
Aspect Weaving for Multiple Video Game Engines using Composition 
Specifications 

Ben J. Geisler1 and Shane L. Kavage2 
1Saint Norbert College, DePere, WI, U.S.A. 

2University of Wisconsin, LaCrosse, WI, U.S.A. 

Keywords: Aspects, Aspect-oriented-Programming, Video Game Engine, Gaming, Meta-language, DSL, Testing. 

Abstract: In the realm of video game development, unique Domain Specific Languages (DSL’s) are used in each of the 
most popular game engines making code sharing and reuse extremely difficult. For this reason, common 
software engineering practices such as design patterns and modularity have lagged. GAMESPECT is an 
aspect-oriented DSL (DSAL) that seeks to generalize concerns of video game programming. This paper 
explores the technology involved, namely composition specifications which enable the usage of XText and 
TXL to weave aspect code into multiple game engines and multiple languages. We describe the four main 
steps of the weaving process: reification, matching, ordering and mixing. Our results demonstrate the 
technical accuracy of the DSAL as well as the efficiency across several samples in Unreal Game Engine 
4(UE4) and Unity. The DSAL employed is a single-to-many source language featuring transformation and 
aspect insertion (via weaving) to multiple languages in these engines including C++, Skookum Script, LUA, 
and C#. The GAMESPECT technology has been employed beneficially in modern video game development 
across active titles on the PC, Android and Nintendo Switch. 

1 INTRODUCTION 

Video Game Engines are complex pieces of software 
capable of 3D rendering, high end physics processing, 
particle effects, entity management, artificial 
intelligence, UI, player control and interaction, terrain 
transformations and internal game economies. The 
preceding list is only a portion of what game engines 
can do: modern engines have advanced fully capable 
simulation software in 3D worlds. For example, 
Unreal Engine 4 is routinely used for professional 
drone work, and cinema work (Martin, 2012). The 
other prominent game engine, Unity is used often for 
independent development. Together these two 
engines account for 80% of the game engine market, 
more than 2,400 games a year are created with these 
two pieces of software (Dillet, 2018) (Moby, 2019). 

 

Figure 1: Game engine market share. 

The two engines, as well as the other engines that 
exist such as Lumberyard and Crytek, all differ in the 
scripting language used. A scripting language is a 
DSL capable of specifying gameplay features unique 
to the game being developed (Anderson, 2001). Some 
researchers have begun cataloguing types of 
gameplay features, and with over 3,000 games 
existing each year, they have a lot in common (Moby, 
2019) (Schell, 2019). Unfortunately, not only are the 
engines completely incompatible with each other, but 
the games typically have widely different design 
patterns (Boznjak & Orehovacki, 2019). This is 
problematic for many reasons. For one, no code can 
be shared between projects, even in the same 
organization. For two, common design principles are 
difficult to apply when the pattern might look widely 
different in different programming paradigms. These 
problems are only exacerbated when one realizes that 
internally each engine has a choice of scripting 
languages to use. It is intractable to suggest that code 
should be shared across most games, despite the fact 
that many games share common design patterns 
(Wang & Nordmark, 2015). 

Aspect oriented programming was developed to 
help with cross-cutting concerns- the goal being that 
if a type of work is being done over and over across a 
codebase, the techniques used to solve this problem 

Unity

UE4

Other

MAKET SHARE

454
Geisler, B. and Kavage, S.
Aspect Weaving for Multiple Video Game Engines using Composition Specifications.
DOI: 10.5220/0009444104540462
In Proceedings of the 15th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2020), pages 454-462
ISBN: 978-989-758-421-3
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



could be combined into “advice”. Advice is code 
which can be called out at the time of each instance 
of the pattern (Kiczales et al., 1997). As mentioned 
above, many areas of code in a video game are shared 
(at least conceptually) between games even if the 
genres are vastly different (Holopainen & Bjork 
2003). In particular, the three games we will focus our 
attention on are widely different. These video games 
are “shipped”, modern production quality games: 
Noise Paradox, Rune 2 and Doctor Goose. Despite 
their differences in style and genre, many 
commonalities exist including spawning of enemies 
and tuning of player attacks.  

GAMESPECT was a language developed as part 
of previous works, initially for Unreal Engine 4, by 
the authors and is now being used on the above three 
games (Geisler, 2019). This paper will explore one 
facet concerning the further development of 
GAMESPECT: the weaving process for a new 
engine: Unity. We will also discuss our process for 
evaluating effectiveness of our approach. 

2 BACKGROUND 

XAspects was one of the first meta-languages to 
incorporate the idea of a domain specific aspect-
oriented language (Shonle, et al., 2003). The 
XAspects system makes use of a plugin framework 
which requires users to override a custom class called 
AspectPlugin, which resides in AspectJ. This class is 
ultimately the class which performs bytecode 
generation as applicable to whatever the original 
source languages were. Essentially, XAspects allows 
for integration of multiple domain specific languages 
into AspectJ. It does this by using AspectJ as a base 
language, and the aspects are defined above it. 
XAspects was created using trivial examples such as 
CD collection and referencing. The main idea was to 
use the aspect-oriented nature of AspectJ and have 
multiple DSLs translated into AspectJ (Shonle, et. al 
2003). 

The compositions specifications designed during 
the creation of the Awesome/SPECTACKLE meta-
language (Kojarski & Lorenz, 2005) (Kojarski & 
Lorenz 2007) serve as inspiration for GAMESPECT. 
A composition specification is a middle layer 
between the source language and a set of plugin 
languages (in the spirit of XAspects). Multiple 
aspect-oriented languages can plug into one common 
aspect language with this approach (Lorenz & 
Mishali, 2012). All that needs to be done is 
specification of the translations needed to perform the 
code generation in AspectJ. Again, AspectJ is used as 

the base target language. The biggest difference 
between this approach and the approach of 
GAMESPECT is that Awesome goes from many 
languages to one language. Our approach goes from 
one language to many languages. 

LARA is a recent meta-language approach which 
allows for one DSL type language to be translated to 
multiple target languages (Pinto et.al., 2018). The 
researchers of LARA have performed 
implementations in MATLAB, C and Java, to good 
results. Weaving is not automatic and is not based on 
any predefined rules or composition specifications. 
Instead, each language has a target translated: 
MANET is used for actual weaving in the C language. 
The methodology for which LARA has been 
evaluated is solid and can easily be used for 
comparisons; they have taken some examples of code 
and demonstrated lines of code savings and 
correctness (Pinto et.al., 2018). 

GAMESPECT largely sits amongst the three 
methodologies above, using the idea of composition 
specifications from Lorenz et al, the idea of meta-
languages from XAspects and the idea of multiple 
target languages from LARA (Kojarski & Lorenz, 
2005) (Kojarski & Lorenz 2007) (Lorenz & Mishali 
2012) (Shonle et.al, 2003). The biggest difference 
with GAMESPECT is the complexity of the 
composition specifications and the need for multiple 
platform support, which will be supported by modern 
language workbench tools. GAMESPECT is also an 
example of a one-to-many solution. The rest of this 
paper will describe the language, tools and 
framework. 

3 METHODOLOGY 

3.1 Composition Specifications 

3.1.1 TXL Introduction 

TXL is a source to source transformation language 
written by Dr. James Cordy (Cordy, 2006). TXL is a 
hybrid functional and rule based language that allows 
for pattern searching, unification and deep search via 
structural rewriting rules. Grammars are specified in 
.grm files, and the TXL processor implements these 
grammars, allowing for the source transformations.  

In our approach, a composition specification can 
be thought of as a layer of abstraction sitting on top 
of TXL. TXL is the back-end of the source to source 
transformation system while the composition 
specifications serve as the front-end. At the front-end, 
we must provide a generic way for the transformation 

Aspect Weaving for Multiple Video Game Engines using Composition Specifications

455



to occur. In other words, if we require certain join 
points to occur (for example: decHealth), TXL must 
know how to replace the function decrement health 
with an aspect call to the appropriate advice. 
Furthermore, it must know how to do this in any of 
the available target languages. 

Our approach to this problem is to templatize the 
TXL code needed for aspect weaving via composition 
specifications. To Lorenz et, al, a “composition 
specification” is a listing of which aspect languages 
to use, in which order and what parser to use (Lorenz 
& Mishali 2012). We generalize the idea of a 
composition specification such that it also includes 
the low level details of structure and syntax. 
GAMESPECT’s composition specifications must 
include: 

1) The explicit point cuts where advice should take 
place. 

2) Any parameter passing or other syntax unique to 
these point cuts and this language. 

3) A designator showing which language is being 
described. 

3.1.2 Composition Specification Example 

To illustrate composition specifications, one could 
consider the case of LUA scripting in UE4. LUA is 
an optional scripting language used by many Unreal 
Engine 4 developers for ease of syntax and 
implementation (Vasudevamurt & Uskov, 2015). The 
LUA language is implemented as calling hooks in a 
few places throughout the engine.  

The three most popular points of insertion range 
from member functions to globals and static 
functions. All these calling sites must call out to the 
appropriate advice, which is why GAMESPECT 
implements composition specifications to dictate 
these sites. Providing that TXL supports the target 
language with a grammar, all it needs are the calling 
sites and the format of these sites. Grammars are 
provided to TXL via text files which describe a 
portion of the language grammar (Cordy, 2006). 
GAMESPECT provides a light DSL which sits 
between the user and TXL, generating TXL to be used 
for weaving from the composition specifications. 
GAMESPECT was originally written for Unreal 
Engine 4 and it’s host of languages but as we’ll see in 
this paper, adding the framework to Unity is as easy 
as providing composition specifications and any 
additional grammars needed by the language. Figure 
three shows one such set of composition 
specifications, in this case provided for LUA in 
Unreal Engine 4. 

 

Figure 2: LUA Composition Specifications for UE4. 

3.2 Weaving Process 

3.2.1 Overview 

In aspect-oriented programming, advice code is the 
set of instructions which should be conditionally 
executed given a set of join points (a point cut). The 
join points determine when and where the code is 
allowed to execute (Kiczales et.al, 1997). For 
example, in the case of game engines- perhaps every 
time a “decrement health” function is called, we 
should multiply the incoming parameter by an 
amount which reflects the difficulty level of the game. 

Weaving is the process of inserting advice code at 
certain join points inside the original code. The output 
of the weaving process is a new set of source code or 
binary code which performs the original code as 
modified by the aspect code (Courbis et.al, 2005). For 
example, consider figure four: the conditional code 
which says “if difficulty level is hard, multiply 
damage by two” is now inserted into the original code 
and the game runs with this new set of instructions.  

 

Figure 3: Aspect file for damage to an enemy. 

GAMESPECT must provide for the means to find 
join points in source code. Unfortunately, this not a 
trivial task- the source language can change. Unreal 
Engine supports four or more scripting languages and 
Unity supports at least three.  

Furthermore, each engine’s scripting languages 
are custom and even if Unreal Engine 4 supported C#, 
it would be a slightly different grammar than 
supported by Unity. This means that composition 
specifications (as described in section 3.1.2) 
combined with TXL grammars must be used to find 
the appropriate join points. Also, the matter of finding 

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

456



join points is non-trivial. While TXL is very good at 
source to source transformation, it is not a complete 
grammar of a full language implementation. In some 
cases, most the language has been captured by TXL, 
but especially in the case of C++ this is not true. 
Instead we turn to CPPAST which is a wrapper 
around the popular Clang compiler (Duffy et.al, 
2014). CPPAST allows us to traverse the AST of C++ 
to find the appropriate call sites during the weaving 
process. 

The second area in which GAMESPECT is useful 
is the area of the actual advice code which is to be 
woven. In the case of game engines, it may be 
necessary to do more than simply adjust an integer 
value. It might be necessary to detect boss names or 
check for additional conditions based on values. 
Essentially, an entire DSL is needed to describe the 
changes to be made. The GAMESPECT framework 
provides a scripting language which is then compiled 
down to a given target language (in the case of UE4- 
Skookum Script is used, in the case of Unity- C# is 
used) (Geisler, 2019). 

To fully understand the weaving process, first 
let’s consider what the woven code will look like. The 
woven code should incorporate conditional advice 
code across the applicable functions. In other words: 
if one of the functions from the composition 
specification is called, then check function names 
registered in the advice. If there is a match, insert the 
advice code. Considering an example will make it 
easier to describe the process by which they are 
woven. As an example, let’s consider a decHealth 
method which is being called: we’d like to adjust the 
damage based on easy or hard difficulty modes. 
Perhaps on hard mode, the damage is doubled. 

First, we need to determine where decHealth is 
being called from, theoretically it can be called from 
anywhere in the codebase but in practice there are 
only three possible call sites (shown in figure three) 
in UE4. The three ways of making LUA function calls 
in Unreal Engine 4 have slight differences. The first 
is a class member, the second is C-style and the third 
is static. In addition, the parameters are of different 
types, names and numbers. The TXL rules generated 
by GAMESPECT must be slightly different for each. 
For example, in figure 4 we can see the TXL rules for 
the class member version of the LUA call. 

Once the TXL rule specifications are generated, 
we will run the Clang tools with the function list from 
the aspect file, and find the applicable files on which 
to run the TXL files. Once these are found, TXL is 
run and every call site refers to an instance of the 
target language which has the advice code to run. 

XText is used on the GAMESPEECT advice code 
to generate runtime compatible Skookum Script code 
(in the case of Unreal Engine 4) or C# code (in the 
case of Unity). Figure four shows the code that in our 
example would modify the damage by a multiple of 
two, essentially calling TakeDamage one additional 
time if the gameplay difficulty is set at “Hard”. XText 
must be provided a full grammar for GAMESPECT, 
this is the subject of other papers (Geisler, 2019) and 
outside the scope of this discussion. 

The code in figure four is transformed to skookum 
script code by XText as part of the GAMESPECT 
parser. XText is a modern DSL workbench (Eysholdt 
& Berens, 2010). XText is provided a full set of code 
generation rules. In doing so, the code which is 
generated can be called “on the fly” by the calling site 
code. In other words, if LUA calls decHealth, since it 
was woven- it will call Skookum and the advice will 
be performed. 

3.2.2 Reification 

GAMESPECT employs a similar version of weaving 
to that which was researched by Kojarski and Lorenz 
in their works (Kojarski & Lorenz, 2005) (Kojarski & 
Lorenz 2007). The abstract weaving process is 
composed of four sub processes: reify, match and 
order/mix. In reification we take a calling 
specification and construct a weaver representation of 
that class. The specification generation should 
include all computation “shadows” which occur 
throughout the codebase. Intuitively, these shadows 
are all the locations of the calls which should be 
advised upon: reification lists all possible spots where 
the join points can occur. 

Reification in GAMESPECT either uses 
CPPAST/Clang (for C++ based codebases) or TXL 
(for non-C++ codebases). For Unity we will use the 
C# grammar of TXL and run every file through TXL 
with a rule that extracts function names.  

The matter is a little more complicated when using 
C++ engines since TXL does not include a full C++ 
grammar and many customizations exist to most C++ 
grammars, including Unreal Engine 4. 

For this reason, GAMESPECT uses CPPAST and 
Clang based tools. CPPAST was built upon Clang 
which is an LLVM parser for C++ and can easily be 
customized to support the UE4 codebase. There have 
been a couple source to source transformation 
languages built in recent years around Clang, 
CPPAST is one of them (Antao et al., 2016) (Duffy et 
al., 2014). 

CPPAST allows for extrapolation of function 
names from headers. Internally the software uses 

Aspect Weaving for Multiple Video Game Engines using Composition Specifications

457



 

Figure 4: addCallToTableUtile for UTableUtil::call : LUA join point example for GAMESPECT. 

libclang and provides an AST for C++ code. We then 
write a simple traversal of the AST as part of the 
GAMESPECT glue code (API). 

3.2.3 Matching 

Matching takes the results of reification and calls 
TXL on each of the files which holds the named 
functions. While the composition specification is 
used for reification, the GAMESPECT aspect script 
(figure 3) is used for exact function header matches 
during this phase. Asterisks in the GAMESPECT 
script signify one or more arguments of any type. The 
non-presence of variable names implies that no 
parameters were present on the function. Via rule 
pattern matching, the exact matches for hits will be 
conducted. For example, takeDamage is described as 
follows in the aspect script: 

declare Pointcut BEFORE 
takeDamage(float damage, Entity 
*e) decHealth subtractHEalth 

In this case, takeDamage takes a float and Entity 
pointer. Only the appropriately labeled functions in 
the codebase will be modified since TXL allows for 
these parameters. Since the composition specification 
lists the names of the functions to be found, these 
must correspond to named functions in the aspect 
script (figure 3). In our work “matching” corresponds 
only to the part of weaving which actually finds the 
call sites. 

For each of the call sites (e.g. decHealth from 
figure 3), if that function is called during runtime, we 
want the corresponding advice to be called.  

Therefore, during load time of the game, matching 
is called. GAMESPECT is initialized at this time and 
both the composition specifications as well as all 
available aspect files are interpreted. Upon finding a 
valid composition specification, if there is a join point 
named after the line definition, a key/value pair was 

added to the hash matcher. Note that if there isn’t a 
join point named after the line, it means it’s a generic 
call and therefore anything which is the named 
function is called with is a potential calling site. The 
parameter used for lookup is numbered in the calling 
specification and recorded in the Hash Matcher class, 
such that when it is called with all its parameters, it 
will use that ordering to call the skookum script 
aspect which was generated earlier by GAMESPECT. 
For example, in “push and call” of figure 2, the first 
parameter is used to get the correct function name to 
be called for pointcuts. If onbeat is to have a point cut, 
then onbeat must be registered (figure 5). 

 

Figure 5: Hash Matcher mapping diagram. 

4 RESULTS 

GAMESPECT has been used and tested on a few 
recent video games: Noise Paradox, Rune 2, and 
Doctor Goose. One of the games using 
GAMESPECT is Noise Paradox: it is available for 
beta testing on some android storefronts. This trio of 
games demonstrates that GAMESPECT is genre-
agnostic, since each of the games is a different genre. 
Also, one of the games is primarily Unity based and 
the others are Unreal Engine 4. But yet, all of them 
can use GAMESPECT. Likewise, there is a good 
variety in scripting languages chosen: from LUA and 
C++ to Skookum Script and C#, most languages are 
represented. 

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

458



GAMESPECT was tested on Rune 2 and a custom 
version of Noise Paradox which was programmed in 
Unity and Unreal Engine 4, as separate versions. 
Several segments of code were tested, all of which 
represent example game balance tasks. LUA, C++, 
Skookum Script and C# (Unity) were used. Also, 
comparisons were drawn between the efficiency of 
GAMESPECT in UE4 vs. the efficiency in Unity. For 
the solution to be tractable to game developers, this 
framework needed to run at a solid 30FPS with no 
noticeable performance impacts. It should be noted 
that Noise Paradox is a beat matching game similar to 
Rock Band or Guitar Hero (Miller, 2009). This means 
that many of the tasks are beat or music oriented 
because the player needs to match gameplay actions 
to the beat.  

Ten tasks (functions) were monitored and 
optimized by use of GAMESPECT (aspects) and 
compared also to their non-aspect versions. 

4.1 Preliminary Results 

The general process for testing was to write the 
gameplay functions in traditional object-oriented-
programming and then to use aspect-oriented-
programming via GAMESPECT. We used Visual 
Studio Assist to find applicable join points, and pull 
out aspects, putting them into the GAMESPECT 
framework. There were two main concerns with using 
GAMESPECT which we wanted to test: correctness 
and efficiency. Correctness was demonstrated by 
functionality not changing in the final product. For a 
period of time, two separate versions of each game 
were passed through quality assurance, with bugs 
being reported. The end products reached “zero bug 
regression” on both versions (OOP and AOP) which 
is the typical gold standard for bug finding (Gu et al., 
2010). The deviation of aspect-oriented vs. object 
oriented is almost non-existent, as figure 6 shows. 

Pulling common code into aspects has the effect 
of reducing the total code used at the join point, 
assuming it is used more than once. We wanted to 
know if there is indeed a lines of code savings for 
pulling out aspects. In theory since multiple call sites 
exist for each piece of advice, there should be a line  

 

Figure 6: The plot of bugs starting with two weeks 
remaining on the project. 

of code savings, which correlates to easier 
maintenance (Polo et al., 2001). This can be verified 
in tables one and two. The range of savings varied 
from around 9% to 40%. It should be noted that any 
line of code savings above 10% is considered 
substantial for maintenance purposes (Polo et al., 
2001). It would be unfair to average together the 
savings since some functions are called more often 
than others at run time, so it’s hard to say in practice 
how many lines of execution are saved. However, 
according to Pinto et al, LARA had efficiencies 
ranging from 10-20% (Pinto et al., 2018). 
GAMESPECT is easily in that range, and sometimes 
better, topping out at 68%.  

Given the extra calls made at runtime it was also 
necessary to gauge performance. Therefore, we also 
ran a runtime analysis to ensure there was no 
performance impact (figure 7). Similar to LARA, 
GAMESPECT has virtually no performance impact. 

 

Figure 7: Test Suite 2 CPP runtime efficiency.  

Table 1: LOC Savings for Various Functions in Test Suite 2 (UE4). 

 
 

0

20

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14

AOP vs OOP version Bug Count vs Days

AOP OOP

Aspect Weaving for Multiple Video Game Engines using Composition Specifications

459



4.2 Unity Test Results 

The creation of an entirely separate code project for 
Noise Paradox involved extensive person-hours and 
work. However, we believe that it’s the only way to 
effectively ensure that GAMESPECT is truly generic 
enough to run on multiple game engines. Creation of 
the Unity version occurred over the later months of 
2019 and is ongoing while the Unreal Engine 4 
version is completed. Some files were ultimately 
different than the others, but the design for the test 
suite functions remained consistent across both UE4 
and Unity. We would like to see very little difference 
between the Unity version of Noise Paradox and the 
C++/Skookum version. In fact total savings should be 
similar (albeit negligible due to language 
differences). 

To understand if this claim is true, we tested all 
the same test suite functions and files on a version of 
Noise Paradox which runs Unity (C#). The data is 
fairly consistent. We’d expect this since C# and C++ 
are not very different in terms of syntax. The 
differences are largely due to coding style and 
initialization differences. This is shown in figure 8.  

 

Figure 8: Efficiency comparison for GAMESPECT. 

5 CONCLUSIONS AND FUTURE 
WORK 

There are multiple impacts of this research for a few 
different concerns including academic, professional 
and gameplay theoretical. 

The above tests, written in both traditional (OOP) 
programming and aspect oriented GAMESPECT, 
show a clear advantage to using Aspect Oriented 
Programming. Also, from the academic perspective, 
we have demonstrated that a one-to-many source to 
source transformation DSL is possible provided 
composition specifications. Furthermore, we have 
demonstrated that the insertion of such a mechanism 
is pluggable. Previous to this work, LARA 
demonstrated that a one-to-one translation was 

certainly possible (Kojarski & Lorenz, 2005),. 
Likewise, Awesome and SPECTACKLE provided a 
many-to-one solution (Kojarski & Lorenz, 2007),. As 
far as we know this is the only contribution with a 
one-to-many solution which uses an intermediate 
composition specification scheme.  

On the professional front, the benefits are 
numerous. The primary author has been contacted by 
several game studios to use GAMESPECT in their 
commercial large-scale endeavors. The author has 
also presented the GAMESPECT framework and 
code at a couple game conferences with fantastic 
feedback. The main reason studios are wanting to use 
GAMESPECT is that their designers often code in 
more than one language. Meanwhile their producers 
can be left out of the loop in terms of tuning certain 
parameters- especially when it comes to game 
balance. 

The final significance of our research is that game 
balancing principles have finally become tangible 
with GAMESPECT. For many years, researchers 
have written about topics such as MDA (Mechanics, 
Dynamics and Aesthetics) (Hunicke et al., 2004). 
Other gameplay designers such as Schell would write 
about rules for balancing games (Schell, 2019). But 
very few researchers have provided a cohesive 
framework- and when they did it was just for one 
game/architecture (Dormans, 2012).  

5.1 Future Work 

The selection of an appropriate TXL template given a 
certain calling specification is a process which 
requires a language enumeration to be set. This means 
one specification can only target one language. 
However, in the case of languages with similar 
features, this may be inefficient. In the future this 
could be an automatic process which takes the calling 
specification and determines the appropriate language 
outputs for each target language. Matching the calling 
specifications to applicable target languages would be 
an interesting topic in and of itself and may feature 
running TXL multiple times once against every 
instance.  

Table 2: C# Lines of Code Savings. 

 

0.00%

50.00%

1 2 3 4 5 6

LOC Reductions Unreal Engine 4 vs. Unity

Unity (C#) Unreal Engine 4 (C++ and Sk)

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

460



In the future, there is no need to continue writing 
code generators for each engine used. While UE4 
uses Skookum Script, this is not available in Unity 
and hence a code generator for C# was needed. It 
would be an enhancement to combine these two 
initiatives in one and use a shared code generation 
target. LUA would actually be a good choice for the 
target language since it is supported by Unity as well 
as Unreal Engine 4. Furthermore, it has a fairly small 
footprint (Glasberg & Bresler, 2006) such that even if 
a target game engine doesn’t support LUA, it could 
easily be added. 

The inclusion of generic function calls such as 
“push and call” from figure 2 allows for LUA to work 
in an aspect-oriented fashion on any created LUA 
script as long as it’s registered in the .gs file. This is 
an attractive and extensible solution since 
theoretically one could add Blueprint support very 
easily. The CPP composition specification would 
only need to register the C++ call sites which are used 
for Blueprints and this would work. Due to time 
constraints, the current research has not included 
Blueprints, however they are very popular in UE4 
development (Wang & Nordmark, 2015). Adding 
support for these would be critical to widespread 
acceptance.  

REFERENCES 

Antao, S.G., et al. 2016 Offloading support for OpenMP in 
Clang and LLVM. In: Proceedings of the Third 
Workshop on LLVM Compiler Infrastructure in HPC. 
IEEE Press. 

Bosnjak, M. & Orehovacki T.. (2018, May). Measuring 
quality of an indie game developed using unity 
framework. In 2018 41st International Convention on 
Information and Communication Technology, 
Electronics and Microelectronics (MIPRO) (pp. 1574-
1579). IEEE.C. J. Kaufman, Rocky Mountain Research 
Lab., Boulder, CO, private communication, May 1995. 

Anderson, E.G., 2001. A Classification of Scripting 
Systems for Entertainment and Serious Computer 
Games. In 2011 Third International Conference on 
Games and Virtual Worlds for Serious Applications 

Cordy, J.R., 2006. Source transformation, analysis and 
generation in TXL. In Proceedings of the 2006 ACM 
SIGPLAN symposium on Partial evaluation and 
semantics-based program manipulation (pp. 1-11). 
ACM. 

Courbis, C. Carine, &Finkelsteiin A., 2005 Towards aspect 
weaving applications.In Proceedings of the 27th 
international conference on Software engineering. 
ACM 

Dillet R., 2018. “Unity CEO Says Half of All Games Are 
Made on Unity,” https://techcrunch.com/2018/09/05/ 
unity-ceo-says-half-of-all-games-are-built-on-unity/. 

Dormans,J., 2012, Engineering emergence: applied theory 
for game design. Universiteit van Amsterdam Press  

Duffy, E.B., Malloy, B.A., Schaub, S., 2014. Exploiting the 
Clang AST for analysis of C++ applications. In 
Proceedings of the 52nd annual ACM southeast 
conference. 

M. Eysholdt, M., Behrens H., 2010. Xtext: implement your 
language faster than the quick and dirty way. IN 
Proceedings of the ACM international conference 
companion on Object oriented programming systems 
languages and applications companion. ACM, 

Hunicke, R. LeBlanc, M., Zubek.R, 2004. MDA: A formal 
approach to game design and game research. In 
Proceedings of the AAAI Workshop on Challenges in 
Game AI. Vol. 4. 2004. 

Geisler B.J., 2019. GAMESPECT: A Composition 
Framework and Meta-Level Domain Specific Aspect 
Language for Unreal Engine 4.NSUWorks Nova 
Southeastern 

Glasberg M., & Bresler J., 2006. The Lua Architecture. In 
Advanced Topics in Software Engineering. 

Gu,Z., et al. 2010. Has the bug really been fixed?,In 
ACM/IEEE 32nd International Conference on Software 
Engineering IEEE. 

Holopainen, J., & Björk S. (2003). Game design patterns. 
In Lecture Notes for GDC. 

Kiczales., G., et al. 1997. Aspect-oriented programming. In 
European conference on object-oriented programming 
(pp. 220-242). Springer, Berlin, Heidelberg. 

Kojarski, & D.H. Lorenz, D. H. (2007). Awesome: an 
aspect co-weaving system for composing multiple 
aspect-oriented extensions. ACM Sigplan Notices, 
42(10), 515-534. 

Kojarski, S., & Lorenz, D. H. (2005). Pluggable AOP: 
Designing aspect mechanisms for third-party 
composition. ACM SIGPLAN  

Lorenz, D. H., & Mishali, O. (2012, March). 
SPECTACKLE: toward a specification-based DSAL 
composition process. In Proceedings of the seventh 
workshop on Domain-Specific Aspect Languages 

Martin M. (2012). The Technology behind the Unreal 
Engine 4 Elemental Demo. Part of “Advances in Real-
Time Rendering in 3D Graphics and Games,” 
SIGGRAPH, 2012. 

Miller, K. (2009). Schizophonic performance: Guitar hero, 
rock band, and virtual virtuosity. Journal of the Society 
for American Music, 3(4), 395-429. 

Moby Games Stats,” n.d. https://www.mobygames.com/. 
Pinto, P., Carvalho, T., Bispo, J., Ramalho, M. A., & 

Cardoso, J. M. (2018). Aspect composition for multiple 
target languages using LARA. Computer Languages, 
Systems & Structures 

Polo, M., Piattini, M., & Ruiz, F. (2001, November). Using 
code metrics to predict maintenance of legacy 
programs: A case study. In Proceedings IEEE 
International Conference on Software Maintenance. 
ICSM 2001 (pp. 202-208). IEEE. 

Aspect Weaving for Multiple Video Game Engines using Composition Specifications

461



Schell, J. (2019). The Art of Game Design: A book of lenses. 
AK Peters/CRC Press.. 

Shonle, M., Lieberherr, K., & Shah, A. (2003, October). 
XAspects: an extensible system for domain-specific 
aspect languages. In Companion of the 18th annual 
ACM SIGPLAN conference on Object-oriented 
programming, systems, languages, and applications. 

Vasudevamurt, V. B., & Uskov, A. (2015, May). Serious 
game engines: Analysis and applications. In 2015 IEEE 
International Conference on Electro/Information 
Technology (EIT)  

Wang, A. I., & Nordmark, N. (2015, September). Software 
architectures and the creative processes in game 
development. In International Conference on 
Entertainment Computing (pp. 272-285). Springer, 
Cham 

 

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

462


