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Abstract: In this paper, we present a novel approach to Model Predictive Control that allows to explore the largest possi-
ble portion of the state–space when still using a low–computational–complexity vehicle model. By introducing
additional constraint for acceleration magnitude we are able to stay within the limits where the model gives
accurate predictions, while driving with high velocity. This effects a behavior similar to one of a professional
racing driver, as the controller is able to balance speed and curvature of the vehicle at any point in time.

1 INTRODUCTION

Control is one of the fundamental components of any
robotics system. In case of autonomous vehicles, a
common solution is to apply a steering feedback loop
compensating for deviations from target trajectory,
generated by a planning module. In this setting, plan-
ning is not considered a part of the control system,
which is only responsible for execution of a prede-
fined plan.

One of the variations of this method, which is
steadily gaining popularity thanks to increasing per-
formance of modern computer systems, involves re-
placing the feedback loop with receding window op-
timization. This approach, more widely known as
Model Predictive Control, relies on a system model
which is detailed enough to give accurate predictions
on one hand, but simple enough to allow for real–
time execution on the other. During each iteration,
a single optimization problem is solved, resulting in
a set of control inputs minimizing a specified cost
function over a small prediction window. One of
the biggest advantages of MPC is its great flexibility
that allows to operate processes—such as automated
driving—under complex constraints thanks to care-
fully designed cost functions (Allgöwer et al., 2004).
For trajectory tracking goal, such a function might for
example include deviation from the reference path at
each prediction step (Faulwasser et al., 2009). In con-
sequence, much better trajectories can be realized—
and some issues, such as overshoot present with more
classic controllers (Balaji et al., 2015), can be avoided
altogether. However, strengths of this solution come
with some drawbacks. MPC is only as good as the

Figure 1: Selfie V2.1 UGV Platform.

system model. Accurate predictions are crucial for the
calculated inputs to be valid in the real world. On the
other hand, the optimization algorithm introduces ad-
ditional computational overhead depending on model
complexity, much larger than of most common feed-
back controllers. Since execution has to be performed
in real time, performance becomes a particularly im-
portant concern.

This problem becomes especially evident when
driving close to vehicle handling limits, e.g. during
execution of high speed emergency maneuvers or rac-
ing. A lot of factors come into play, such as aerody-
namic forces, load transfer, tire stiffness varying with
temperature, coefficient of friction between tires and
the road, etc. As velocities and accelerations increase,
more and more nonlinearities are introduced in the
system. This creates the need for more detailed mod-
els required to capture all nuances affecting behavior
of the system.
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1.1 Related Work

Literature offers numerous examples regarding path–
tracking at vehicle limits. (Kritayakirana and Gerdes,
2012) show how a ‘g–g’ diagram can be used to gen-
erate a speed profile utilizing the maximum of avail-
able force of friction. This allows to employ advanced
driving techniques, such as trail–braking and corner–
on–exit, which involve balancing lateral and longi-
tudinal accelerations between segments of the track
with varying curvature.

In the area of optimal control, (Lam et al., 2010)
introduce a cost function to trade off contouring accu-
racy against path speed. This approach has been suc-
cessfully used in (Liniger et al., 2014) and (Kabzan
et al., 2019b) to autonomously drive a car on a race
track. Both use a high–fidelity dynamic bicycle model
and additional constraints for tire forces and path de-
viation.

Data–driven modeling is also a technique that has
found successful applications, largely thanks to the
property that allows to capture various intricacies of
the dynamic system, often hard to account for with
purely analytic models. An example of this method
can be found in (Williams et al., 2016), where a
bayesian linear model is being fit to driving data gen-
erated under human operation. Use of such a model
has been enabled by the presence of a custom opti-
mization algorithm, making use of multi–threading
capabilities of a Graphical Processing Unit (GPU)
available on the platform. (Kabzan et al., 2019a)
demonstrate a hybrid approach, where a base model
is first used, which is then error–corrected based on
measured inaccuracies in state prediction.

1.2 Contribution Overview

In this paper, we strive for a simple yet performant
solution which is able to balance prediction accu-
racy with execution time. A low–complexity vehi-
cle model is used, which has the additional advan-
tage in that minimal preparation is required for pa-
rameter estimation. To ensure the system always
stays in the safe part of the state space—by which
we mean the subspace where model inaccuracies are
still small enough to allow to reliably control the
vehicle—additional constraint on acceleration is in-
troduced, similar to the one used in (Kritayakirana
and Gerdes, 2012). We intend best possible path-
tracking speed on an Ackermann-type vehicle when
operating with a model with low computational re-
quirements and without using a pre-computed speed
profile. The last constraint allows for better flexibility,
should the system be extended in the future e.g. incor-

Figure 2: Kinematics of a double track vehicle model.

porate obstacle avoidance. Our solution runs in real-
time on a modern Central Processing Unit (CPU),
what is validated experimentally.

2 MODEL ANALYSIS

2.1 Kinematic Equations of Motion

Let us consider a vehicle with Ackermann steering,
as depicted in figure 2. For computational simplicity,
assume lateral velocity of each tire to be equal zero,
so that path curvature κ depends solely on inclinations
of the front wheels. This assumption is an approxima-
tion of the actual behavior of the system, as tires will
deform under the influence of the force of friction –
which in general scales along with acceleration, up to
a maximum value dictated by the coefficient of fric-
tion and vertical load. It follows that this approxima-
tion can only be valid up to certain accelerations – an
exact value to be evaluated experimentally.

State of the vehicle is characterized by its position
X , Y , heading ψ, velocity v, and slip angle β, which
together form a vector xxx. Motion of the vehicle can
be described by differential equations:

Ẋ = vcosβcosψ− vsinβsinψ (1a)

Ẏ = vcosβsinψ+ vsinβcosψ (1b)
ψ̇ = vκ (1c)

where:

κ =
sinβ

lr
(2)

2.2 Acceleration Magnitude Squared

First derivative of position gives us velocity vector:
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VVV =

[
Ẋ
Ẏ

]
(3)

Note that based on equations 1a–1b, VVV can be defined
as function of v, β, and ψ. By applying the chain
rule, we can derive an expression for the acceleration
vector AAA:

AAA = V̇VV =

 ∂Ẋ
∂v

∂Ẋ
∂β

∂Ẋ
∂ψ

∂Ẏ
∂v

∂Ẏ
∂β

∂Ẏ
∂ψ


︸ ︷︷ ︸

JJJVVV

 v̇
β̇

ψ̇

 (4)

where JJJVVV is the Jacobian of VVV (v,β,ψ) with the fol-
lowing partial derivatives:

∂Ẋ
∂v

= cosβcosψ− sinβsinψ (5a)

∂Ẏ
∂v

= cosβsinψ+ sinβcosψ (5b)

∂Ẋ
∂β

=−vsinβcosψ− vcosβsinψ (5c)

∂Ẏ
∂β

=−vsinβsinψ+ vcosβcosψ (5d)

∂Ẋ
∂ψ

=−vcosβsinψ− vsinβcosψ (5e)

∂Ẏ
∂ψ

= vcosβcosψ− vsinβsinψ (5f)

We can also calculate square of the acceleration mag-
nitude with a quadratic form:

A2 = AAAT AAA =
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β̇

ψ̇

T
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 (6)

Note that:
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(7)

and also:
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∂Ẏ
∂v

= 1 (8a)
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= v2 (8b)
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= v2 (8c)
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∂Ẋ
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∂Ẋ
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∂Ẏ
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By substituting from 7 and 8a–8f into eq. 6, we
get:

A2 =

 v̇
β̇

ψ̇

T 1 0 0
0 v2 v2

0 v2 v2

 v̇
β̇

ψ̇


= v̇2 + v2

(
β̇

2 + ψ̇
2 +2β̇ψ̇

)
= v̇2 + v2

(
β̇+ ψ̇

)2

(9)

Finally, substituting from equations 1c and 2:

A2 = v̇2 + v2
(

β̇+ v
sinβ

lr

)2

(10)

3 CONTROLLER DESIGN

3.1 Path Tracking Scenario

For the purpose of this paper, we will consider an ap-
plication where the path the vehicle is supposed to
follow is given as a sequence of waypoints Wi, as de-
picted in fig. 3. Furthermore, we assume that the vehi-
cle is positioned somewhat along the direction of the
path, i.e. the difference between their headings lies
within some small tolerance. This assumption is cru-
cial to proper functioning of the system, and in prac-
tice could be enforced by a separate fail-safe mech-
anism that triggers a recovery procedure should the
vehicle find itself across the path, or even in the op-
posite direction.

From this assumption, given dense enough place-
ment of waypoints and kinematic viability of the un-
derlying path (maximum curvature constraint), fol-
lows that there will be a range of waypoints for which
we have increasing x values in vehicle coordinate
frame. This in turn allows us to approximate a section
of the path using spline interpolation S(x). We will
use this coordinate frame to denote deviations from
the initial position as a triplet (x̂, ŷ, ψ̂). Let us also
define lateral and heading errors with respect to the
reference path as respectively:

∆ŷ = ŷ−S(x̂) (11a)

∆ψ̂ = ψ̂− arctan
(
S′(x̂)

)
(11b)
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Figure 3: Vehicle Progression along a Reference Path.

3.2 Problem Formulation

Informally, we can state our task as one of follow-
ing the path as closely and quickly as possible while
staying within kinematic and dynamic limits of the
vehicle. Around that description, we can build a more
formal definition that can bring it to constrained opti-
mization problem. The variables we want to optimize
are given directly by equations 11a and 11b and state
is defined in section 2.1. We can define a state-based
cost function C(xxx) as:

C(xxx) = c1 ·

Y −S(X)︸ ︷︷ ︸
∆ŷ


2

+ c2 ·

ψ− arctan
(
S′(X)

)︸ ︷︷ ︸
∆ψ̂


2

+ c3 · (v− vmax)
2

(12)

where c1, c2, c3, and vmax are configurable parame-
ters. Viability constraints can be represented as re-
strictions on allowed values for v, β, v̇, β̇, and A (eq.
10).

Figure 4: A Basic Working Principle of Model Predictive
Control (M. Behrendt, Wikimedia Commons).

3.3 Receding Time Window
Optimization

With system model defined in section 2, cost function
and constraints defined in section 3.2, we can now
proceed to construct the controller. The main concept
behind MPC has been shown in figure 4. From system
state and inputs sampled at time instants k an input se-
quence over a prediction horizon p is generated that
results in an optimal output trajectory. The first value
of this sequence is used as current input until state is
measured again and the whole process is repeated.

We will refer to XXX i and UUU i as state and input se-
quences respectively, defined as:

XXX i =
[
Xi Yi ψi vi βi

]T (13a)

UUU i =
[
v̇i β̇i

]T (13b)
We will denote predictions as XXX∗i and UUU∗i to distin-
guish from actual history. We will also use a state
transition function fff that is an Euler–method–based
discretization of state equations from section 2.1:

fff (xxx,uuu) = xxx+ ẋxx(xxx,uuu)∆t (14)
with sampling time ∆t. The optimization can thus be
written as:

VVV ∗k = min
XXX∗k+ j ,UUU

∗
k+ j

p

∑
j=1

C
(
XXX∗k+ j

)
s.t. XXX∗k+ j+1 = fff

(
XXX∗k+ j,UUU

∗
k+ j
)
,

XXX∗k+1 = fff (XXXk,UUUk)

vmin 6 vk+ j 6 vmax,

vmin 6 βk+ j 6 vmax,

vmin 6 v̇k+ j 6 vmax,

vmin 6 β̇k+ j 6 vmax,

vmin 6 Ak+ j 6 vmax,

j = 1, . . . , p

(15)

VEHITS 2020 - 6th International Conference on Vehicle Technology and Intelligent Transport Systems

500



4 EXPERIMENTAL SETUP

To validate viability of the proposed solution, an ex-
perimental ride has been conducted using a roboti-
cized vehicle based on a 1:8 scale car chassis, de-
picted in figure 1. Conceptual data flow in the entire
system has been shown in figure 5. The following
paragraphs describe in more details how it was imple-
mented.

4.1 Hardware

The vehicle is based on Team Associated RC8B3.1e
chassis. Actuations are provided via a high power
Brushless Direct Current (BLDC) motor controlled
by a dedicated Electronic Speed Control (ESC) mod-
ule and a servomotor connected to the steering sys-
tem. The frame has been modified to hold an ASRock
Mini-ITX motherboard with an Intel i3 CPU, 8 GB
RAM, and 128GB SSD. The car has been equipped
with two Hokuyo URG-04LX-UG01 laser scanners,
a small STM32 board for computer–ESC communi-
cation, a Wi-Fi module, an Inertial Measurement Unit
(IMU), and a radio receiver for manual control. The
setup is powered by four-cell, 14.8V lithium-polymer
battery. The system measures 37,5 cm x 50 cm and
weighs approximately 3 kg.

4.2 Software

Overall software architecture follows the one de-
scribed in (Gotlib et al., 2019). The main on–board
computer is running Ubuntu 16.04 configured with
Robot Operating System (Quigley et al., 2009). Dur-
ing execution, laser scans combined with odome-
try data and a pre–built map of the environment are
used as inputs to Adaptive Monte Carlo Localization
(AMCL) system. Resulting position data, together
with current velocity, steering, as well as waypoint
of a reference path, are used to fill initial state for
MPC implementation. Optimization is performed ac-
cording to equation 15 by the use of IPOPT solver
(Wächter and Biegler, 2006). Target acceleration and
slip angle rate are integrated; resulting speed is used
as a setpoint for ESC, and the angle is mapped to a
respective servomotor position.

4.3 Preparation Procedure

Additional steps need to be taken before the vehicle
is able to drive in autonomous mode. During an of-
fline session, the car under manual operation covers
the track to create a virtual map using Cartographer
package (Hess et al., 2016). Then a reference path is

Figure 5: Data Flow in the Autonomous System.

generated with respect to that map and both are en-
tered to the system.

5 RESULTS

Figure 6 visualizes data gathered from a 4–lap course
around an example track. We can see a mismatch be-
tween the reference path and actual trajectory. The
reason for that is that the controller tries to minimize
curvature, similarly to what a driver does when fol-
lowing a racing line instead of the centerline of the
track. Resulting trade–off between speed and accu-
racy can be regulated using coefficients c1, c2, and c3
in the cost function.

The system is characterized by good repeatability.
We can also see that the controller is able to make
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Figure 6: Reference (in Black) and Actual Path of the Vehicle during a 4–Lap Course around a Test Track.

correct decisions regarding vehicle velocity despite
not being given any pre–computed speed profile. Fig-
ure 7 offers further insights into dynamics of the sys-
tem. Distribution of accelerations peaks just below
the limit circle (defined as a parameter), which means
the requested actuations operate near the optimum
during pure braking, cornering, and acceleration, but
also in transient states, i.e. trail–braking and throttle–
on–exit. However, what can be seen in comparison
with the distribution of accelerations measured using
on–board IMU, these actuations are not executed per-
fectly. They still peak near the limit circle, slightly ex-
ceeding it, but the spread in lateral direction is much
larger, and in the longitudinal – much smaller. This
most probably impacts negatively on overall perfor-
mance.

6 CONCLUSIONS

All in all, despite issues with practical realization of
requested actuations by the test platform, the vehi-

cle operates correctly, what makes the approach pre-
sented here a valid basis for more advanced appli-
cations in the future. The biggest improvement can
be brought by closer inspection of low–level con-
trol responsible for actuating the vehicle. Additional
features, such as Contouring Control (Liniger et al.,
2014) can be added to further extend capabilities of
the system.
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Figure 7: Distribution of Accelerations during the Test Drive.
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