of computing deformable score maps. 

The procedure of computing the deformable score 
maps is summarized as follows. 
(1) Compute the pyramid of HoG features. 
(2) Compute the response of the root filter by filtering 

the HoG pyramid features with the root filters 
leaned by the latent SVM. 

(3) Compute the response of each part filter and the 
transformed responses. 

(4) Sum up the response from multiple parts to obtain 
the combined response as deformable score maps 

Figure 5 shows sample images from the Caltech 
dataset and their corresponding deformable score 
maps. 

Figure 5: The first and the third columns show sample 
images from the Caltech dataset. The second and fourth 
columns show the corresponding score maps.  
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4 EXPERIMENTAL RESULTS  

4.1 The Caltech Pedestrian Dataset 

In this experiment, we use the Caltech pedestrian 
dataset (Dollar et al., 2012) to examine the proposed 
approach. The dataset contains videos approximately 
10 hours collected from an urban traffic environment. 
There are about 2,300 pedestrians and a total of 
350,000 bounding boxes labeled. The dataset was 
divided into 11 sessions, where six sessions for 
training and five sessions for the test.  

The pedestrian instances are grouped into three 
scales: near (80 pixels or more in height), medium 
(30-80 pixels), and far (30 pixels or less). The subset 
reasonable in the dataset contains pedestrians that 
have 50 pixels or more in height. The training data in 
this study contains 128,419 images, while the test 
data contains 4,024 images.  

In the training stage, we include the deformable 
score maps described in Section 3. Note that the 
original DPM filter parameters were trained on 
PASCAL VOC07. As the VOC07 dataset is lack of 
pedestrian samples, we re-trained DPM filter 
parameters with the Caltech pedestrian dataset.  

4.2 Experimental Setup 

We separate color channels of an image and obtain 
three corresponding score maps, namely R-score 
map, G-score map, and B-score map from R, G, and 
B channels, respectively. We conducted experiments 
and found that the inclusion of all the three score 
maps shows better results compared to the results 
derived only from a single channel score map or 
without score maps. Therefore, we include all the 
score maps derived from three channels in the 
training data. 

CNN-based object detection models can be 
roughly divided into two categories: one-stage and 
two-stage frameworks. In order to verify the 
effectiveness of the proposed approach, two popular 
CNN-based detection models were used, namely SSD 
(one-stage model) and Faster R-CNN (two-stage 
model). The size of the root filter and part filters is set 
to 15×5 and 6×6, respectively throughout the 
experiments. 

4.2.1 Tested on SSD  

SSD is a popular one-stage detection model that has 
real-time detection ability without losing its detection 
accuracy. Unlike most detectors that run detection on 
the top layer of the network, SSD detects different 

object scales on different network layers. There are 
some variations in SSD. In this experiment, we use 
MobileNet-v2 as the lightweight backbone. The 
framework of detecting pedestrians is illustrated in 
Figure 6.  

 

Figure 6: The framework of detecting pedestrians with 
deformable score maps on the SSD architecture. 

When evaluating the proposed approach on SSD 
models, we observed that the performance in terms of 
miss rate is improved among all the pedestrian scales, 
as listed in Table 1. It has an improvement of 1.9% of 
miss rate in the scale of medium.  

Table 1: Comparison of miss rate improvement on SSD 
models. 

      Scale 
 

Models 
Far Medium Near Reasonable

SSD 96.0% 83.1% 29.4% 57.7% 
Our Approach 95.8% 81.2% 28.8% 56.4% 
Improvement 0.2% 1.9% 0.6% 1.3% 

4.2.2 Tested on Faster R-CNN  

Faster R-CNN is a popular two-stage detection model. We 
use ResNet50 as the base network for feature extraction. 
The framework of detecting pedestrians with deformable 
score maps on the Faster R-CNN architecture is illustrated 
in Figure 7. 

 
Figure 7: The framework of detecting pedestrians with 
deformable score maps on the Faster R-CNN architecture. 
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When evaluating the proposed approach on Faster R-
CNN models, we observed that the miss rate is also 
improved among all the pedestrian scales, as listed in 
Table 2. It has an improvement of 2.7% of miss rate 
on the scale of near.  

Table 2: Comparison of miss rate improvement on Faster 
R-CNN models. 

      Scale 
 

Models 
Far Medium Near Reasonable

Faster R-CNN 93.1% 57.8% 7.1% 25.3% 
Our Approach 92.6% 56.8% 4.4% 22.8% 
Improvement 1.5% 1.0% 2.7% 2.5% 

Figure 8 shows examples of detection results. It 
can be seen that the proposed approach is able to 
detect partially occluded pedestrians that have been 
missed in the original Faster R-CNN model.  

 
(a) (b) 

Figure 8: Examples of detected results. (a) Detection results 
in Faster R-CNN models. (b) Detection results obtained by 
the proposed approach. 

In order to evaluate the impact of occlusion 
percentage on detection accuracy, we further 
experiment with more occlusion setups and listed the 
results in Table 3 and Table 4 for SSD and Faster R-
CNN, respectively. 

From Table 3 and Table 4, it is clear that the 
proposed approach can help reduce the miss rate even 
in the case of heavy occlusion by providing the 
information of deformable scores. The miss rate was 
reduced from 1.3% to 2.6% in the Faster R-CNN 
architecture and from 1.7% to 2.1% in the SSD 
architecture. This is because non-rigid objects can be 
spatially organized in a deformable configuration of 
parts, and DPM is able to provide information that 
helps find partially occluded objects.  
 

Table 3: Comparison of miss rate improvement at different 
percentages of occlusion on Faster R-CNN. 

     Occlusion 
 

Models 
25% 50% 75% 

Faster R-CNN 20.0% 24.9% 54.2% 
Our Approach 17.4% 22.5% 52.9% 
Improvement 2.6% 2.5% 1.3% 

Table 4: Comparison of miss rate improvement at different 
percentages of occlusion on SSD. 

     Occlusion 
 

Models 
25% 50% 75% 

SSD 49.9% 57.7% 83.7% 
Our Approach 47.8% 56.3% 82% 
Improvement 2.1% 1.4% 1.7% 

5 CONCLUSIONS  

Pedestrian detection is an active research topic for the 
automotive and security industries. In this study, we 
have demonstrated a simple but effective jointly 
learned approach by including the deformable score 
maps derived from DPM into deep learning-based 
object detection models. The experimental results 
tested on the Caltech pedestrian dataset showed that 
the proposed approach is able to reduce a miss rate of 
2.1% on SSD and 2.6% on Faster R-CNN in the case 
of 25% partial occlusion. 
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