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Abstract: Telecommunication operators and Internet Service Providers often face the problem of having residential 
customers complaining about deficient Wi-Fi coverage inside their houses and/or about the low quality of 
service while accessing the Internet. Addressing these complaints properly involves a comprehensive in-house 
diagnostic of the technical deployment, the use of specialized equipment and visits by qualified personnel. 
An alternative is to involve the users in a preliminary diagnostic, by leveraging the potential of current 
smartphones, aiming to identify possible causes for the complaints that can be solved remotely or through 
simple procedures to be executed by the customers. A key feature of such a diagnostic procedure is the ability 
to estimate the location of the smartphone indoors automatically. This paper proposes a simple indoor 
localization solution, based on Wi-Fi fingerprinting, that can be integrated into one such diagnostics procedure. 
The proposed solution was implemented and tested in real-world houses by emulating the behaviour of non-
qualified users. The obtained results show that Wi-Fi fingerprinting, when used in such an uncontrolled 
environment, still poses some challenges as its precision is still significantly low. 

1 INTRODUCTION 

In most countries around the world, the typical 
configuration for residential Internet access is based 
on an all-in-one-box router and Wi-Fi Access Point 
(AP), connected to the Internet through a point-to-
point link: ADSL, cable or optical fibre (FTTH). 
Inside the house, costumers use their own devices to 
connect to the local Wi-Fi network. Being based on a 
single Access Point, this solution often struggles to 
provide a convenient radio coverage of the entire 
house, namely for large houses or in dense residential 
areas where radio interference can significantly 
degrade the performance of Wi-Fi networks. These 
coverage problems can vary over time due to changes 
in the house layout (e.g. moving furniture from one 
place to another) or due to the deployment of other 
Wi-Fi networks in the neighbourhood, making them 
difficult to detect during the first installation of the 
service by the technicians of the Internet Service 
Provider (ISP). These problems are the cause of many 
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complaints by the customers about the provided 
service, as their quality of experience is highly 
dependent on the quality of the in-house Wi-Fi 
network. Similar problems are also observed for 
cellular coverage indoors, but these are not usually 
understood by costumers as a break of the service 
contract rules. 

In-house diagnostics of Wi-Fi coverage in 
residential environments, executed by the customers 
using their Wi-Fi enabled devices (e.g. smartphones, 
tablets, etc.), has the potential of identifying the 
causes for simple problems that can be solved 
remotely by ISP technicians. This diagnostic testing 
procedure benefits from automatic indoor 
localization capabilities as it enables the comparison 
of test results performed in different time epochs and 
the identification of locations with recurring issues. If 
properly crafted, a smartphone App can even help 
customers in self-diagnostic procedures and in tuning 
their setup (e.g. by moving the Wi-Fi Access Point 
slightly, changing its orientation or even changing 
some configuration parameters such as the radio 
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channel number, or by changing the position of some 
furniture objects) to get a better service without any 
intervention from the ISP technicians. One key 
enabler of one such self-diagnostic tool is the ability 
to estimate the location of the smartphone/tablet 
inside the house. 

Many indoor positioning and tracking 
technologies have been proposed in the last decade, 
targeting different scenarios and aiming to support 
different applications (a good overview of the many 
solutions can be found in (Mautz, 2012) or 
(Davidson, 2016). Among those technologies, Wi-Fi 
fingerprinting has become very popular, both within 
the research community and also as the base for many 
commercial products, mainly due to its simplicity and 
easy of deployment. Given the current ubiquity of 
Wi-Fi networks in indoor spaces and since the large 
majority of mobile devices are Wi-Fi enabled, an 
indoor positioning solution can be created based 
entirely on software components, without the need to 
deploy any infrastructure. Other similar solutions, 
based on Bluetooth Low Energy (BLE), are also 
becoming popular at airports, hospitals and shopping 
malls, despite demanding the installation of a dense 
network of BLE beacons (Faragher, 2014). 

Sound and ultrasound propagation in indoor 
environments have also been investigated for 
supporting indoor positioning solutions (Harter, 
2002; Priyantha, 2001), but they also require the 
installation of a dedicated infrastructure. The systems 
described in (Rishabh, 2012) and (Nakashima, 2011) 
are examples of solutions that use the loudspeakers 
available in offices or shopping malls to implement 
indoor positioning systems. They disseminate barely 
audible controlled sounds or watermarked signals, 
which are then captured by the mobile users’ devices 
and used to estimate the receiver position. Other 
solutions, namely those based on infrared or 
UltraWideBand (UWB) have the potential of 
achieving high accuracy at the cost of requiring the 
use and deployment of specific, and often expensive, 
hardware (Alarifi, 2016). 

This paper reports on the development of a 
technical solution to assist residential customers of 
Internet access services in performing self-diagnostic 
tests in their houses. The developed solution includes 
a software library with several methods to run 
performance tests, including upload and download 
rates, latency statistics, link speed, RSSI - Received 
Signal Strength Indicator, and Wi-Fi radio 
interference level (based on the number of access 
points using the current and adjacent Wi-Fi channels). 
The library also includes methods to estimate the 
location (at room level) where each test has been 

performed, thus enabling the geo-referencing of each 
set of test results. 

This paper is focused on the development and 
testing of an indoor localization solution based on 
Wi-Fi fingerprinting. Section II provides an overview 
of the fundamental principles of Wi-Fi fingerprinting, 
with its advantages and limitations. The proposed 
solution for the in-house localization component is 
introduced in section III. Its evaluation in real-world 
settings is described in section IV, along with a 
discussion of the obtained results. The paper ends 
with conclusions and some ideas for future 
developments, in section V. 

2 WI-FI FINGERPRINTING 

Wi-Fi fingerprinting is a scene analysis method of 
positioning (Bahl, 2000). It is based on the 
fundamental principle that the characteristics of the 
radio environment are unique at each location, and 
involves two main stages. In its first stage, samples of 
the radio environment (strength of the received signal 
from each observable AP, frequency channel, or other 
characteristics of the radio signals) are collected at 
known locations and subsequently stored in a 
database to form what is known as a Radio Map. 
Collecting samples can be achieved by querying the 
network interface of Wi-Fi enabled devices through 
the devices’ Application Programming Interface 
(API), thus using simple software components. In 
most of the reported solutions, multiple samples are 
collected at each location, with one or more distinct 
orientations of the collecting device (e.g. with the 
device heading North, South, etc.). Collecting 
multiple samples aims at capturing the variability of 
the radio signals at each location. In some systems, 
the set of collected fingerprints is pre-processed, 
namely by averaging the measured signal level from 
each AP or by filtering data from specific APs, to 
produce the final radio map. This is considered, by 
some authors, one additional stage added to the two 
conventional ones. 

In the operational stage, also known as the on-line 
stage, a device at an unknown location collects one 
sample of the radio environment (operational 
fingerprint) and an estimation method is used, 
together with the radio map, to estimate the position 
of the device. Two main approaches are used to 
estimate the position - deterministic and probabilistic, 
with none of them being clearly superior to the other. 
The probabilistic approach is based on a probabilistic 
model that describes the probability of observing a 
given signal level from a particular AP at a given 
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position, and is usually built by approximating the 
distribution of the measured signal level to a Gaussian 
distribution. The unknown position of the device is 
then estimated through a Bayesian method (see, e.g. 
(Youssef, 2005) and (Ledlie, 2012)). With the 
deterministic approach, a distance function is used to 
compute the similarity between the operational 
fingerprint and all the fingerprints in the radio map. 
The most similar fingerprint or the k most similar 
fingerprints in the radio map are then selected and 
their corresponding positions are used to estimate the 
position of the target device (usually the centroid or 
weighted centroid). This is known as the k-Nearest 
Neighbour (kNN) method. Many alternative distance 
functions have been proposed to compute the 
similarity between fingerprints, with the Euclidean 
and Manhattan distances being the most popular 
(Torres-Sospedra, 2015). When estimating the 
location at room level, majority rules can be used to 
pinpoint the most probable compartment indoors 
(Marques, 2012). Other classification methods have 
also been proposed, including decision trees, random 
forest, Support Vector Machine and Neural 
Networks. 

Due to the variability of the radio environment, 
the typical performance of Wi-Fi fingerprinting-
based indoor positioning solutions is characterized by 
an accuracy (mean error) around 5 meters, with the 
frequent observation of very large errors (larger than 
15 meters). One good reference regarding the 
performance of these positioning methods is the set 
of results obtained in indoor positioning 
competitions, such as the IPIN (Torres-Sospedra, 
2016) and Microsoft competitions (Lymberopoulos, 
2017), although paying attention to the fact that most 
of the competing systems are not pure Wi-Fi 
fingerprinting-based but, instead, hybrid system 
fusing data from multiple sensors. 

Indoor positioning based on Wi-Fi fingerprinting 
is, however, very challenging. Firstly, creating radio 
maps for large buildings is a very tedious and time-
consuming task, even when resorting to advanced 
localization and mapping (SLAM) approaches 
(Ferris, 2007; Wu, 2012; Jiang, 2012). Moreover, 
radio maps degrade with time due to changes in the 
radio environment, requiring frequent recalibrations. 
Some of the causes of these changes in the radio 
environment are modifications in the layout of the 
space (e.g. furniture moving, doors opening/closing), 
alterations in the layout of the Wi-Fi network (APs 
being relocated, added or removed, nearby networks 
being deployed/modified) and the presence of mobile 
hotspots (temporary APs created by mobile devices). 
Wi-Fi-fingerprinting also suffers from the use, in the 

operational phase, of devices different than those 
used for creating the radio map, including different 
versions of the Android OS API version, from the 
orientation of the devices that affect the measured 
received radio signals due to body shadowing, and 
also from how the devices are handled (carried in the 
pocket, in the hand, etc.) while collecting a 
fingerprint. 

3 ROOM-LEVEL 
LOCALIZATION 

The aim of the positioning system described in this 
paper is to detect when network performance tests 
have been run in the same room inside the house 
where similar tests were run earlier. Therefore, it is a 
problem of recognizing (recalling) a previously 
visited room. In its simplest form, the user of a 
smartphone App visits each and every room inside 
his/her house and collects enough fingerprints to 
properly characterize them, also labelling these 
fingerprints with the room name. This approach for 
building the radio map can be easily and rapidly 
performed in a regular house with the help of a 
smartphone App based on a wizard. In a more 
automated form, the fingerprints are collected 
automatically, in the background, by the smartphone 
App while also running the other performance tests. 
In any case, the collected fingerprints are then used to 
characterize and later recognize each room. 

The proposed approach for this system is based on 
pure Wi-Fi fingerprinting, running completely in the 
smartphone, without depending on any network 
service. The reason for this design choice is to ensure 
total privacy of the users. On the other hand, this 
choice imposes some limitations on the choice of the 
estimation method (e.g. deep learning might not be 
practical to implement). 

Following a tradition approach, based on a 
deterministic estimation method, let R be the set of all 
labelled fingerprints (fp), collected at each room, 
during an initial calibration, that form the radio map. 
Each fingerprint is described as: 

𝑓𝑝௜ ൌ ሺ𝑙, ሼሺ𝑀ଵ, 𝑅𝑆𝑆𝐼ଵሻ, … , ሺ𝑀ே, 𝑅𝑆𝑆𝐼ேሻሽሻ        (1) 

where l is a unique label identifying each room inside 
the house, M is the MAC address of an observed AP, 
RSSI is the Received Signal Strength Indicator 
representing the measured signal level (represented in 
dBm), and N is the number of APs observed at a 
particular location in a particular time instant. 
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In the operational stage, a deterministic method is 
used to estimate the room associated with a given 
fingerprint (fp0) collected at an unknown location. 
First, the similarity S between fp0 and all the 
fingerprints fpi in R is computed using a modified 
version of the Manhattan distance, defined as: 

𝑆ሺ𝑓𝑝଴, 𝑓𝑝௜ሻ ൌ ∑ ห𝑅𝑆𝑆𝐼௝
଴ െ 𝑅𝑆𝑆𝐼௝

௜หே
௝ୀଵ െ 𝛼 ൈ 𝑛𝐶𝑀   (2) 

where RSSI0
j is the measured RSSI of APj in the 

operation fingerprint (fp0), RSSIi
j is the measured 

RSSI of APj in the radio map fingerprint (fpi), N is the 
total number of APs observed in the fp0 and fpi, nCM 
is the number of APs than are observed in both fp0 and 
fpi, and ⍺ is a parameter that gives more or less weight 
to the number of common APs (nCM). Since not all 
APs are observed in all fingerprints, whenever an AP 
is missing (not observed), the corresponding RSSI 
value is replaced by a constant representing a weak 
signal (we found -90 dBm to provide good results). 

Let B be the set of radio map fingerprints ordered 
by decreasing similarity (meaning increasing value of 
S) with fp0. The location (room) associated to fp0 is 
estimated by applying a majority rule to the top k 
fingerprints taken from B: the most frequent room is 
the most probable location for fp0 (k-Nearest 
Neighbours – k-NN). This method assumes that R 
includes more than one labelled fingerprint per room. 
Otherwise, k must take the value 1, and the estimated 
location is that of the most similar fingerprint (1-NN), 
i.e. that of the top fingerprint in B. 

The location estimation method described above 
was implemented as a Java library including classes 
and methods to collect fingerprints, manually label 
fingerprints (to get ground truth), to build the radio 
map, and to estimate the location associated to a given 
fingerprint. Other methods, used to assess the 
performance of Wi-Fi networks have also been 
implemented, including a feature to upload the results 
to a server. 

4 EVALUATION IN THE REAL 
WORLD 

The developed system was evaluated in three 
different houses, of varying configuration, in order to 
assess the performance in recognizing a previously 
mapped room. Three distinct persons performed the 
evaluation using three different smartphones. As 
much as possible, the evaluation was performed 
trying to mimic the behaviour of non-technical users. 
This process was performed without altering the 

normal behaviour of the space inhabitants or 
changing the physical layouts, such as the position of 
furniture and other large objects. These experiments 
were conducted in the first days of February 2019. 

4.1 Experimental Setup 

The infrastructure created to evaluate the developed 
solution (the Java library, with emphasis on the 
localization solution) includes an Android App and a 
data server, and three houses where the system has 
been tested. 

The App implements a simple graphical user 
interface that facilitates the access to the main library 
functions (see Figure 1): Add Place – to collect a set 
of fingerprints, label the corresponding location and 
add them to the radio map; Get Location – to collect 
one single fingerprint, estimate the corresponding 
location, collect ground truth (Figure 1.b), and send 
the result to a server. All the other functions are used 
to manage the radio map: reset it (Delete Places), 
rename a place, delete a place, and list all places. 

(a) (b) 

Figure 1: Android App used for the validation of the 
localization system: (a) main menu; (b) validating a 
recognized place. 

The server is used only to collect the experimental 
results: every time a localization estimation is 
performed, the corresponding operational fingerprint, 
the used radio map and the ground truth are sent to 
the server, where these data is stored in a database for 
further processing. This allows the same data to be 
processed offline using variants of the estimation 
algorithm. 
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The system has been tested in three different 
houses: 

 House A (hA) – a three-floor house with 12 
compartments, 1 in the basement, 5 “spaces” in 
the ground floor and 6 compartments in the 
upper floor; all spaces in the ground floor are 
in an open space without any walls or doors 
separating them, except for the toilet and 
laundry; most interior walls are made of brick; 
the neighbourhood includes several similar 
houses around, with small gardens in between; 
no testing has been performed in the basement; 

 House B (hB) – a 120 square meters single-
floor house with 8 compartments; there is only 
one neighbour house that share a wall from 
kitchen and a room; all spaces are separated by 
walls made of brick and accessible by the hall; 

 House C (hC) – a flat, with almost 130 square 
meters, on the 3rd floor of a multi-floor 
building, with 9 compartments; all spaces are 
separated by walls made of brick, except the 
laundry room which is separated from the 
kitchen by a glass; the neighbourhood includes 
three other flats on the same floor (with a 
double wall made of brick in between) and 
several other flats on the same floor but without 
direct contact; the same layout exists on the 
remaining four floors of the building. 

 
Four different smartphones were used to collect 

the data: Nexus 5, Oneplus 5T, Xiaomi Mi8 Pro, and 
Lenovo Pb2. In all tests, the same device was used to 
build the radio map and to perform the localization 
tests. Experiments using one smartphone for building 
the radio map and a different one to perform the 
localization tests were not considered since those 
scenarios are not expected to happen in the real use of 
this system. 

4.2 Evaluation Metrics 

The main metric for evaluating the performance of 
symbolic location systems is Accuracy – it measures 
the percentage of times the system correctly 
recognizes the visited place. Since the performance of 
the location recognition is dependent on the total 
number of distinct places to recognize (the smaller the 
number of distinct places, the easier is to recognize 
the correct place), a secondary metric is defined as the 
gain over a random guessing. This metric, named 
Relative Accuracy, is defined as Ar = Np x Accuracy, 
where Np is the total number of rooms inside the 
house (number of classes in the classifier). Ar is 

simply the gain over a random classifier, which 
accuracy is 1/Np. In our evaluation, the number of 
samples (fingerprints) collected in each room to build 
the radio map is the same, so that there is no initial 
unbalance (bias) and the prior probabilities of each 
class are all equal. 

4.3 Evaluation Procedure 

An evaluation procedure was defined prior to any 
data collection at the houses referred above. 

It is also well known that the movement of 
devices affects the propagation of radio signals 
significantly. However, despite the large number of 
location/positioning systems based on radio signals 
that have been proposed, their evaluation is usually 
performed with stationary devices. The exception is 
the class of positioning tracking systems based on 
pedestrian dead reckoning since the movement of the 
human body is fundamental to estimate displacement 
(e.g. through step counting and stride length 
estimation). Therefore, this work also aims at 
investigating the impact of movement in the 
performance of Wi-Fi based fingerprinting location 
systems. 

Three different modes were tested: 

 still-table: stationary smartphone over a table 
or similar object; 

 still-hand: stationary smartphone being hold in 
the hand of the user; 

 moving-hand: smartphone handled by the user 
while walking inside the house at normal speed 
(less than 1m/s). 

 
Two sets of experiments were conducted: one 

with the radio map built with the smartphone placed 
on top of a table (still-table), and another with the 
smartphone in the hand (still-hand). This is intended 
to evaluate the impact of having the smartphone in the 
hand while collecting the fingerprints. For the first 
radio map (still-table), two localization tests were 
performed: still-table and moving-hand. For the 
second radio map (still-hand), the localization tests 
were performed for the modes still-hand and moving-
hand. 

Data collection involved two stages. First, a user 
registered all the places inside the house to create the 
radio map. In the second stage, the user visited all the 
spaces/rooms, many times, and asked the system to 
recognize his location while being stationary (still-
table), while holding the smartphone in the hand 
(still-hand), and while walking without stopping 
(moving-hand). 
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To create the radio map, the user visited each 
place/room, selected a location near the centre of the 
room, placed the smartphone on top of a table or other 
surface at similar height (still-table), with the screen 
pointing to the ceiling, pushed the ADD PLACE 
button (see Figure 1), and typed in the room name. 
Ten fingerprints were collected per room. No specific 
order was defined to visit the several rooms. Each 
room was visited only once. In the second set of 
experiments, this procedure was repeated while 
holding the smartphone (still-hand). Table 1 shows a 
summary of the collected data, including the number 
of fingerprints collected in each house for each testing 
mode (#fps) and the total number of observed Access 
Points (#APs). 

Table 1: Summary of the collected data (radio maps). 

House Mode #rooms #fps #APs 
hA still-hand 11 110 7 
hA still-table 11 110 8 
hB still-hand 8 80 11 
hB still-table 8 80 7 
hC still-hand 9 90 23 
hC still-table 9 90 22 
hC still-hand 9 90 29 
hC still-table 9 90 21 

Total:   740  

The second stage was devoted to evaluate the 
performance of the system in recognizing previously 
mapped rooms. To collect the corresponding data, the 
user repeated the same procedure as for creating the 
radio map but, instead of pushing the ADD PLACE 
button, the user used the GET LOCATION function 
of the App. After receiving a reply from the App, the 
user confirmed the estimated location, if correct, or 
selected the correct place from the list of registered 
places, otherwise. An “unknown” location could also 
be selected in case the user was at a place not 
previously registered into the system. In this stage, 
each room was visited three times. This procedure 
was repeated for the modes still-table, still-hand and 
moving hand. 

Since all these data was sent to a server during the 
evaluation, the performance of the system was 
computed offline. 

5 EVALUATION RESULTS AND 
DISCUSSION 

The results presented in this section were obtained by 
using the following values for the system parameters: 

 default RSSI value for missing APs: -90 dBm 

 ⍺ (see equation (2)): 4 

 k (number of top fingerprints to use when 
applying the majority rule): 5 

 

A summary of the evaluation results is shown in 
Table 2. These results are, apparently, disappointing, 
since the accuracy is quite low. It means that, in too 
many cases, the localization system is not able to 
estimate the correct room, even though the 
performance of the system is way better than a 
random classifier. 

Table 2: Overall Accuracy (A) and Relative Accuracy (Ar). 

 Radio map 
(still-table) 

Radio map 
(still-hand) 

A Ar A Ar 

hA 0.563 6.19 0.508 5.59 

hB 0.612 4.89 0.430 3.44 

hC 0.598 5.38 0.719 6.47 

Average 0.591 5,49 0.552 5.17 

These results also show that the difference in 
performance across the three houses is not very large 
when the radio map is built with the smartphone 
standing on top of a table (still-table), but larger 
variations are observed when the smartphone is in the 
hand while building the radio map (still-hand). This 
was an expected result, as it is known that the human 
body attenuates the radio (Wi-Fi) signals 
significantly. On the other hand, the average results, 
considering the three houses, are similar for both 
radio maps. 

A deeper analysis of the results revealed that, 
many times, the incorrect location estimates are on 
rooms adjacent to the correct one, or that the second 
or third guesses include the correct room. This is 
illustrated in Table 3, where it is shown that in around 
80% of the estimates, the correct room is within the 
three best guesses. One possible explanation for these 
results is that, in the houses used for testing, some 
rooms are not clearly separated by walls and/or doors 
– they are just different areas in a large open space. 
Therefore, it is not easy to distinguish the different 
areas since there are no obstacles to differentiate the 
propagation of the radio signals clearly. The results in 
Table 3 also show that, when considering the 
aggregated data, there is no significant difference 
between the two radio maps. 
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Table 3: First, second, and third best guesses. 

Guess 

Radio map 
(still-table) 

Radio map 
(still-hand) 

A Ar A Ar 

1 0.592 5.46 0.594 5.49 

1+2 0.697 6.42 0.700 6.46 

1+2+3 0.802 7.38 0.797 7.35 

Table 4 shows results about the impact of 
movement, aggregated for the three houses. It 
compares the results (first guess only) for the two 
radio maps and the performed testing modes. 

Table 4: Impact of movement. 

Mode 

Radio map 
(still-table) 

Radio map 
(still-hand) 

A Ar A Ar 

still-table 0.623 5.77 - - 

still-hand - - 0.650 6.00 

moving-
hand 

0.562 5.15 0.538 4.98 

Here it is more evident the impact of performing 
tests (localization) while moving: for both radio maps 
there is a clear degradation on the accuracy when the 
fingerprints are collected while the user was walking. 

In one of the houses, the tests were performed 
using two different smartphones, aiming to evaluate 
if the use of different devices has a significative 
impact on the accuracy. For each test, both the radio 
map fingerprints and the online fingerprints were 
collected using the same device. The corresponding 
results are shown in Table 5, and are inconclusive. 
While for the first radio map there is a clear advantage 
on the performance of the Xiaomi smartphone, for the 
second radio map the results are, coincidentally, 
exactly equal. 

For the house with multiple floors, the correct 
floor rate was calculated and found to be 93,1%. 

Table 5: Impact of using different smartphones. 

Mode 

Radio map 
(still-table) 

Radio map 
(still-hand) 

A Ar A Ar 

Xiaomi 0.718 6.46 0.719 6.47 

Lenovo 0.478 4.30 0.719 6.47 

 

Given the obtained results, which suggest that 
there is room for considerable improvements, other 
localization methods, were evaluated. Among them, 
well-known classifiers such as Naïve Bayes, Decision 
Trees, Random Forest (ensembles), Neural Networks 
and Support Vector Machine were evaluated using 
the radio maps for training and the testing fingerprints 
for testing, using the vector of all RSSI values 
observed from all APs as the single feature. The 
obtained results (accuracy) were consistently worse 
than those obtained with the method described in this 
paper. 

6 CONCLUSIONS AND FUTURE 
WORK 

In this paper we reported on the evaluation of an 
indoor localization system, at room level, based on 
Wi-Fi fingerprinting. The particular characteristic of 
the developed system is that it is to be used in 
residential houses by non-qualified people using a 
simple smartphone App. Therefore, no initial setup 
and/or calibration should be made by professionals. 
In order to preserve the privacy of the users, the 
system should also implement all the required 
functions in the smartphone App, and no external 
server should be used. This requirement prevents the 
use of advanced methods that imply a high 
computational burden, incompatible with the 
processing capabilities of average smartphones/tables 
or required high energy consumption. 

The proposed system is based on Wi-Fi 
fingerprinting and a simple deterministic estimation 
method (similarity and majority rule). Its 
performance has been evaluated in three real houses. 

The results reported in this paper show that 
recognizing previously mapped rooms inside the 
house is a difficult task, and the obtained accuracy 
was in the range of 55 to 80%. These results are worse 
than initially specified. One reason for this level of 
performance might be the small number of Access 
Points observed in a house, compared with what is 
now typical in more network-dense places such as 
universities, hospitals or airports. On the other hand, 
these results are in line with the typical positioning 
results reported in the literature for Wi-Fi 
fingerprinting, where the accuracy is around 5 meters. 
With this level of accuracy, it is quite easy to estimate 
the wrong room inside a house with typical room 
sizes (~10-15 m2). 

A direct comparison with the results of other 
authors is a difficult task, as reported in (Torres-
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Sospedra, 2017), since the evaluation conditions are 
often very different and the reported methods are 
difficult, if not impossible, to replicate. Moreover, the 
room-level accuracy depends deeply on the layout of 
the space and materials used. Results reported in 
(Yasmine, 2016) show an accuracy of 0.88. However, 
these results were obtained in a test performed in a 
shopping mall, with shops spreading a much larger 
area than is typical in a house. This larger spread 
facilitates the distinction among rooms (shops in this 
case) that are far apart, which is not the case in a 100 
m2 house. 

As future work, and in order to improve the 
accuracy, a few hybrid solutions will be evaluated, 
including the combination of Wi-Fi fingerprinting 
with fingerprinting based on cellular networks radio 
signals (Otsason, 2005) or with sound-based 
fingerprinting. In these hybrid methods, the use by 
non-professionals should be evaluated and its impact 
measured. 

One other area deserving further investigation, for 
this particular application, is the use of multiple 
fingerprints collected at each room during the 
localization (online) phase. Multiple fingerprints can 
be combined to reduce the inherent variability of the 
RSSI values. This technique can be easily 
incorporated in the developed App at the expense of 
longer data collection periods at each location. 
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